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Abstract

We study a pair of populations in R
2
which undergo di�usion and

branching. The system is interactive in that the branching rate of

each type is proportional to the local density of the other type. Pre-

vious work had established the existence of such a process and de-

rived some of its small scale and large scale properties. This paper is

primarily focused on the proof of uniqueness of solutions to the mar-

tingale problem associated with the model. The self-duality property

of solutions, which is crucial for proving uniqueness and was used in

the previous work to derive many of the qualitative properties of the

process, is also established.
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1 Introduction and statement of results

1.1 Background, motivation and brief description of results

Super-Brownian motion is a measure-valued process which arises as a limit of branching particle

systems undergoing Brownian motion and critical (or asymptotically critical) branching. For ex-

ample let us take large population of N particles in R d with small masses of N�1 per particle and

let them move as independent Brownian motions with di�usion rate �2. Suppose that each particle

dies independently of the others with rate N�(x) at site x at time t and at the time of death each

particle (independently of the others) is replaced by 2 particles or by nothing with probability 1=2
to each event. The replacement particles, if there are any, perform independent Brownian motions

and the story of alternating branching and di�usions continues. If we de�ne measure-valued process

XN by

XN
t (A) = fmass of the particles alive at time t in Ag; 8A 2 B(R d);

then as N goes to in�nity the resulting XN converges in an appropriate topology to the measure-

valued process known as super-Brownian motion with di�usion rate �2 and branching rate �. In

dimension d = 1 super-Brownian motion takes values in the space of measures which are absolutely

continuous with respect to Lebesgue measure and its density satis�es the following stochastic partial

di�erential equation (see [9], [15]):

@Xt(x)

@t
=

�2

2
�Xt(x) +

p
�(x)Xt(x) _Wt(x); (t; x) 2 R+ � R ;(1.1)

where � is the one-dimensional Laplacian and _W is standard time-space white noise on R+ � R .

In dimensions d � 2 the super-Brownian motion takes values in the space of singular measures,

therefore it can not be represented as a solution to the above SPDE (for discussion on parabolic

SPDEs see e.g. [16]). It is characterized as a solution to an appropriate martingale problem (see

e.g. Chapter 6 in [2]). One of the strongest tools available in the study of superprocesses is its

Laplace transform. Write h�; 'i or �(') to denote the integral of ' with respect to a measure �.

Then for the super-Brownian motion X adapted to �ltration Ft we have

P
h
e�hXt; 'ijF0

i
= e�hX0; Vt(')i; 8' � 0;(1.2)

where Vt(') solves the following nonlinear partial di�erential equation:�
@vt(x)
@t

= �2

2
�vt(x)� �(x)

2
vt(x)

2;

v0 = ':
(1.3)

This formula for Laplace transform is the key for proving that super-Brownian motion is a unique

solution to the martingale problem and so is strong Markov.

Recently there has been considerable interest in the area of the superprocesses with interactions.

In [5] solutions to the following system of stochastic partial di�erential equations were studied:

@Xi
t (x)

@t
=

�2

2
�Xi

t (x) +
q

X1

t (x)X
2
t (x)

_W i
t (x); (t; x) 2 R+ � R ; i = 1; 2;(1.4)

where _W 1; _W 2 are independent space time white noises and 
 > 0. In this model, called the

mutually catalytic branching model, there are two types of particles each of which may branch

only in the presence of the other type. More precisely the branching rate of each type at a site is

proportional to the density of the other type present at that site.
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A number of approaches are used to study uniqueness in law of interactive superprocesses (see

e.g. the use of �historical calculus� in [13], [14], [8], or exchangeable particle representation in [6]).

For the one-dimensional mutually catalytic branching model (1.4), uniqueness was resolved in [12],

by deriving the so-called exponential self-duality formula. We will introduce this formula now. Here

and elsewhere we identify non-negative functions X(x) which are integrable on compact sets with

Radon measures X(x)dx � X(dx). If (X1;X2) and ( eX1; eX2) are two independent solutions to (1.4)
starting at (X1

0 ;X
2
0 ) and ( eX1

0 ;
eX2
0 ) respectively (suppose that the initial conditions are in the space

of continuous functions) then the self-duality formula states that

P
h
exp

n
� 
X1

t +X2
t ; ~x

1
0 + ~x20

�
+ i
D
X1
t �X2

t ;
~X1
0 � ~X2

0

Eoi
= eP hexpn�DX1

0 +X2
0 ;
eX1
t + eX2

t

E
+ i
D
X1

0 �X2
0 ;
eX1
t � eX2

t

Eoi
:

In addition to proving the uniqueness result, the above self-duality formula is the key tool for

deriving the long time behavior of the processes with in�nite initial conditions through the long

time behavior of the processes with �nite initial conditions.

The question of extending the mutually catalytic branching model to dimensions greater than

one was intriguing for a number of reasons. One's intuition does not work very well in this case

(see, for example,the intuitive �non-existence� argument in the introduction of [3]). Eventually the

existence of the model in dimension d = 2 was proved in [3],[4], providing 
=�2 is small enough.

More speci�cally, it was shown that a mutually catalytic process X = (X1;X2) makes sense in

dimension d = 2 as a pair of measure-valued processes that solves the following martingale problem.

For an appropriate class of test functions 'i ; i = 1; 2;

M i
t ('i) =



Xi
t ; 'i

�� 
Xi
0; 'i

�� Z t

0

�
Xi
s;
�2�'i

2

�
ds; t � 0; i = 1; 2;

are orthogonal continuous L2-martingales such that M i
0('i) = 0 and

hM i('i)it = 



LX(t); '

2
i

�
; t � 0; i = 1; 2:

Here LX is the collision local time of X1 and X2 loosely described by

LX(t; dx) �
Z t

0

Æx(y)X
1
s (dx)X

2
s (dy) ds t � 0;

whereas the precise de�nition is given in De�nition 1.1 below. [3] deals with the �nite measures state

space and [4] handles the in�nite measures case. Several intriguing properties of mutually catalytic

process were derived in these papers, such as absolute continuity at �xed times, segregation of types

property, the extinction of one type as time goes to in�nity and a number of others. The proof

of some of these properties is based on self-duality formula which we are going to derive in this

paper under additional integrability condition (IntC). The uniqueness for the mutually catalytic

martingale problem, which is the major result of this work, follows from the self-duality formula.

The derivation of self-duality formula in d = 2 is by no means simple generalization of d = 1 case.

The main problem is unboundedness of the densities of the processes. To circumvent this problem,

�rst, we introduce an additional integrability condition (IntC) and prove self-duality, and hence

uniqueness, under this condition. Second, to show that our uniqueness result is not vacuous, we

verify existence of the processes satisfying (IntC). Some moment calculations are required to show

that the processes with �nite initial conditions constructed in [3] satisfy (IntC), and hence are

unique solutions to the corresponding martingale problem. Note that these moment calculations
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are based on moment duality introduced in [3]. Besides uniqueness, we prove the strong Markov

property for the �nite measure case�the requirement of a side condition like (IntC) means there is

a bit to say here. Moreover, (IntC) also allows us to give a simple proof of absolute continuity of

collision local time with respect to time, that is, the existence of a collision measure process KX(t; �)
such that LX(dt; �) = KX(t; �)dt.

In the case of in�nite measures initial conditions, the situation is more complicated. We were

able to derive (IntC), and hence self-duality and uniqueness, only for initial conditions with bounded

densities. As the problem of �nding a proper state space for these in�nite measure-valued processes

remains unresolved, we do not have results on the Markov and strong Markov properties in this

case.

1.2 Notation

We will try to use the same notation as in [3] and [4].

We use c to denote a positive (�nite) constant which may vary from place to place. A c with some

additional subscript or superscript usually denotes a speci�c constant. Write j�j for the Euclidean
norm in R d, d � 1.

For � 2 R introduce the reference function ��:

��(x) � e��jxj; x 2 R d:

For f : R d 7! R put

jf j� � sup
x2Rd

jf(x)j =��(x); � 2 R ;

and

kfk
1
� sup

x2Rd
jf(x)j :

For � 2 R , let B� = B�(R 2) denote the set of all measurable (real-valued) functions f such that

jf j� is �nite. Introduce the spaces

Btem = Btem(R 2) �
\
�>0

B�� ; Bexp = Bexp(R 2) �
[
�>0

B� ; Brap = Brap(R 2) �
\
�>0

B�

of tempered, exponentially decreasing and rapidly decreasing functions respectively. Also let B =
B(R 2) (resp. Bb = Bb(R 2), Bb;com = Bb;com(R 2) C = C(R 2), Cb = Cb(R 2), Ccom = Ccom(R 2)) be
the set of all measurable (resp. bounded measurable, bounded measurable with compact support,

continuous, bounded continuous, continuous with compact support) functions on R
2
. Note that B

will also serve as a notation for Borel sets in R
2
.

Let C� refer to the set of continuous f in B� with the additional property that the f(x)=��(x)
has a �nite limit as jxj " 1. The de�nition of Ctem, Cexp and Crap is analogous to that of Btem, Bexp
and Brap . If F is any subset of continuous functions on R

d
then F (m) (resp. F1) is a subset of

functions in F whose partial derivatives up to the order m (resp. of any order) belong to F . For

example C1com is the subspace of in�nitely di�erentiable functions in Ccom.
If F is a set of functions we will write F+ or F+ for non-negative functions in F .

The topology on Ctem is induced by the metric

dtem(f; g) �
1X
n=1

2�n(jf � gj
�1=n ^ 1); f; g 2 Ctem:
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Let M be the set of all Radon measures on R
2
. Then let Mtem =Mtem(R

2) denote the subset
of all measures � in M such that h�; ��i < 1, for all � > 0. We topologize the set of tempered

measures Mtem by the metric

dtem(�; �) � d0(�; �) +

1X
n=1

2�n(j�� �j1=n ^ 1); �; � 2Mtem :

Here d0 is a complete metric on the space of Radon measures on R
2
inducing the vague topology,

and j�� �j� is abbreviation for jh�; ��i � h�; ��ij. Note that (Mtem; dtem) is a Polish space and

�n ! � in Mtem if and only if h�n; 'i ! h�; 'i for all ' 2 Cexp : Let Mf = Mf(R
2) denote the

space of �nite measures on R 2 with the topology of weak convergence. Let Mrap be the space of

rapidly decreasing measures � on R 2 such that h�; 'i <1 for any ' 2 Btem. We say that �n ) �

in Mrap if �n ) � in Mf and supn h�n; ��i <1 for any � < 0.
For any metric space E let D(R+; E) (resp. C(R+; E)) be the space of cadlag (resp. continuous)

E-valued functions with Skorohod topology. Let M1(E) denote the set of probability measures on

E and B(E) serve as a notation for Borel sets in E.

Let
�pt(x) � ��2P (��t = x); t > 0; x 2 �Z2;

where ��t is a continuous time simple random walk which jumps to a nearest neighbor in �Z
2
with

rate 2��2�2. Write (�;�x ; x 2 R 2) for the Brownian motion on R
2
with variance parameter �2,

pt(x; y) = (2��2t)�1 exp f� jx� yj2 =2t�2g; t > 0; x; y 2 R 2;

for its transition density, and fSt : t � 0g for the corresponding semigroup. With slight abuse of

notation let pt(x) � pt(x; 0). If � 2Mtem, set St�(x) �
R
pt(x� y)�(dy).

For E a topological space let L(X) be the law on E of E-valued random variable X.

1.3 Uniqueness theorems

In this subsection we will state our main uniqueness theorems. We start with necessary de�nitions.

Let X = (X1;X2) denote an M2
tem-valued process, where M2

tem =Mtem �Mtem. De�ne

L
�;Æ
X

(t; dx) � 1

Æ

Z Æ

0

Z t

0

SrX
1
s (x)SrX

2
s (x) ds dr dx; t � 0; Æ > 0;(1.5)

LÆX(t; dx) �
Z t

0

SÆX
1
s (x)SÆX

2
s (x) ds dx; t � 0; Æ > 0:(1.6)

De�nition 1.1 (Collision local time) Let X = (X1; X2) be anM2
tem-valued continuous process.

The collision local time of X (if it exists) is a continuous non-decreasing Mtem-valued stochastic

process t 7! LX(t) = LX(t; �) such thatD
L
�;Æ
X

(t); '
E
! hLX(t); 'i as Æ # 0 in probability,

for all t > 0 and ' 2 Ccom.

The collision local time will be also considered as a locally �nite measure LX(ds; dx) on R+ � R
2.

Now we are ready to introduce the martingale problem for the mutually catalytic model in d = 2.
Note that all �ltrations will be assumed to be right continuous and contain the null sets at time 0.
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De�nition 1.2 (Martingale problem (MP)�;

X0
) A continuous Ft-adapted M2

tem-valued process

X = (X1;X2) on some (
;F;Ft; P ) satis�es (MP)�;
X0
if and only if 8'i 2 C(2)exp ; i = 1; 2,

M i
t ('i) =



Xi
t ; 'i

�� 
Xi
0; 'i

�� Z t

0

�
Xi
s;
�2�'i

2

�
ds; t � 0; i = 1; 2;

are orthogonal continuous L2 Ft-martingales, such that M i
0('i) = 0 and

hM i('i)it = 



LX(t); '

2
i

�
; t � 0; i = 1; 2:

Note that X0 may be a random F0-measurable initial condition.

To present the results dealing with solutions to the above martingale problem we need to de�ne

spaces of measures satisfying some regularity conditions.

De�nition 1.3 De�ne

�pt(�1; �2)(x) � St�1(x)St�2(x); t > 0;

�gt(�1; �2)(x) �
Z t

0

Ss�1(x)Ss�2(x) ds =

Z t

0

�ps(�1; �2)(x) ds; t > 0:

De�nition 1.4 Write � = (�1; �2) 2Mf;e and say that � satis�es the energy condition if and only

if � 2M2
f �Mf �Mf and Z

R
2
�gt(�1; �2)(x) dx <1; 8 0 < t <1:

Write � = (�1; �2) 2Mf;se and say that � satis�es the strong energy condition if and only if � 2M2
f

and 8p 2 (0; 1] there exists c = c(p; �) such that for all t > 0

max
1�i;j�2

Z
R
2
�pt(�i; �j)(x) dx � ct�p:

Remark 1.5 In view of Lemma 8(b) of [3] (see also (1.8) below) the strong energy condition need

only be checked for 0 < t < 1 (as ct�1 � ct�p for t � 1). As we only need to check t = 2�n and

p = pn # 0; (n 2 N ), clearly Mf;e is a Borel subset of M2
f .

De�nition 1.6 Write � = (�1; �2) 2 Mtem;e and say that � satis�es the energy condition if and

only if � 2M2
tem and Z

R
2
�gt(�1; �2)(x)��(x) dx <1; 8� > 0; 0 < t <1:

Write � = (�1; �2) 2 Mtem;se and say that � satis�es the strong energy condition if and only if

� 2M2
tem and for any p 2 (0; 1) and � > 0 there is c = c(p; �; �) such that for any t > 0

max
1�i;j�2

Z
R
2
�pt(�i; �j)(x)��(x) dx < ct�p :

De�nition 1.7 Write � = (�1; �2) 2 Mrap;e and say that � satis�es the energy condition if and

only if � 2M2
rap and Z

R
2
�gt(�1; �2)(x)���(x) dx <1; 8� > 0; 0 < t <1:
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In Theorem 11(a) of [3] solutions to (MP)�;

X0

were constructed for X0, a deterministic initial

condition in Mf;e, providing


=�2 < (3
p
6�crw)

�1;(1.7)

where crw is a universal constant (independent of �2) de�ned in Lemma 8(b) of [3] by

crw � sup
x2�Z2;t�0

�pt(x)t�
2:(1.8)

In Theorem 4 of [4] solutions to (MP)�;

X0

were constructed for in�nite initial conditions X0 2M2
tem

which have densities (x10; x
2
0) in B2

tem. Recall that we often use the same letter to denote a measure

and its density.

In order to establish uniqueness in law of solutions to (MP)�;

X0

, we need to assume additional

integrability condition:

For any compact K � R
2
set

H�;K(Xs) =

Z
K

Z
K

�
1 + jx� yj�1

�
S�X

1
s (x)S�X

2
s (x)S�X

1
s (y)S�X

2
s (y) dx dy; � > 0:

(IntC) For each 0 < Æ < T <1; compact K � R
2;

P
hR T
Æ
H�;K(Xs) dsjFÆ

i
is bounded in probability as � # 0

ie. 8� > 0 9M > 0 such that lim sup
�#0

P

�
P

�Z T

Æ

H�;K(Xs) dsjFÆ
�
> M

�
< �:

Note that (IntC) is implied by the simpler condition

(SIntC) 8T > 0; compact K � R
2; lim sup�#0 P

hR T
0
H�;K(Xs) ds

i
<1:

We now introduce an integrability condition on possibly random initial condition X0:

(EnC) P
hP2

j=1X
j
0(��)

2 +
R
R
2 �gt(X

1
0 ;X

2
0 )(x)��(x) dx

i
<1; 8t > 0; 8� > 0:

Now we are ready to present our main result.

Theorem 1.8 (General Uniqueness Theorem) Assume 
=�2 < (
p
6�crw)

�1 and let X0 2Mtem;e

be a possibly random initial condition satisfying (EnC). Then there is at most one solution to

(MP)�;

X0

satisfying (IntC).

Notation Let 
0 � C(R+;M2
f ), 
rap � C(R+;M2

rap), 
tem � C(R+;M2
tem) with the usual

topology of uniform convergence on compact subsets of R+.

It will be shown in Theorem 5.1 of Section 5.1 that the solutions constructed in [3] withX 2Mf;e

satisfy (IntC). It was also shown in [3] that Xt 2Mf;e for all t > 0 a.s. and this allows us to show

the strong Markov property for the processes starting from �nite initial conditions and satisfying

(IntC). Overall we have the following theorem.
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Theorem 1.9 (Finite Measure Initial Conditions) Assume 
=�2 < (3
p
6�crw)

�1 and X0 2
Mf;e.

(a) There is a process X satisfying the martingale problem (MP)�;

X0

and the integrability condition

(IntC), and such that Xt 2Mf;e for any t � 0 a.s.. If X0 2Mf;se then there is a solution to

(MP)�;

X0

satisfying (SIntC).

(b) The law PX0
on 
0 of the solution in (a) is unique.

(c) There is a time-homogeneous Borel Markov transition kernel P = fPt(�; d�) : t > 0; � 2
Mf;eg on Mf;e such that any process satisfying (MP)�;


X0
and (IntC) on (
;F;Ft; P ) is (Ft)-

strong Markov with transition kernel P.

The martingale problem (MP)�;

X0

for �nite initial conditions was de�ned in [3] with a larger set of

test functions than in De�nition 1.2. Clearly any solution to the martingale problem (MP)�;

X0

in [3]

is a solution to the (MP)�;

X0

of De�nition 1.2. Therefore the existence part of (a) follows from the

proof of Theorem 11(a) in [3]. To complete the proof of (a) we need to verify integrability conditions

(IntC) and (SIntC) for the constructed processes. This will be accomplished in Section 5.1. Then

part (b) will follow from part (a) and Theorem 1.8. Part (c) will be proved in Section 5.4.

Remark 1.10 To ensure the existence of solutions to (MP)�;

X0

satisfying (IntC) Condition 1.7

maybe weakened to 
=�2 < 1=
p
6, although to ensure only existence (without (IntC)) it may be

weakened to 
=�2 < 2=
p
6 (see Remark 12(ii) of [3] and Theorem 5.1 of Section 5.1 deriving (IntC)

below).

The uniqueness in law of the mutually catalytic branching process X with X0 2 B2
b, constructed

in [4], is established in the following theorem.

Theorem 1.11 (Initial Conditions with Bounded Densities) Assume


=�2 < (
p
6�crw)

�1(1.9)

and X0 2 (B+
b )

2. Then

(a) There is a solution to (MP)�;

X0

satisfying (SIntC).

(b) The law PX0
on 
tem of the solution in (a) is unique.

The existence of a solution to (MP)�;

X0

follows from Theorem 4 and Remark 9(i) of [4]. To com-

plete the proof of (a) we need to verify integrability condition (SIntC) for the processes constructed

in [4]. This will be accomplished in Section 2 in Corollary 2.11 . Part (b) then follows immediately

from part (a) and Theorem 1.8.

1.4 Duality relation

The key ingredient in the uniqueness argument is an exponential duality introduced in [12], [5] for

solutions to the analogue of (MP)�;

X0

on R
1
and on a lattice respectively. For our continuum setting

the dual process will be a particular solution to (MP)�;

X0

constructed in [3], [4] for particularly nice

initial conditions, which we now describe. Let ~xj0(�) 2 B+
b and set eXj

0(dx) = ~xj0(x) dx; j = 1; 2. For

� > 0 de�ne eXj;�
0 : Z2 7! [0;1) by

eXj;�
0 (��1x) = ��2

Z
C�(x)

~xj0(y) dy; j = 1; 2;

9



where C�(x) is the square of sidelength � and southwest corner x 2 �Z2
. Let fW j

t (x) : x 2 Z2
; j =

1; 2g be a collection of independent standard 1-dimensional Brownian motions on some �ltered

probability space and consider the unique (in law) solutions of

eXj;�
t (x) = eXj;�

0 (x) +

Z t

0

�2

2
1� eXj;�

s (x) ds+

Z t

0

q

 eX1;�

s (x) eX2;�
s (x) dW j

s (x); x 2 Z2; t � 0; j = 1; 2;

constructed in [5]. Here 1� is the usual discrete Laplacian on Z
2
(1�f(x) =

P2
i=1(f(x+ ei)+f(x�

ei)� 2f(x)); ei is the i-th unit basis vector.). We then consider the rescaled process

�eXj
t (x) � eXj;�

t��2(x�
�1); x 2 �Z2; t � 0

and de�ne its associated measure-valued process �eX� = (�eX1
�
; �eX2

�
) byD

�eXj
t ; '

E
=

X
x2�Z2

�eXj
t (x)'(x)�

2

=

Z
R
2

�eXj
t (x)'(x)d

�x; t � 0; j = 1; 2;

where d�x assigns mass �2 to each point in �Z
2
. Let �Mtem denote the subspace ofMtem of measures

with densities with respect to d�x. Then �eX� is a
�M2

tem-valued process. Clearly �eX0 ) eX0 inM2
tem.

Propositions 37, 38 and Remark 9(i) of [4] show that if


=�2 < (
p
6�crw)

�1(1.10)

then f�eX� : � > 0g are tight in C(R+;M2
tem) and any weak limit point eX = ( eX1; eX2) (that is

�neX ) eX;(1.11)

for some �n # 0) satis�es (MP)�;

eX0

. Using notation from [4], we set

�m1122
t (~x) � �m1122

t (x1; x2; x3; x4) = ~P
�
�eX1

t (x1)
�eX1

t (x2)
�eX2

t (x3)
�eX2

t (x4)
�
; (~x 2 (�Z2)4):

Then Corollary 31 of [4] states that if


=�2 <
sin(�(1 � p))p

6�crw
;(1.12)

for some p : 0 < p < 1, then there is ct(
; �
2; p) > 0 which is increasing in t and satis�es

�m1122
t (~x) � ct(
; �

2; p)(


~x10

1 _ 

~x20

1)4(1.13)

�
�
1 +

Z t

0

s�p(�p2s(x
1 � x2) + �p2s(x

3 � x4)) ds

�
; 8t � 0;

and

sup
t�T

ct(
; �
2; p) = cT (
; �

2; p) <1; 8T > 0:

In particular, if p = 1=2, then

�m1122
t (~x) � ct(
; �

2)(


~x10

1 _



~x20

1)4(1.14)

�
�
1 +

Z t

0

s�1=2(�p2s(x
1 � x2) + �p2s(x

3 � x4)) ds

�
; 8t � 0:

These moment properties of eX play an important role in the proof of the dual propositions stated

below.
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Proposition 1.12 (Duality under (IntC)) Assume 
=�2 < (
p
6�crw)

�1. Let (~x10 ; ~x
2
0) 2 (C+rap)2

and eX be the particular solution of (MP)�;

eX0

given by (1.11) on some (~
; ~F; ~Ft; eP ). Let X be any

solution to (MP)�;

X0

satisfying (IntC) on (
;F;Ft; P ) for some F0 measurable initial condition X0

satisfying (EnC). Then for any t � 0

P
�
exp

�� 
X1
t +X2

t ; ~x
1
0 + ~x20

�
+ i


X1
t �X2

t ; ~x
1
0 � ~x20

�	�
(D1) = lim

�#0
P � eP hexpn�DX1

0 +X2
0 ; S�(

eX1
t +

eX2
t )
E
+ i
D
X1

0 �X2
0 ; S�(

eX1
t � eX2

t )
Eoi

:

In particular, if X
j
0(dx) = x

j
0(x) dx for some (deterministic) x

j
0 2 C+tem, then

P
�
exp

�� 
X1
t +X2

t ; ~x
1
0 + ~x20

�
+ i


X1
t �X2

t ; ~x
1
0 � ~x20

�	�
(D2) = eP hexpn�DX1

0 +X2
0 ;
eX1
t + eX2

t

E
+ i
D
X1

0 �X2
0 ;
eX1
t � eX2

t

Eoi
:

Remark 1.13 (a) The restriction on 
=�2 is required for the existence of eX and (1.14). This

restriction maybe weakened to 
��2 < 2=
p
6 (see Remark 1.10).

(b) As eX is a �xed particular solution, the right hand side of (D1) depends only on L(X0). This
will allow us to to derive the Markov property of solutions with �nite initial conditions � see

the proof of Theorem 1.9 below.

Proof of (D1)! (D2) We will show that (D2) is an easy consequence of (D1). Note that

S�x
j
0(x)! x

j
0(x); 8x 2 R 2

;

as � # 0, and also by Lemma A.1 of the Appendix we have

sup
��1

S�x
j
0(x) � cA1(1; �)

���xj0���
��
���(x); j = 1; 2;

for any � > 0. eP D���; eXj
t

E
<1; j = 1; 2, therefore by Dominated ConvergenceD

Xi
0; S�

eXj
t

E
=
D
S�x

i
0;
eXj
t

E
!
D
xi0;

eXj
t

E
; eP � a.s.; i; j = 1; 2:

A second application of Dominated Convergence allows us to take the limit in (D1) inside the P � eP
and derive (D2).

We can get another version of Proposition 1.12 under �nite initial conditions for larger class of

test functions.

Proposition 1.14 (Duality under (IntC) for �nite initial conditions) Assume


=�2 < (
p
6�crw)

�1. Let (~x10; ~x
2
0) 2 (C+b )2 and eX be the particular solution of (MP)�;


eX0

given

by (1.11) on some (~
; ~F; ~Ft; eP ). Let X be any solution to (MP)�;

X0

satisfying (IntC) on (
;F;Ft; P )
for some F0 measurable initial condition X0 2 Mf;e satisfying (EnC). Then for any t � 0 (D1) is
satis�ed, that is,

P
�
exp

�� 
X1
t +X2

t ; ~x
1
0 + ~x20

�
+ i


X1
t �X2

t ; ~x
1
0 � ~x20

�	�
= lim

�#0
P � eP hexpn�DX1

0 +X2
0 ; S�( eX1

t + eX2
t )
E
+ i
D
X1

0 �X2
0 ; S�( eX1

t � eX2
t )
Eoi

:

11



Organization of the paper Section 2 is devoted to the proof of basic duality Proposition 1.12.

The proof of Theorem 1.11(a) is completed in Corollary 2.11 of Section 2. In Section 3 we prove

uniqueness Theorem 1.8 for general initial conditions. Theorem 1.11(b) follows as a trivial corollary

of Theorem 1.8 and Theorem 1.11(a). Section 4 is devoted to continuity of transition function of

mutually catalytic process with respect to initial conditions. In Section 5 we prove Theorem 1.9,

Proposition 1.14 and show existence of the collision measure for a process satisfying (IntC).

The last section is the Appendix where some auxiliary results are presented and proved. Note

that all the results in the Appendix are labeled with capital letter �A� instead of a section number

(for example Lemma A.1).

2 Proof of Proposition 1.12

We start with proving of Proposition 1.12 under the stronger (SIntC) instead of (IntC). That is

we are going to prove

Proposition 2.1 (Duality under (SIntC)) Assume 
=�2 < (
p
6�crw)

�1. Let ~xj0 2 C+rap and eX
be the particular solution of (MP)�;


eX0

constructed in Section 1.4 on some (~
; ~F; ~Ft; eP ). Let X be any

solution to (MP)�;

X0

satisfying (SIntC) on (
;F;Ft; P ) for some F0 measurable initial condition

X0 satisfying (EnC). Then for any t � 0

P
�
exp

�� 
X1
t +X2

t ; ~x
1
0 + ~x20

�
+ i


X1
t �X2

t ; ~x
1
0 � ~x20

�	�
(D1) = lim

�#0
P � eP hexpn�DX1

0 +X2
0 ; S�( eX1

t + eX2
t )
E
+ i
D
X1

0 �X2
0 ; S�( eX1

t � eX2
t )
Eoi

:

We start with some �rst and second moment results for solutions of (MP)�;

X0

satisfying (SIntC)

and (EnC). Assume X is such a solution with X0 possibly random. To simplify our notation in

the following let

Lt(dx) = L(t; dx) = LX(t; dx);(2.1)

L
�;�
t (dx) = L�;�(t; dx) = L

�;�
X
(t; dx)(2.2)

L�t(dx) = L�(t; dx) = L�X(t; dx):(2.3)

The next lemma shows that (SIntC) (even without the jx� yj term) implies square integrability

of Lt(') for any ' 2 Bb;com.
Lemma 2.2 (a) For each T > 0, ' 2 Bb;com there exists cT;' <1 such that

lim sup
�#0

P
�
L
�;�
t (')2 + L�t(')

2
� � cT;'t; 8t 2 [0; T ]:

In particular

P
�
Lt(')

2
� � cT;�t; 8t 2 [0; T ]; 8' 2 Bb;com ;

and

L
�;�
t (')

L1! Lt(')

as � # 0 for any ' 2 Ccom.
(b) If '1; '2 2 B+ and T is a stopping time, then on ft � Tg

P
h
X
j
t ('j)jFT

i
=
D
X
j
T ; St�T'j

E
; j = 1; 2;

and

P
�
X1
t ('1)X

2
t ('2)jFT

�
=


X1
T ; St�T'1

� 

X2
T ; St�T'2

�
12



(c) If '1; '2 2 B+ then

P
h
X
j
t ('j)

i
= P

hD
X
j
0 ; St'j

Ei
; j = 1; 2; t > 0

and

P
�
X1
t ('1)X

2
t ('2)

�
= P

�

X1

0 ; St'1
� 

X2

0 ; St'2
��
; t > 0

where all these quantities are �nite if St'j 2 B� for some � > 0.

(d) If ' : R 2 7! [0;1] is Borel, then

P [Lt(')] =

Z t

0

Z
R
2
P
�
SsX

1
0 (x)SsX

2
0 (x)

�
'(x) dx ds:

Proof

(a) Fix arbitrary ' 2 Bb;com. There is some compact set K � R
2 such that supp(') � K. If

t � T , then

P
�
L
�;�
t (')2

�
= P

"�
1

�

Z �

0

Z t

0

Z
R
2
SuX

1
s (x)SuX

2
s (x)'(x) dx

ds

t
du

�2
#
t2

� k'k2
1

1

�

Z �

0

du

Z t

0

ds

t
P

�Z
K

SuX
1
s (x)SuX

2
s (x) dx

2

�
t2

� k'k2
1

1

�

Z �

0

du

Z t

0

dsP [Hu;K(Xs)] t:

An analogous bound holds for P
�
L�t(')

2
�
by an even simpler argument. (SIntC) now implies

the �rst inequality in (a). Fatou's lemma gives the second. The above L2-boundedness

shows that the convergence in probability in the de�nition of Lt(') may be strengthen to L1

convergence.

(b) If t � t0 > 0 are �xed we may argue as in Corollary 43 of [4] to see that if ' 2 C1com, then

X
j
t (') = X

j
t0
(St�t0') +

Z t

0

Z
R
2
1(r � t0)St�r'(x) dM

(j)(r; x); j = 1; 2:(2.4)

(See Chapter 2 of [16] for the construction and properties of the stochastic integral with

respect to the orthogonal martingale measure M (j).) Let t0 be a stopping time taking on

�nitely many values ft1; : : : ; tng with ft1; : : : ; tng \ [0; t] = ft1; : : : ; tkg. Then on ft0 � tg,Z t

0

Z
R
2
1(r � t0)St�r'(x) dM

(j)(r; x) =
kX
i=1

1(t0 = ti)

Z t

ti

Z
R
2
St�r'(x) dM

(j)(r; x)

as one can easily check by noting that 1(r � t0)St�r'(x) = 1(r � ti)St�r'(x) on ft0 = tig
and then following the proof of the corresponding �localization� result for ordinary stochastic

integrals (see Theorem 27 on p. 307 of Meyer [10]). It follows that (2.4) remains valid for the

�nite-valued stopping time t0 on ft0 � tg. Let T be an (Ft)-stopping time and let Tn # T be

the standard set of �nite-valued stopping times (we may allow Tn =1). Apply (2.4) with Tn
in place of t0 and let n!1 to see that on fT < tg � S1

n=1fTn � tg,

X
j
t (') = X

j
T (St�T') +

Z t

0

Z
R
2
1(r � T )St�r'(x) dM

(j)(r; x); j = 1; 2:(2.5)
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This is of course trivial on fT = tg (again using the localization result) and by taking bounded
pointwise limits we see (2.5) is valid on fT � tg for ' 2 Bb;com. We get by (a) and the

de�nition of (MP)�;

X0

that the stochastic integrals
R s
0

R
R
2 1(r � T )St�r'(x) dM

(j)(r; x); s �
t; j = 1; 2; in (2.5) are orthogonal L2 martingales and hence (b) follows for 'j 2 Bb;com ; j =
1; 2. The boundedness and compact support conditions are readily dropped by Monotone

Convergence.

(c) The equalities are immediate from (b) with T = 0. The �niteness follows from (EnC)

condition on X0.

(d) By Monotone Convergence to establish the equality in (d) it su�ces to consider non-negative

bounded ' with compact support. The L1-convergence of L
�;�
t (') as � # 0 from (a), and the

second moment result in (c) imply

P [Lt(')] = lim
�#0
P
�
L
�;�
t (')

�
= lim

�#0

Z t

0

Z �

0

Z
R
2
P
�
SuX

1
s (x)SuX

2
s (x)

�
'(x) dx

du

�
ds

= lim
�#0

Z t

0

Z �

0

Z
R
2
P
�
Su+sX

1
0 (x)Su+sX

2
0 (x)

�
'(x) dx

du

�
ds

= lim
�#0

Z t

0

P

�Z �

0

Z
R
2
Su+sX

1
0 (x)Su+sX

2
0 (x)'(x) dx

du

�

�
ds:(2.6)

Let G�(s) denotes the expression in square brackets. ThenZ t

0

P
�
G�(s)

2
�
ds

�
Z t

0

Z �

0

P

�Z
R
2
Su+sX

1
0 (x)Su+sX

2
0 (x)'(x) dx

2

�
du

�
ds

=

Z t

0

Z �

0

P

"
P

�Z
R
2
SuX

1
s (x)SuX

2
s (x)'(x) dxjF0

�2#
du

�
ds (by (b) with T = 0)

�
Z t

0

Z �

0

P

�Z
R
2
SuX

1
s (x)SuX

2
s (x)'(x) dx

2

�
du

�
ds (by Jensen inequality)

which is bounded uniformly in � < �0 by (SIntC). This allows us to take the limit through

the �rst two integrals in (2.6) and conclude

P [Lt(')] =

Z t

0

P

�
lim
�#0

Z �

0

Z
R
2
Su+sX

1
0 (x)Su+sX

2
0 (x)'(x) dx

du

�

�
ds(2.7)

< 1:

We are implicitly assuming this limit exists. To this end we claim

u 7!
Z
R
2
SuX

1
0 (x)SuX

2
0 (x)'(x) dx(2.8)

is continuous on (0;1).

Note �rst that u 7! SuX
j
0(x) is continuous on (0;1) by Corollary A.5. As ' has compact

support and, by Corollary A.4, SuX
j
0(x) � cA3(T; �)cA4(�)���(x)X

j
0(��) for � � u � T , (2.8)

follows from application of Dominated Convergence. (2.8) shows that the limit in (2.7) isR
R
2 SsX

1
0 (x)SsX

2
0 (x)'(x) dx for s > 0 and this gives the equality in (d).
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In the following we assume that eX0 2 (C+rap)2 and eX is a particular solution to (MP)�;

eX0

con-

structed in Section 1.4, which is independent of X.

Denote by C(1;2)T;rap (resp. C(1;2)T;tem) the set of all real-valued functions  on [0; T ] � R
2 such that

t 7!  (t; �), t 7! @ (t;�)
@t and t 7! � (t; �) are continuous Crap (resp. Ctem) valued functions.

Lemma 2.3 (a)Let (�1; �2) 2Mtem;e and T > 0. De�ne � = �1 + �2 + i(�2 � �1). Then

e�h eX1
t ; ST�t(�)i�h eX2

t ; ST�t(�)i = e�h eX1
0 ; ST (�)i�h eX2

0 ; ST (�)i

+ 4


Z t

0

e�h eX1
s ; ST�s(�)i�h eX2

s ; ST�s(�)iST�s(�1)(x)ST�s(�2)(x)L eX
(ds; dx)

�
Z t

0

Z
R
2
e�h eX1

s ; ST�s(�)i�h eX2
s ; ST�s(�)i �ST�s(�)(x) ~M1(ds; dx) + ST�s(�)(x) ~M2(ds; dx)

�
; 0 � t < T;

where ~M l(ds; dx) (l = 1; 2) are martingale measures.

(b) Let (�1; �2) 2Mrap;e and T > 0. De�ne � = �1 + �2 + i(�2 � �1). Then

e�hX1
t ; ST�t(�)i�hX2

t ; ST�t(�)i = e�hX1
0 ; ST (�)i�hX2

0 ; ST (�)i

+ 4


Z t

0

e�hX1
s ; ST�s(�)i�hX2

s ; ST�s(�)iST�s(�1)(x)ST�s(�2)(x)LX(ds; dx)

�
Z t

0

Z
R
2
e�hX1

s ; ST�s(�)i�hX2
s ; ST�s(�)i �ST�s(�)(x)M1(ds; dx) + ST�s(�)(x)M

2(ds; dx)
�
; 0 � t < T;

where M l(ds; dx) (l = 1; 2) are martingale measures.

Proof Arguing as in Lemma 42 of [4] we get

X
j
t ( t) � X

j
0( 0) +

Z t

0

Xj
s

�
1
2
� s +

@

@s
 s

�
ds(2.9)

+

Z t

0

Z
R
2
 s(x)M

j(ds; dx); 0 � t < T; j = 1; 2;  2 C(1;2)T;rap ;

eXj
t ( t) � eXj

0( 0) +

Z t

0

eXj
s

�
1
2
� s +

@

@s
 s

�
ds(2.10)

+

Z t

0

Z
R
2
 s(x) ~M j(ds; dx); 0 � t < T; j = 1; 2;  2 C(1;2)T;tem :

(A little bit of care is needed to be able to take  2 C(1;2)T;tem in the second case�the proof uses

Monotone Convergence and simple moment calculations.) By choosing functions  1
t = ST�t(�),

 2
t = ST�t(�) in (a), (b), and then applying Itô's formula on the interval [0; T ) one can readily

complete the proof of the lemma.

Lemma 2.4 If eX0 2 (C+rap)2 and eX is as above then eX� 2 
rap a.s..
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Proof By Theorem 11(c) of [3] we get that eX� 2 
0. To complete the proof we have to show that

P

"
sup
t�T

D eXj
t ; ��

E#
<1; j = 1; 2; 8T > 0; � < 0:

First, for any � < 0, choose ~'� 2 C(2)tem such that ~'� � ��. Then use (2.10) with  t(�) = ~'�(�) for
all t � 0. The result follows easily by moment calculations and by Doob's inequality.

To simplify our notation (as in (2.1 � 2.3)) in the following let

~Lt(dx) = ~L(t; dx) = L
eX
(t; dx);(2.11)

~L�;�t (dx) = ~L�;�(t; dx) = L
�;�
eX
(t; dx)(2.12)

~L�t(dx) = ~L�(t; dx) = L�
eX
(t; dx):(2.13)

Lemma 2.5 Let T be any bounded stopping time and ' be a random function such that

' 2 L1(R 2 � 
; Lt(!; dx)P (d!)); 8t > 0

and ' is B � FT -measurable. Then

P [L('� [T; T + t])jFT ] =
Z T+t

T

Z
R
2
Su�T (X

1
T )(x)Su�T (X

2
T )(x)'(x) dx du; P � a:s::(2.14)

Proof Take a non-random ' 2 Ccom. Lt is a continuous measure-valued process, therefore Lt(')
is continuous. If T is a bounded stopping time, then by Dominated Convergence and Lemma 2.2

(a)

lim
Æ#0

P [LT+Æ(')� LT (')jFT ] = 0; P � a:s::

Hence, for any Æ > 0, for P -a.e ! there exists Æ0(!) > 0; Æ0 2 FT such that

P
�
L(j'j � [T; T + Æ00])jFT

� � Æ; 80 � Æ00 � Æ0:

Arguing as in the proof of Lemma 2.2(b), that is by using approximation of the stopping time T

with �nite values stopping times and continuity of Lt we can show that

P [LT+t(') � LT+Æ00(')jFT ] = P

�
lim
�#0
L
�;�
T+t(') � L

�;�
T+Æ00(')jFT

�
By Lemma 2.2(a) L�;� converges to L in L1, therefore

P [LT+t(')� LT+Æ00(')jFT ] = lim
�#0
P
�
L
�;�
T+t(') � L

�;�
T+Æ00(')jFT

�
= lim

�#0

Z T+t

T+Æ00

Z
R
2

1

�

Z �

0

P
�
Su(X

1
s )(x)Su(X

2
s )(x)jFT

�
'(x) du dx ds

= lim
�#0

Z T+t

T+Æ00

Z
R
2

1

�

Z �

0

Su+s�T (X
1
T )(x)Su+s�T (X

2
T )(x)'(x) du dx ds

=

Z T+t

T+Æ00

Z
R
2
Ss�T (X

1
T )(x)Ss�T (X

2
T )(x)'(x) dx ds; 80 � Æ00 � Æ0;
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where the second equality is a consequence of Fubini's theorem and the third equality follows by

Lemma 2.2 (b). Hence, we get that����P [L('� [T; T + t])jFT ]�
Z T+t

T+Æ00

Z
R
2
Su�T (X

1
T )(x)Su�T (X

2
T )(x)'(x) dx du

���� � Æ; 80 < Æ00 � Æ0; P � a:s::

Letting Æ00 # 0, (2.14) follows since Æ was arbitrary and Lt is continuous.

The extension of (2.14) for any B � FT -measurable

' 2 L1(R 2 � 
; Lt(!; dx)P (d!)); 8t > 0;

is trivial.

The next lemma does not give lim
�#0
L� = L but it is nonetheless quite useful.

Lemma 2.6 Let g be Borel�optional-measurable function on R+ � R
2 �
 such that for P -a.e. !

the mapping

s 7! g(s; �; !)
is continuous from R+ to C and for each compact set K � R

2
and t > 0, there exists a constant

CK;t such that

kgkt;K � sup
0�s�t;x2K

jg(s; x; !)j � CK;t; P � a:s::

Assume also that

sup
0<��1

P

�Z t

0

Z
R
2
jg(s; x; �)jL�(ds; dx)

�
+ P

�Z t

0

Z
R
2
jg(s; x; �)jL(ds; dx)

�
< 1;

lim
k!1

sup
0<��1

P

"Z t

0

Z
jxj>k

jg(s; x; �)jL�(ds; dx)
#

= 0:

Then

lim
�#0
P

�Z t

0

Z
R
2
g(s; x; �)L�(ds; dx)

�
= P

�Z t

0

Z
R
2
g(s; x; �)L(ds; dx)

�
:

Proof For any Æ0 > 0 choose a compact set KÆ0 � R
2 such that

sup
0<��1

P

"Z t

0

Z
Kc

Æ0

jg(s; x; �)jL�(ds; dx)
#
+ P

"Z t

0

Z
Kc

Æ0

jg(s; x; �)jL(ds; dx)
#
� Æ0=3:(2.15)

By Lemma 2.5 for any t � 0 and Æ > 0 and any B�Ft-measurable, Lt+Æ(!; dx)P (d!)-integrable
function '(!; x), we have

P
�
L('1KÆ0

� [t; t+ Æ])jFt
�
=

Z t+Æ

t

Z
KÆ0

Su�t(X
1
t )(x)Su�t(X

2
t )(x)'(x) dx du:

17



This means that for any optional step function f =
Pn

k=1 'k1([tk; tk+1)), where 'k is an B � Ftk -
measurable Lt(!; dx)P (d!)-integrable function, we have

lim
�#0
P

"Z t

0

Z
KÆ0

f(s; x; �)L�(ds; dx)
#

= lim
�#0
P

"
nX
k=1

Z tk+1^t

tk^t

Z
KÆ0

S�+u�tk(X
1
tk
)(x)

� S�+u�tk(X
2
tk
)(x)'k(x) dx du

�
(by Lemma 2.2(b))

= P

"Z t

0

Z
KÆ0

f(s; x; �)L(ds; dx)
#

(by Lemma 2.5).(2.16)

For arbitrary g (indicated in the assumptions of the theorem) the procedure is standard. De�ne:

tk0 = 0;

tkn+1 = tkn + 2�k;

gk(t) = g(tkn); tkn � t < tkn+1;

Ak;Æ00 =

(
! : sup

0�s�t;x2KÆ0

���g(s; x; !)� gk(s; x; !)
��� < Æ00

)

g(�; �; !) is continuous P -a.s. and so for each 0 < Æ; Æ00 < 1 there exists K > 0 such that

P
�
Ak;Æ00

�
> 1� Æ; 8k � K:(2.17)

P

"Z t

0

Z
KÆ0

g(s; x; �)L�(ds; dx)
#

= P

"Z t

0

Z
KÆ0

g(s; x; �) � gk(s; x; �)L�(ds; dx)
#

(2.18)

+ P

"Z t

0

Z
KÆ0

gk(s; x; �)L�(ds; dx)
#
;8k � 1:

P [L�t(KÆ0)], P
�
L�t(KÆ0)

2
�
, P [Lt(KÆ0)], P

�
Lt(KÆ0)

2
�
are bounded by Lemma 2.2(a). Choose Æ00 such

that

Æ00 (P [L�t(KÆ0)] + P [Lt(KÆ0)]) � Æ0=3

and choose Æ such that

2 kgkt;KÆ0

�q
P [L�t(KÆ0)2] Æ +

p
P [Lt(KÆ0)2] Æ

�
� Æ0=3:

Now take k such that (2.17) is satis�ed. Then

P

"Z t

0

Z
KÆ0

���g(s; x; �) � gk(s; x; �)
��� (L�(ds; dx) + L(ds; dx))

#
(2.19)

� P

"
1Ak;Æ00

(�)
Z t

0

Z
KÆ0

���g(s; x; �) � gk(s; x; �)
��� (L�(ds; dx) + L(ds; dx))

#

18



+ P

"
1Ac

k;Æ00
(�)
Z t

0

Z
KÆ0

���g(s; x; �) � gk(s; x; �)
��� (L�(ds; dx) + L(ds; dx))

#
� Æ00P

h
1Ak;Æ00

(�) (L�t(KÆ0) + Lt(KÆ0))
i
+ 2 kgkt;KÆ0

P
h
1Ac

k;Æ00
(�) (L�t(KÆ0) + Lt(KÆ0))

i
� Æ00 (P [L�t(KÆ0)] + P [Lt(KÆ0)])

+ 2 kgkt;KÆ0

 r
P [L�t(KÆ0)2]P

�
Ack;Æ00

�
+

r
P [Lt(KÆ0)2]P

�
Ack;Æ00

�!

� 2Æ0

3
; 80 < � � 1:

Letting � # 0 in (2.18) we get by (2.15), (2.16),(2.19) that

lim sup
�#0

����P �Z t

0

Z
R
2
g(s; x; �)L�(ds; dx)

�
� P

�Z t

0

Z
R
2
g(s; x; �)L(ds; dx)

����� � Æ0=3 + 2Æ0=3 = Æ0:

Since Æ0 was arbitrary we are done.

To simplify our notation in the following let

E (�; ~�) � exp f� h�1 + �2; ~�1 + ~�2i+ i h�1 � �2; ~�1 � ~�2ig ;
for � = (�1; �2) 2M�M; ~� = (~�1; ~�2) 2 B+ � B+
or � = (�1; �2) 2 B+ � B+; ~� = (~�1; ~�2) 2M�M;

Lt([0; s] �B) � L([0; t] �B)� L([0; t� s]�B); 0 � s � t

Lt;�([0; s] �B) � L�([0; t] �B)� L�([0; t � s]�B); 0 � s � t;

and we set E (�; ~�) = 0 if h�1 + �2; ~�1 + ~�2i = 1. For � = (�1; �2) 2 M �M we set St� �
(St�1; St�2). Given the Polish space E and the space of Radon measuresM(E) on E, let P be any

probability measure on M(E). If the measure �̂ 2M(E) de�ned by �̂(A) =
R
M(E)

�(A)P (d�) has

a density, this density, with a slight abuse of notation, will be denoted by P [�(x)]. For example we

will write

eP �Z t

0

Z
R
2
E

�
Xt�s; S�(eXs)

�
 (s; x)~L(ds; dx)

�
=

Z t

0

Z
R
2

eP hE�Xt�s; S�(eXs)
�
 (s; x)~L(s; x)

i
ds dx;

P

�Z t

0

Z
R
2
E

�
Xs; S�(eXt�s)

�
 (s; x)L(ds; dx)

�
=

Z t

0

Z
R
2
P
h
E

�
Xs; S�(eXt�s)

�
 (s; x)L(s; x)

i
ds dx;

for any integrable function  on R+ � R
2. Recall that the above measures are absolutely contin-

uous (and therefore densities are well-de�ned) since eP h~L(ds; dx)i and P [L(ds; dx)] are absolutely

continuous by Lemma 2.2(d) (note that ~X also satis�es the hypotheses of Lemma 2.2).

19



Lemma 2.7 For any t; � > 0

P � eP hE�Xt; S�(eX0)
�i
� P � eP hE�X0; S�(eXt)

�i
= 4
P

�Z t

0

Z
R
2

eP hE�Xt�s; S�(eXs)
�
(S� eX1

s )(x)(S� eX2
s )(x)

i
Lt(ds; dx)

�
Z t

0

Z
R
2

eP hE�Xt�s; S�(eXs)
�
~L(s; x)

i
Lt;�(ds; dx)

�
:

Proof Fix any T > 0 and de�ne three functions: h1 ; h2; f by

f(t; s) = P � eP hE�Xt; ST�t�s(eXs)
�i
;

h1(t; s) =

Z
R
2
4
 eP � P

h
E

�
Xt; ST�t�s(eXs)

�
(ST�t�s eX1

s )(x)(ST�t�s eX2
s )(x)L(t; x)

i
dx;

h2(t; s) =

Z
R
2
4
 eP � P

h
E

�
Xt; ST�t�s(eXs)

�
(ST�t�sX

1
t )(x)(ST�t�sX

2
t )(x)

~L(s; x)
i
dx

for 0 � s+ t < T .

By Lemma 2.3 (it is easy to check that stochastic integrals with respect to martingale measures

are in fact martingales due to L2 boundedness) and Fubini's theorem we have

f(t; s) = f(0; s) +

Z t

0

h1(u; s) du; 8t; s � 0 : t+ s < T;

f(t; s) = f(t; 0) +

Z s

0

h2(t; u) du; 8t; s � 0 : t+ s < T:

From Lemma 4.4.10 of [7] (see e.g. Lemma 4.17 [11]) it follows that

f(t; 0)� f(0; t) =

Z t

0

h1(t� s; s)� h2(t� s; s) ds(2.20)

for almost every t, 0 � t < T . To verify (2.20) for every 0 � t < T it is enough to show the

continuity of the right side of (2.20). Take an arbitrary tn ! t and check thatZ T

0

1(s � tn)hi(tn � s; s) ds!
Z T

0

1(s � t)hi(t� s; s) ds; i = 1; 2:(2.21)

Consider (2.21) for i = 1. To simplify the notation de�ne

f̂(tn; s) = E

�
Xs; ST�tn(eXtn�s)

�
:

Then Z T

0

1(s � tn)h1(tn � s; s) ds =

Z T

0

1(s � tn)h1(s; tn � s) ds

= 4
 eP � P

�Z T

0

Z
R
2
1(s � tn)f̂(tn; s)

� (ST�tn eX1
tn�s)(x)(ST�tn

eX2
tn�s)(x)L(ds; dx)

i

20



By Lemma 2.4 eX1
�
; eX2

�
are continuous in Mrap. This together with Corollaries A.4, A.5 and Domi-

nated Convergence implies that

1(s � tn)f̂(tn; s)(ST�tn eX1
tn�s)(x)(ST�tn

eX2
tn�s)(x)(2.22)

! f̂(t; s)(ST�t eX1
t�s)(x)(ST�t

eX2
t�s)(x); as n!1;

for every x 2 R 2, s < t, P � eP -a.s.. Note that
lim
tn!t

eP � P

�Z T

0

Z
R
2
1(s � tn)(ST�tn eX1

tn�s)(x)(ST�tn
eX2
tn�s)(x)L(ds; dx)

�
(2.23)

= lim
tn!t

Z tn

0

Z
R
2

eP � P
h
(ST�s eX1

0 )(x)(ST�s eX2
0 )(x)(SsX

1
0 )(x)(SsX

2
0 )(x)

i
dx ds

=

Z t

0

Z
R
2

eP � P
h
(ST�s eX1

0 )(x)(ST�s eX2
0 )(x)(SsX

1
0 )(x)(SsX

2
0 )(x)

i
= eP � P

�Z T

0

Z
R
2
1(s � t)(ST�t eX1

t�s)(x)(ST�t
eX2
t�s)(x)L(ds; dx)

�
:

De�ne �(ds; dx; d~!; d!) � L(!; ds; dx) eP (d~!)P (d!). Then (2.22), (2.23) imply that convergence

1(s � tn)(ST�tn eX1
tn�s)(x)(ST�tn

eX2
tn�s)(x)! 1(s � t)(ST�t eX1

t�s)(x)(ST�t
eX2
t�s)(x); as n!1;

is in L1(�(ds; dx; d~!; d!)). Since f̂(tn; s) is uniformly bounded in n we get that

1(s � tn)f̂(tn; s)(ST�tn eX1
tn�s)(x)(ST�tn

eX2
tn�s)(x)! 1(s � t)f̂(t; s)(ST�t eX1

t�s)(x)(ST�t eX2
t�s)(x)

in L1(�(ds; dx; d~!; d!)) and (2.21) follows for i = 1. By the same argument it is easy to show that

(2.21) holds for i = 2 and the continuity of the right hand side of (2.20) follows. Hence (2.20) is

satis�ed for each 0 < t < T . Take T = t+ � and the proof is complete.

Fix t > 0. To simplify the notation denote

'�s � E

�
Xs; S�(eXt�s)

�
;(2.24)

f �;�
0

(s; x) � (S� eX1
t�s(x)S� eX2

t�s(x))(S�0X
1
s (x)S�0X

2
s (x)):

Use Lemma 2.7 and the equality in (2.24) with s = t to see

I� �
���P � eP ['�t � '�0]

���
=

����4
P �Z t

0

Z
R
2

eP h'�sS� eX1
t�s(x)S�

eX2
t�s(x)

i
L(ds; dx)

�
Z t

0

Z
R
2

eP h'�t�s ~L(s; x)S�X1
t�s(x)S�X

2
t�s(x)

i
dx ds

����� :(2.25)

Now apply Lemma 2.6 to see that the second term inside the P -expectation is

eP �Z t

0

Z
R
2
'�t�sS�X

1
t�s(x)S�X

2
t�s(x)

~L(ds; dx)

�
= lim

�0#0

eP �Z t

0

Z
R
2
'�t�sf

�;�0(t� s; x) dx ds

�
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Similarly by applying Lemma 2.6 to the �rst term in (2.25) we get

I� = 4


����lim�0#0 P
�Z t

0

Z
R
2

eP h'�sf �;�0(s; x)i dx ds�� P

�
lim
�0#0

eP �Z t

0

Z
R
2
'�sf

�0;�(s; x) dx ds

������(2.26)

To justify taking the limit outside the expectation in the second term, �x arbitrary � > 0; � > 0
and note that

eP �Z t

0

Z
R
2
j'�sj f �

0;�(s; x) dx ds

�
�
Z t

0

Z
R
2
S�X

1
s (x)S�X

2
s (x)S�0+t�s eX1

0 (x)S�0+t�s eX2
0 (x)dx ds

�
Z t

0

Z
R
2

Z
R
2
p�(y1 � x)p�(y2 � x)(cA1(t+ 1); �)2

��� eX1
0

���
�

��� eX2
0

���
�
�2�(x) dxX

1
s (dy1)X

2
s (dy2) ds

� c(eX0; �)�
�1

Z t

0

X1
s (��)X

2
s (��) ds;

where the �rst inequality follows from Lemma 2.2(c), the second one follows from Lemma A.1 and

the third one from Lemma A.2. Note that c(eX0; �) is �nite since eX0 2 (Crap)2.
By Lemma A.1 Ss�� 2 C� for any s � 0 and any � 2 R . Therefore Lemma 2.2(c) shows thatR t

0
X1
s (��)X

2
s (��) ds is P -integrable and hence we may use Dominated Convergence to write (2.26)

as

I� = 4


����lim�0#0 P � eP �Z t

0

Z
R
2
'�s(f

�;�0(s; x)� f �
0;�(s; x)) dx ds

����� :(2.27)

Arguing as in the proof of Theorem 11(a) of [4] (this theorem establishes absolute continuity in

the particular case of X
j
0 � dx; j = 1; 2), we can check that the hypotheses of the general absolute

continuity Theorem 57 of [3] are satis�ed. Therefore, with probability 1, Xj
s and eXj

s have densities

x
j
s(�) and ~xjs(�) respectively for j = 1; 2.
Fix 0 < s < t. Then S� eXj

t�s(x) ! ~xjt�s(x); j = 1; 2; for Lebesgue a.a. x, eP -a.s., by standard

di�erentiation theory. Moreover,

P � eP hDXj
s ; S�

eXj
t�s

Ei
= P

�Z
R
2
Ss(X

j
0)(x)S�+t�s(

eXj
0)(x) dx

�
(by Lemma 2.2(c))

= P

�Z
R
2

Z
R
2
p�+t(y1 � y2) eXj

0(dy1)X
j
0(dy2)

�
! P

�Z
R
2

Z
R
2
pt(y1 � y2) eXj

0(dy1)X
j
0(dy2)

�
; as � # 0; j = 1; 2;(2.28)

by Dominated Convergence, Lemma A.1 and P
h
X
j
0(��)

i
<1. Use again Lemma 2.2(c) to show

P � eP �Z
R
2
~xjt�s(x)X

j
s (dx)

�
= eP �Z

R
2
P
h
Ss(X

j
0)(x)

i
~xjt�s(x) dx

�
=

Z
R
2
P
h
Ss(X

j
0)(x)

i
St�s( eXj

0)(x) dx

= P

�Z
R
2
pt(y1 � y2) eXj

0(dy1)X
j
0(dy2)

�
; j = 1; 2:(2.29)

It follows from (2.28) and (2.29) that

S�( eXj
t�s)(x) ! ~xjt�s(x) in L1(P � eP (Xj

s (dx))) as � # 0; j = 1; 2;
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and hence

D
Xj
s ; S�( eXj

t�s)
E
!
D
Xj
s ; ~x

j
t�s

E
in L1(P � eP ) as � # 0; j = 1; 2:

Therefore for each s in (0; t),

'�s ! 's � exp
�� 
X1

s +X2
s ; ~x

1
t�s + ~x2t�s

�
+ i


X1
s �X2

s ; ~x
1
t�s � ~x2t�s

�	
;(2.30)

boundedly and a.s. as � # 0. The right side is only de�ned up to a null set for each s, but clearly

we may de�ne a Borel map

'̂ :M4
tem 7! fz 2 C : jzj � 1g

such that

'�s ! 's = '̂(Xs; eXt�s)(2.31)

boundedly and a.s. as � # 0 for each s 2 (0; t). Our immediate goal is to prove

lim
�#0
I� = 0:(2.32)

By (2.27) and an elementary argument it su�ces to �x �n # 0, �0n # 0 and show

lim
n!1

P � eP �Z t

0

'�ns (

Z
R
2
f �n;�

0

n(s; x)� f �
0

n;�n(s; x) dx) ds

�
= 0:(2.33)

The key step in proving this is the following lemma:

Lemma 2.8 �Z
R
2
f �n;�

0

n(s; x) + f �
0

n;�n(s; x) dx : n 2 N
�

(2.34)

is uniformly integrable on 
� ~
� [0; t] with respect to P � eP � ds.

We �rst assume this and �nish the proof of (2.33) and Proposition 2.1. If  : 
� ~
� (0; t) 7! C

is bounded and F � ~F � B(0; t)-measurable let

Jn( ) = P � eP �Z t

0

 s(

Z
R
2
f �n;�

0

n(s; x)� f �
0

n;�n(s; x) dx) ds

�
(Lemma 2.2(c) easily shows this integral is �nite). The left side of (2.33) is bounded by

lim sup
n!1

P � eP �Z t

0

j'�ns � 'sj
�Z

R
2
f �n;�

0

n(s; x) + f �
0

n;�n(s; x) dx

�
ds

�
+ lim sup

n!1

Jn(');

which by (2.34) and (2.31) is easily seen to equal lim supn!1
Jn('). Therefore (2.32) reduces to

proving

lim sup
n!1

Jn(') = 0:(2.35)
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Let	 be the linear class of bounded measurable  : 
�~
�(0; t) 7! C satisfying lim supn!1
Jn( ) =

0. Assume  : 
� ~
� (0; t) 7! C is bounded measurable, f kg � 	, and  k !  boundedly and

in P � eP � ds-measure. Then our uniform integrability assumption (2.34) implies

lim
k!1

sup
n
jJn( k)� Jn( )j = 0

which in turn shows  2 	. So we have shown 	 is closed under bounded convergence in P � eP �ds
measure. Hence in order to prove 's = '̂(Xs; eXt�s) 2 	, we may assume '̂ is bounded and

continuous. Now we may approximate 's by the appropriate sequence of step functions and use the

linearity of 	, to see that it su�ces to prove (2.35) for

's = '̂(Xa; eXt�a�Æ3 )1(a+ Æ1 � s < a+ Æ2) � 'a1[a+Æ1;a+Æ2)(s);

where a < a + Æ1 < a + Æ2 < a + Æ3 � t and '̂ is bounded continuous. Fix such a ' and note by

Fubini's theorem (FX
a = �(Xs : s � a+))

Jn(') = P � eP �'a Z a+Æ2

a+Æ1

Z
R
2

�
P
�
S�0n(X

1
s )(x)S�0n(X

2
s )(x)jFX

a

�
� P

h
S�n( eX1

t�s)(x)S�n( eX2
t�s)(x)jF

eX

t�a�Æ3

i
� P

�
S�n(X

1
s )(x)S�n(X

2
s )(x)jFX

a

�
� P

h
S�0n(

eX1
t�s)(x)S�0n(

eX2
t�s)(x)jF

eX

t�a�Æ3

i�
dx ds

i
= P � eP �'a Z a+Æ2

a+Æ1

Z
R
2

�
S�0n+s�a(X

1
a )(x)S�0n+s�a(X

2
a )(x)

� S�n+a+Æ3�s(
eX1
t�a�Æ3

)(x)S�n+a+Æ3�s(
eX2
t�a�Æ3

)(x)

� S�n+s�a(X
1
a)(x)S�n+s�a(X

2
a)(x)

� S�0n+a+Æ3�s(
eX1
t�a�Æ3

)(x)S�0n+a+Æ3�s(
eX2
t�a�Æ3

)(x)
�
dx ds

i
;

where we have used Lemma 2.2(c) in the last line. Note that the integrand in brackets approaches 0
as n!1 (note s�a � Æ1 > 0 and a�s+Æ3 � Æ3�Æ2 > 0). Fix �1 > �2 > 0 and use Corollary A.4

to bound the integrand by

cA3(t+ 1; �1)
2cA3(t+ 1; �2)

2cA4(Æ1 ^ (Æ3 � Æ2))
4X1

a(��2)X
2
a (��2)

� eX1
t�a�Æ3

(���1)
eX2
t�a�Æ3

(���1)�2(�1��2)(x)

(without loss of generality we assume that �n; �
0

n < 1). By Lemma 2.2(c) and our assumptions on

the initial conditions X0 and eX0, this latter expression is integrable with respect to P � eP �dx�ds
and so by Dominated Convergence we have limn!1 Jn(') = 0. This completes the proof of (2.32).

It is now easy to use (2.32) to prove the Proposition. As eXj
0 has a bounded continuous density

~xj0(�), S�( eXj
0)(x)! ~xj0 pointwise boundedly as � # 0 and so by Lemma A.1 and Dominated Conver-

gence
D
X
j
s ; S� eXj

0

E
!
D
X
j
s ; ~x

j
0

E
. A second application of Dominated Convergence now shows (D1)

is immediate from (2.32).

It remains only to prove the uniform integrability condition (2.34). To this end we need the

following moment condition on eX which will be also used in the proof of Theorem 1.11(a)
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Lemma 2.9 Let 
=�2 < (
p
6�crw)

�1, eX0 2 (B+
b )

2 and eX be the particular solution to (MP)�;

eX0

constructed in Section 1.4. De�ne

w
�
t (x; y) =

eP hS�( eX1
t )(x)S�( eX2

t )(x)S�( eX1
t )(y)S�( eX2

t )(y)
i
; (�; t > 0;x; y 2 R 2):

For any p : 0 < p � 1=2 such that


=�2 <
sin(�(1 � p))p

6�crw
(2.36)

the following holds. For each T > 0, there is a cT = cT (
; �
2; p; eX0) > 0 such that

w
�
t (x; y) � cT (1 + jx� yj�2p); 8� 2 (0; 1]; x; y 2 R 2; 0 � t � T:

Proof Recall that eX = ( eX1; eX2) is a weak limit point in C(R+;M2
tem) of a sequence of rescaled

lattice systems �n eX = (�n eX1; �n eX2). By taking subsequence if necessary we may assume that eX is

the limit in law of �n eX. Recall (see Section 1.4) that �Mtem is the subspace of Mtem of measures

with densities with respect to d�x. Let

w
�;�
t (x; y) = eP h�S�(�eX1

t )(x)
�S�(

�eX2
t )(x)

�S�(
�eX1

t )(y)
�S�(

�eX2
t )(y)

i
; x; y 2 �Z2

;

where
�S�(�)(x) �

Z
R
2

�p�(x� y)�(dy); 8x 2 �Z2; 8� 2 �Mtem; � > 0:

A local central limit theorem (see Lemma 8(a)) of [3] implies

d(�; �) � sup
x2�Z2

j�p�(x)� p�(x)j ! 0; as � # 0 for each � > 0:(2.37)

By Skorohod's Theorem we may assume �neXt ! eXt in M2
tem a.s.. Fix arbitrary x 2 R

2
and a

sequence fxng such that xn 2 �nZ2 ;8n � 1 and lim
n!1

xn = x. Then, for any compact set K � R
2,

lim sup
n!1

����nS�(�n eXj
t )(xn)� S�( eXj

t )(x)
��� � lim sup

n!1

Z
K

j�np�(z � xn)� p�(z � x)j �n eXj
t (dz)

+ lim sup
n!1

Z
Kc

j�np�(z � xn)� p�(z � x)j �n eXj
t (dz)

+ lim sup
n!1

����Z
R
2
p�(z � x)

�
�n eXj

t (dz)� eXj
t (dz)

�����
= lim sup

n!1

Z
Kc

j�np�(z � xn)� p�(z � x)j �n eXj
t (dz)

� lim sup
n!1

InK ; j = 1; 2;(2.38)

by (2.37) and the above a.s. convergence �neXt ! eXt in M2
tem.

For any � > 0, there exists a compact set K� � R
2
such that

eP �InK�

�
=

Z
Kc
�

j�np�(z � xn)� p�(z � x)j eP h�n eXj
t (dz)

i
�




 eXj
0





1

Z
Kc
�

j�np�(z � xn)� p�(z � x)j d�nz
� �;
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uniformly in n. Since � was arbitrary we get by (2.38) that �nS�(
�n eXj

t )(xn) ! S�( eXj
t )(x) in proba-

bility, as n!1 for j = 1; 2.
Now Fatou's Lemma shows that for arbitrary x; y 2 R 2

w
�
t (x; y) � lim inf

n!1

w
�;�n
t (xn; yn):(2.39)

where lim
n!1

xn = x; lim
n!1

yn = y and xn ; yn 2 �nZ2 ;8n � 1.

For any � > 0 let �~p�(z1; z2; z3; z4) = �4
i=1

�p�(zi) be the transition function for the 8-dimensional

continuous time simple symmetric random walk on �Z
8
. Recall that

�m1122
t (~z) = eP ��eX1

t (z1)
�eX1

t (z2)
�eX2

t (z3)
�eX2

t (z4)
i
;

and hence

w
�;�
t (x; y) =

Z
R
8

�~p�(~z � (x; y; x; y))�m1122
t (~z)d�~z

where d�~z assigns mass �8 to each point in (�Z2)4. Apply (1.13) and Chapman-Kolmogorov to

conclude that for 0 � t � T ,

w
�;�
t (x; y) � cT (
; �

2; p; eX0)

�
1 +

Z t

0

u�p�p2(u+�)(x� y) du

�
:

Now use (2.37), (2.39) and Dominated Convergence to conclude that for � 2 (0; 1] and p as in (2.36),

w
�
t (x; y) � cT (
; �

2; p; eX0)

�
1 +

Z t

0

u�pp2(u+�)(x� y) du

�
� cT (
; �

2; p; eX0)

�
1 +

Z �

0

u�p du2p4�(x� y) +

Z t

�

2p(u+ �)�p2p2(u+�)(x� y) du

�
� cT (
; �

2; p; eX0)

 
1 + ��p exp

(
�jx� yj2

8�

)
+

Z t+1

0

u�pp2u(x� y) du

!
:

� cT (
; �
2; p; eX0)

�
1 + jx� yj�2p

�
; 80 � t � T:

In the last line we use

��pe��
2=8� � sup

z
z2pe�z

2=8��2p

to bound the term preceding the integral and the substitution w = jx� yj2 =8u to handle the

integral. This gives the desired bound.

Corollary 2.10 Let 
��2, eX0 and eX be as in Lemma 2.9. For each T > 0, there is a cT =
cT (
; �

2; eX0) > 0 such that

w
�
t (x; y) � cT (1 + jx� yj�1); 8� 2 (0; 1]; x; y 2 R 2; t 2 [0; T ]:

Proof Immediately from the previous lemma with p = 1=2.

Corollary 2.11 Let 
��2, eX0 and eX be as in Lemma 2.9. Then eX satis�es (SIntC).
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Proof Take p < 1=2 satisfying (2.36). Then, for any compact set K � R
2
, we have for s � T ,

P
h
H�;K(eXs)

i
=

Z
K

Z
K

�
1 + jx� yj�1

�
w�s(x; y) dx dy

�
Z
K

Z
K

�
1 + jx� yj�1

�
cT (1 + jx� yj�2p) dx dy (by Lemma 2.9)

< 1
uniformly in 0 < � < 1. This gives the desired result.

Remark 2.12 The proof of Theorem 1.11(a) is now �nished since Corollary 2.11 implies that

solutions constructed in [4] satisfy (SIntC).

Proof of Lemma 2.8 As �n; �
0

n # 0 are arbitrary we only need to show fR
R
2 f �n;�

0

n(s; x) dx : n 2
N g are uniformly integrable with respect to P � eP � ds. As a �rst step we will show that for any

compact set K � R
2,

f
Z
K

f �n;�
0

n(s; x) dx : n 2 N g is uniformly integrable with respect to P � eP � ds .(2.40)

This would follow from (each of the above functions are integrable by Lemma 2.2(c))

sup
n�n0

P � eP "Z t

0

�Z
K

f �n;�
0

n(s; x) dx

�2

ds

#
<1; for some n0 2 N :(2.41)

For �xed n the above expectation isZ t

0

Z
K

Z
K

eP hS�n( eX1
t�s)(x)S�n(

eX2
t�s)(x)S�n(

eX1
t�s)(y)S�n(

eX2
t�s)(y)

i
� P

�
S�0n(X

1
s )(x)S�0n(X

2
s )(x)S�0n(X

1
s )(y)S�0n(X

2
s )(y)

�
� ctP

�Z t

0

H�0n;K(Xs) ds
�

(by Corollary 2.10).

By (SIntC), there are constants n0 2 N and c0t;K > 0 such that

sup
n�n0

ct

Z t

0

H�0n;K
(Xs) ds � c0t;K :

This gives (2.41) and so (2.40).

Fix arbitrary � > 0 and assume without loss of generality that �n; �
0

n < 1. Now by Lemma 2.2(c),

Lemma A.1 and simple calculus we getZ
R
2

Z t

0

eP � P
h
f �n;�

0

n(s; x)
i
ds dx

=

Z
R
2

Z t

0

eP hSt�s+�n( eX1
0 )(x)St�s+�n(

eX2
0 )(x)

i
P
�
Ss+�0n(X

1
0 )(x)Ss+�0n(X

2
0 )(x)

�
ds dx

� (cA1(t+ 1); �)2
��� eX1

0

���
�

��� eX2
0

���
�

Z
R
2

Z t

0

�2�(x)P
�
Ss+�0n(X

1
0 )(x)Ss+�0n(X

2
0 )(x)

�
ds dx

� (cA1(t+ 1); �)2
��� eX1

0

���
�

��� eX2
0

���
�

Z
R
2

Z t+1

0

�2�(x)P
�
�ps(X

1
0 ; X

2
0 )(x)

�
ds dx

= (cA1(t+ 1); �)2
��� eX1

0

���
�

��� eX2
0

���
�

Z
R
2
�2�(x)P

�
�gt+1(X

1
0 ;X

2
0 )(x)

�
dx; 8n � 1:
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The last bound is �nite by (EnC) condition and hence, by Fubini's theorem, we get

sup
n

eP � P

�Z t

0

Z
R
2
f �n;�

0

n(s; x) dx ds

�
<1:(2.42)

Moreover, for any n � 1,
R t
0
eP � P

h
f �n;�

0

n(s; x)
i
ds is dominated by integrable function

(cA1(t+ 1); �)2
��� eX1

0

���
�

��� eX2
0

���
�
�2�(x)P

�
�gt+1(X

1
0 ;X

2
0 )(x)

�
:

Therefore for arbitrary Æ > 0 we can �x a compact set K � R
2 such thatZ t

0

Z
Kc

eP � P
h
f �n;�

0

n(s; x)
i
dx ds � Æ=2; 8n � 1:

It follows from (2.42) that
nR
R
2 f �n;�

0

n(s; x) dx
o
is eP � P � ds-tight, and so we can choose N such

that Z t

0

eP � P

�Z
R
2
f �n;�

0

n(s; x) dx � N

�
ds � Æ2=4c0t;K

for all n su�ciently large. Therefore

eP � P

�Z t

0

�Z
R
2
f �n;�

0

n(s; x) dx

�
1

�Z
R
2
f �n;�

0

n(s; x) dx � N

�
ds

�
� eP � P

�Z t

0

�Z
K

f �n;�
0

n(s; x) dx

�
1

�Z
R
2
f �n;�

0

n(s; x) dx � N

�
ds

�
+ eP � P

�Z t

0

�Z
Kc

f �n;�
0

n(s; x) dx

�
1

�Z
R
2
f �n;�

0

n(s; x) dx � N

�
ds

�

�
vuutZ t

0

eP � P

"�Z
K

f �n;�
0

n(s; x) dx

�2
#
ds

sZ t

0

eP � P

�Z
R
2
f �n;�

0

n(s; x) dx � N

�
ds+ Æ=2

� Æ:

This gives (2.34) and so completes the proof of Proposition 2.1.

Proof of Proposition 1.12 Fix t > 0 and any Æ 2 (0; t). (IntC) implies that there exists a

sequence F1 � F2 � : : : of events in FÆ such that Fl " 
, as l!1 and for each n � 1:

lim sup
�#0

P

�Z t

Æ

H�;K(Xs) ds1Fn

�
<1; 8 compact set K � R

2
; 8t � Æ:

De�ne the process X̂l
t = XÆ+t, �ltration FÆ

t � FÆ+t and

Pl(B) = P (1FlP (1B jFÆ)) =P (Fl); B 2 F:

Then X̂l
t satis�es the (MP)�;


X̂l
0

on (
;F;FÆ
t ; Pl) with

�l(�) = L(X̂l
0) = P (XÆ 2 �jFl):
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Note that

lim sup
�#0

Pl

�Z t

0

H�;K(X̂
l
0) ds

�
= lim sup

�#0

P

�Z t+Æ

Æ

H�;K(Xs) ds1Fl

�
=P (Fl) <1;

for any compact set K � R
2. Therefore X̂l satis�es (SIntC). (EnC) for X̂l

0 also follows easily by

Lemma 2.2. Therefore Proposition 2.1 shows that for any t � 0,

Pl

h
E

�
X̂
l
t; ~x0

�i
= lim

�#0
Pl � eP hE�X̂l

0; S�(
eXt)
�i
:

Now let us take l !1. We immediately get that

lim
l!1

Pl

h
E

�
X̂
l
t; ~x0

�i
= P [E (Xt+Æ; ~x0)] :

For the right hand side we have���� liml!1

lim
�#0
Pl � eP hE�X̂l

0; S�(eXt)
�i
� lim

�#0
P � eP hE�XÆ; S�(eXt)

�i����
=

���� liml!1

lim
�#0

Z



Z
~


E

�
XÆ; S�(eXt)

�
1Fl(!)=P (Fl)P (d!)

eP (d~!)� lim
�#0

Z



Z
~


E

�
XÆ; S�(eXt)

�
P (d!) eP (d~!)����

� lim
l!1

lim
�#0

Z



Z
~


E

�
XÆ; S�(eXt)

�
j1Fl(!)=P (Fl)� 1jP (d!) eP (d~!)

� lim
l!1

Z



j1Fl(!)=P (Fl)� 1jP (d!)
= 0;

where the last limit follows by Bounded Convergence Theorem. Therefore we have

P [E (Xt+Æ; ~x0)] = lim
�#0
P � eP hE�XÆ; S�(eXt)

�i
; 8t; Æ > 0:(2.43)

Now we have to let Æ # 0. By continuity of X, the left hand converges to P [E (Xt; ~x0)] and we have

to handle interchange of limits on the right hand side. By Lemma 2.3(b), for any Æ; � > 0, we have

P � eP hE�XÆ; S�(eXt)
�i

= P � eP hE�X0; S�+Æ(eXt)
�i

+ P � eP �Z Æ

0

E

�
Xs; S�+Æ�s(eXt)

�
4
S�+Æ�s( eX1

t )(x)S�+Æ�s( eX2
t )(x)L(ds; dx)

�
� I1�;Æ + I2�;Æ:

Trivially

lim
Æ#0

lim
�#0
I1�;Æ = lim

�#0
P � eP hE�X0; S�(eXt)

�i
:

We will show that limÆ#0 lim�#0 I
2
�;Æ = 0. Without loss of generality assume that �+ Æ < 1.

��I2�;Æ�� � 4
P � eP �Z Æ

0

S�+Æ�s( eX1
t )(x)S�+Æ�s(

eX2
t )(x)L(ds; dx)

�
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� 4


Z Æ

0

St+�+Æ�s( eX1
0 )(x)St+�+Æ�s( eX2

0 )(x)P
�
Ss(X

1
0 )(x)Ss(X

2
0 )(x)

�
dx ds (by Lemma 2.2(c))

� 4
cA1(t+ 1; �)2
��~x10��� ��~x20��� P �Z

R
2
�2�(x)

Z Æ

0

Ss(X
1
0 )(x)Ss(X

2
0 )(x) ds dx

�
(by Lemma A.1)

= 4
cA1(t+ 1; �)2
��~x10��� ��~x20��� P �Z

R
2
�2�(x)�gÆ(X

1
0 ;X

2
0 )(x) dx

�
! 0; as Æ # 0, uniformly in �;

where the last convergence follows by (EnC) and Dominated Convergence. This gives the desired

result.

3 Proof of Theorem 1.8

We start with the following lemma.

Lemma 3.1 (Uniqueness of one-dimensional distributions) Assume 
=�2 < (
p
6�crw)

�1 and

X0 2 Mtem;e. Let X and Z be any two solutions to (MP)�;

X0

satisfying (IntC) with initial con-

ditions satisfying (EnC). Then X and Z have the same one-dimensional distributions, that is, for

each t > 0
P (Xt 2 �) = P (Zt 2 �); 8� 2 B(Mtem):

Proof A monotone class argument shows the bounded pointwise closure of the complex linear

span of fE
�
�; eX0

�
: eX0 2 Crapg is the set of all bounded complex-valued measurable maps inMtem

(e.g. see Lemma 6.2 of [5]). Therefore, the result is immediate from Proposition 1.12.

Before we give a proof of Theorem 1.8 let us prove two useful lemmas.

Lemma 3.2 Let X be a solution to (MP)�;

X0

on (
;F;Ft; P ) satisfying (IntC) and (EnC). Then

(a) Xt 2Mtem;e for any t � 0 P -a.s., and for any bounded stopping time �

P

�Z
R
2
�gÆ(X

1
� ;X

2
� )(x)��(x) dx

�
< 1; 8Æ > 0; 8� > 0:(3.1)

(b) For any bounded stopping time �

P

24 2X
j=1

Xj
� (��)

2

35 < 1; 8� > 0:(3.2)

Proof

30



(a) The proof essentially goes along the lines of the proof of Proposition 24 of [3] with changes

necessitated by the in�nite measure states. De�ne

g�(�1; �2)(x) �
Z

1

0

e��uSu�1(x)Su�2(x) du; 8� > 0; x 2 R 2
; (�1; �2) 2Mtem;e;(3.3)

g�;�(�1; �2)(x) �
Z

1

�

e��uSu�1(x)Su�2(x) du; 8� > 0; x 2 R 2; (�1; �2) 2Mtem;e:(3.4)

Fix arbitrary � > 0. For any t > 0, �gt(�1; �2)(x) � e�tg�(�1; �2)(x). Therefore it is enough to

check that

sup
t�T

Z
R
2
g�(X

1
t ; X

2
t )(x)��(x) dx <1; P � a.s.; 80 < T <1;(3.5)

and

P

�Z
R
2
g�(X

1
� ; X

2
� )(x)��(x) dx

�
<1(3.6)

for any bounded stopping time � . It follows from Itô's formula, just as in the derivation of (T�) in
Section 5 of [1], thatZ

R
2
g�;�(X

1
t ;X

2
t )(x)��(x) dx =

Z
R
2
g�;�(X

1
0 ;X

2
0 )(x)��(x) dx

�
Z t

0

e���
Z
R
2
�p�(X

1
s ;X

2
s )(x)��(x) dx ds+ �

Z t

0

Z
R
2
g�;�(X

1
s ;X

2
s )(x)��(x) dx ds +M �

t

where M �
t is a local martingale. Then

e��t
Z
R
2
g�;�(X

1
t ;X

2
t )(x)��(x) dx =

Z
R
2
g�;�(X

1
0 ;X

2
0 )(x)��(x) dx

�
Z t

0

e��(s+�)
Z
R
2
�p�(X

1
s ; X

2
s )(x)��(x) dx ds+

Z t

0

e��sdM �
s :

This shows that e��t
R
R
2 g�;�(X

1
t ;X

2
t )(x)��(x) dx is a positive supermartingale. Letting � # 0 we

get by Fatou lemma that the limiting process e��t
R
R
2 g�(X

1
t ;X

2
t )(x)��(x) dx is also a positive

supermartingale. This together with maximal inequality for positive supermartingales, Optional

Stopping Theorem and (EnC) gives the desired result.

(b) Fix arbitrary � > 0. We can choose ~� � �� such that ~� 2 C
(2)

� . Since � is bounded, it is

enough to check that

P

24 sup
0�t�T

2X
j=1

X
j
t (
~�)2

35 <1; 8T > 0:

But this follows by a simple moment calculation combined with Doob's maximal inequality.

Lemma 3.3 Let X be a solution to (MP)�;

X0

on (
;F;Ft; P ) satisfying (IntC) and (EnC). Let �

be any bounded stopping time. Fix arbitrary F 2 F� with P (F ) > 0. De�ne

P1(B) = P (1FP (1B jF� ))=P (F ); B 2 F;
F�
t � F�+t, and X̂t � X�+t. Then X̂ solves (MP)�;


X̂0
on (
;F;F�

t ; P1) with L(X̂0) = P (X� 2 �jF )
and satis�es (IntC) and (EnC).
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Proof Since � is bounded there exists M > 0 such that � �M , P -a.s. It is easy to check that X̂

solves (MP)�;

X̂0

on (
;F;F�
t ; P1) with L(X̂0) = P (X� 2 �jF ). Let us check that it satis�es (IntC)

and (EnC). It is enough to check (IntC) and (EnC) for F = 
. Fix arbitrary Æ > 0. Take a

sequence F1 � F2 � : : : of events in FÆ such that Fl " 
, as l!1 and for each n � 1 and t > Æ

lim sup
�#0

P

�Z t

Æ

H�;K(Xs) ds1Fn

�
<1; 8 compact set K � R

2:(3.7)

Then for each n � 1, t > Æ

lim sup
�#0

P

�Z t

Æ

H�;K(X̂s) ds1Fn

�
= lim sup

�#0

P

�Z �+t

�+Æ

H�;K(Xs) ds1Fn

�
� lim sup

�#0

P

�Z M+t

Æ

H�;K(Xs) ds1Fn

�
< 1; 8compact set K � R

2
;

by (3.7). Therefore X̂ also satis�es (IntC) (note that fX̂tg is adapted to fF�+tg) and the result

follows. Regarding (EnC) it follows from Lemma 3.2.

Proof of Theorem 1.8 We argue as in the proof of Theorem 4.4.2 [7]. Let X, Z be any two

solutions to (MP)�;

X0

satisfying (IntC). We want to show that

P [�mk=1fk(Xtk)] = P [�mk=1fk(Ztk)](3.8)

for all choices of tk 2 [0;1) and bounded Borel measurable functions fk on M2
tem. It is su�cient

to consider only fk > 0. For m = 1 (3.8) follows from Lemma 3.1. Proceeding by induction,

assume (3.8) holds for all m � n. Fix 0 � t1 < t2 : : : < tn and bounded strictly positive Borel

measurable functions f1; : : : ; fn on M2
tem. De�ne

P 1(B) =
P [1B�

n
k=1fk(Xtk)]

P
�
�nk=1fk(Xtk)

� ; B 2 FX ; P 2(B) =
P [1B�

n
k=1fk(Ztk)]

P
�
�nk=1fk(Ztk)

� ; B 2 FZ ;(3.9)

and set X̂ = Xtn+t, Ẑ = Ztn+t. Then Lemma 3.3 shows that X̂ and Ẑ solve (MP)�;
� on

(
;F;F tn
t ; P

1) and (
;F;F tn
t ; P

2), respectively, with the same initial distribution � (the latter

by the induction assumption). X̂ and Ẑ also satisfy (IntC) and (EnC) by Lemma 3.3, and there-

fore by Lemma 3.1 they have the same one dimensional-distributions. This implies that for any

bounded Borel measurable function f on M2
tem we have

P 1
h
f(X̂t)

i
= P 2

h
f(Ẑt)

i
; 8t � 0:(3.10)

It follows from the de�nitions of P 1 and P 2 and the induction hypothesis that

P [f(Xtn+t)�
n
k=1fk(Xtk)] = P [f(Ztn+t)�

n
k=1fk(Ztk)] ;(3.11)

and by setting tn+1 = tn + t we get (3.8) for m = n+ 1.
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Proof of Theorem 1.11 As it has been mentioned already in Remark 2.12 the proof of Theo-

rem 1.11(a) was completed by Corollary 2.11. Part (b) of Theorem 1.11 follows now from Theo-

rem 1.8 and Theorem 1.11(a).

4 Continuity of the transition function with respect to initial con-

ditions

For any �; t > 0 let cA3(t; �); cA4(t) be the constants de�ned in Lemma A.3. To simplify the notation

de�ne also the constants

c4:1(�; �; t; Æ) � 4
cA3(t; �)
2cA4(t� Æ)2�1(��)�

2(��); 8� = (�1; �2) 2Mtem;e; 0 < Æ < t; � > 0;

c4:2(�; �; t; Æ) � 4
cA3(t; �)
2cA4(t� Æ)2�1(���)�

2(���); 8� = (�1; �2) 2Mrap;e; 0 < Æ < t; � > 0:

Lemma 4.1 (a) Let � = (�1; �2) 2 Mtem;e, ~� = (~�1; ~�2) 2 Mrap;e. Let X solve the martingale

problem (MP)�;
� . Then for all 0 < Æ < t, � > 0

lim sup
�#0

jP [E (S�Xt; ~�)]� P [E (SÆXt�Æ ; ~�)]j � c4:1(�; �; t; Æ)

Z
R
2
�gÆ(~�

1; ~�2)(x)��2�(x) dx

< 1:

(b) Let x0 = (x10; x
2
0) 2 B+

b � B+
b , ~� = (~�1; ~�2) 2 Mf;e. Let X solve the martingale problem

(MP)�;
x0 . Then for all 0 < Æ < t,

lim sup
�#0

jP [E (S�Xt; ~�)]� P [E (SÆXt�Æ; ~�)]j � 4

��x10��1 ��x20��1 Z

R
2
�gÆ(~�

1; ~�2)(x) dx

< 1:

(c) Let � = (�1; �2) 2 Mrap;e, ~� = (~�1; ~�2) 2 Mtem;e. Let X solve the martingale problem

(MP)�;
� . Then for all 0 < Æ < t, � > 0

lim sup
�#0

jP [E (S�Xt; ~�)]� P [E (SÆXt�Æ; ~�)]j � c4:2(�; �; t; Æ)

Z
R
2
�gÆ(~�

1; ~�2)(x)�2�(x) dx

< 1:

Proof (a) By Lemma 2.3(b) we get that for any � > 0,

jP [E (S�Xt; ~�)]� P [E (SÆXt�Æ; ~�)]j

�
����4
P �Z t

t�Æ

E (S�+t�sXs; ~�)

Z
R
2
S�+t�s~�

1(x)S�+t�s~�
2(x)L(ds; dx)

�����(4.1)

+ jP [E (S�+ÆXt�Æ ; ~�)]� P [E (SÆXt�Æ ; ~�)]j :

The �rst term in (4.1) is bounded by

4
P

�Z t

t�Æ

Z
R
2
S�+t�s~�

1(x)S�+t�s~�
2(x)L(ds; dx)

�
� 4


Z t

t�Æ

Z
R
2
S�+t�s~�

1(x)S�+t�s~�
2(x)Ss�

1(x)Ss�
2(x) ds dx
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� 4


Z �+Æ

0

Z
R
2
cA3(t; �)

2cA4(t� Æ)2��2�(x)�
1(��)�

2(��)1(� � s � �+ Æ)Ss~�
1(x)Ss~�

2(x) ds dx

= c4:1(�; �; t; Æ)

Z �+Æ

0

Z
R
2
1(� � s � �+ Æ)Ss~�

1(x)Ss~�
2(x)��2�(x) ds dx;

where the second inequality follows from Corollary A.4. Now let � # 0. By Corollaries A.4, A.5

and Dominated Convergence we get that the second term in (4.1) converges to 0. Applying again

Dominated Convergence we get

lim
�#0

Z �+Æ

0

Z
R
2
1(� � s � �+ Æ)Ss~�

1(x)Ss~�
2(x)��2�(x) ds dx =

Z
R
2
�gÆ(~�

1; ~�2)(x)��2�(x) dx

< 1;

and the result follows.

The proof of (b), (c) is completely analogous and therefore is omitted.

Proposition 4.2 (Continuity of transition density with respect to initial conditions) Let

�n ! � in Mtem;e, such that

lim
Æ#0

sup
n

Z
R
2
�gÆ(�

1
n; �

2
n)(x)��(x) dx = 0; 8� > 0:

Assume that there exist solutions Xn, X to the martingale problems (MP)�;
�n and (MP)�;
� respec-

tively, satisfying (IntC), and let Pt(�n; �) and Pt(�; �) be their one-dimensional distributions on

M2
tem. Then

Pt(�n; �)! Pt(�; �); 8t � 0:

as n!1.

Proof To prove the proposition we have to check weak convergence

X
n
t ) Xt in M2

tem, as n!1; 8t > 0:(4.2)

To this end it is enough to check that for arbitrary ' = ('1; '2) 2 (Crap)2�
X

1;n
t ('1);X2;n

t ('2)
�
) �

X1
t ('

1);X2
t ('

2)
�
; as n!1; 8t > 0;(4.3)

and

sup
n
P
h
X
j;n
t (��)

i
<1; j = 1; 2; 8t > 0; 8� > 0:(4.4)

(4.4) follows immediately from Lemma 2.2(c), Lemma A.1 and our assumptions on the initial mea-

sures �1n ; �
2
n :

To check (4.3), �x arbitrary ' = ('1; '2) 2 (C+rap)2 and let eX be a solution to the martingale

problem (MP)�;
' : Then

jP [E (Xn
t ; ')]� P [E (Xt; ')]j =

����lim�#0 eP hE��n; S� eXt

�i
� lim

�#0

eP hE��; S� eXt

�i���� ; (by Proposition 1.12)

�
����lim�#0 eP hE��n; S� eXt

�i
� eP hE��n; SÆ eXt�Æ

�i����+ ��� eP hE��n; SÆ eXt�Æ

�i
� eP hE��; SÆ eXt�Æ

�i���
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+

���� eP hE��; SÆ eXt�Æ

�i
� lim

�#0

eP hE��; S� eXt

�i����
� c4:2('; �; t; Æ)

Z
R
2
(�gÆ(�

1
n; �

2
n)(x) + �gÆ(�

1; �2)(x))��(x) dx (by Lemma 4.1(c))

+
��� eP hE��n; SÆ eXt�Æ

�i
� eP hE��; SÆ eXt�Æ

�i��� ; 8t > 0; n � 1:

Let n!1. Then by Lemmas 2.4 and A.1,

lim
n!1

��� eP hE��n; SÆ eXt�Æ

�i
� eP hE��; SÆ eXt�Æ

�i��� = 0:

Therefore

lim sup
n!1

jP [E (Xn
t ; ')]� P [E (Xt; ')]j � sup

n
c4:2('; �; t; Æ)

Z
R
2

�
�gÆ(�

1
n; �

2
n)(x)

+ �gÆ(�
1; �2)(x)

�
��(x) dx

for any Æ > 0. Let Æ # 0. Then it follows from our assumptions on �1n ; �
2
n that

lim sup
n!1

jP [E (Xn
t ; ')]� P [E (Xt; ')]j = 0; 8t � 0:

By a standard argument, the last convergence implies (4.3) and we are done.

5 Finite initial conditions

5.1 Existence of a process satisfying (IntC) and Proof of Theorem 1.9(a),(b)

We recall some facts about the dual process (�t; It) introduced prior to Theorem 32 of [3]. This

process takes values in S = Mf((R
2)4) � 2f1;:::;4g and points in S are denoted by (�; I). For

1 � j; j0 � 4 de�ne maps �j;j0 : (R
2)4 7! (R 2)4 and fj;j0 : C+b ((R 2)4) 7! Mf((R

2)4) by

(�j;j0x)i =

�
xi; if i 6= j0;

xj ; if i = j0;
x = (x1; x2; x3; x4);

fj;j0(�)(A) =

Z
A

�(�j;j0x)Æxj�xj0 (x) dx1 dx2 dx3 dx4 :

Let ~St be the 8-dimensional Brownian semigroup with variance �2. The dynamics of the dual

process, (��; I�) 2 D(R+;S) are as follows:

(a) For each (j; j0) 2 It� It ; j 6= j0, with rate 
=2, (�t�; It�) jumps to (fj;j0(�t�); It��fj0g), and
for each (j; j0) 2 Ict � Ict ; j 6= j0, with rate 
=2, (�t�; It�) jumps to (fj;j0(�t�); It� [ fj0g). In either

case we will say j0 switches via j.

(b) Let 0 = T0 < T1 < T2 : : : be the successive jump times. Then for Tn � t < Tn+1, (�t ; It) =
(~St�Tn�Tn ; ITn).

Let P̂�0 ;I0 be the law of (��; I�) on D(R+;S). Note again that we identify functions � in

Cb(R 8) \ L1(dx) with �(x) dx 2Mf(R
8). Let Un = Tn � Tn�1 ; n � 1. Then under P̂�0 ;I0

fUng are independent exponential random variables and(5.1)

if jI0j = 2, U2n+1 has mean (2
)�1 while U2n has mean (3
)�1.
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Assume that X0 2 Mf;e and X satis�es martingale problem (MP)�;

X0

. We introduce a fourth

moment condition on X: for Æ � 0

(MB)Æ 8�0 2 C+b (R 2)4 , I0 � f1; 2; 3; 4g and any Borel map  :Mf(R
2)4 7! R+ , 8t > Æ,

P

24Z �0(x1 ; x2 ; x3 ; x4)
Y
i2I0

X1
t (dxi)

Y
j2Ic0

X2
t (dxj) (XÆ)

35
� P̂�0 ;I0 � P

24Z �t�Æ(x1 ; x2 ; x3 ; x4)
Y
i2It�Æ

X1
Æ (dxi)

Y
j2Ic

t�Æ

X2
Æ (dxj) (XÆ)

� exp

�



Z t�Æ

0

� jIsj
2

�
+

� jIcs j
2

�
ds

��
:

The existence of a solution satisfying (MB)Æ for any Æ > 0 was established in Proposition 52

and Theorem 53 of [3] providing


��2 < (3
p
6�crw)

�1:(5.2)

In addition conditions were given under which the upper bound is �nite (see Theorems 53, 54 of [3]).

The following theorem completes the proof of Theorem 1.9(a), by establishing existence of

solution satisfying (IntC).

Theorem 5.1 Assume


��2 < 6�1=2:(5.3)

(a) If (MB)Æ holds for all Æ > 0, then X satis�es (IntC).

(b) If (MB)0 holds and X0 2Mf;se, then X satis�es (SIntC).

The rest of this subsection is devoted to the proof of the above theorem and we will use the

following notation.

c0 = c0(�) = (2��2)�1;

c1 = c1(�) = 2c0(�) = (��2)�1;

�n = c1(�)
n�1

n�1Y
k=1

(Uk + Uk+1)
�1:

For the proof of Theorem 5.1 we will need the following lemma.

Lemma 5.2 Assume I0 = f1; 3g and

0 � �t(y1; y2; y3; y4) � f(t)pa+bt(y1 � y2)pc+dt(y3 � y4); for 0 � t < T1;(5.4)

for some a; c � 0; b; d � 1, and continuous function f : R+ 7! R+ which is bounded on compacts.

Let

�(t) =

(
f(t); if T0 � t � T1 ;

f(U1)
�Qn�1

k=1
c1

(Uk+Uk+1)

�
c1

Un+(t�Tn)
; if Tn � t < Tn+1 ; n = 1; 2; : : : :
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Then for all n � 0 there are random variables V i
n � 0; bin � 1 (i = 1; 2) and random indices

fin1 ; : : : ; in4g = f1; : : : ; 4g such that

(I)n(a) �t(y) � �(t)pV 1
2n+b

1
2n(t�T2n)

(yi2n1 � yi2n2
)

� pV 2
2n+b

2
2n(t�T2n)

(yi2n3 � yi2n4
); if T2n < t < T2n+1; It = fi2n1 ; i2n3 g

(I)n(b) �t(y) � 2�(t)pV 1
2n+1+b

1
2n+1(t�T2n+1)

(yi2n+1
1

� yi2n+1
2

)

� p2(t�T2n+1)(yi2n+1
3

� yi2n+1
4

); if T2n+1 < t < T2(n+1);

It = fi2n+13 g or fi2n+13 gc:

Proof We proceed by induction on n. Note that (I)0(a) holds by assumption with V 1
0 = a; V 2

0 =

c; b10 = b; b20 = d. Assume that (I)n�1(a) holds for some n � 1. Then, writing ij for i
2(n�1)
j , we have

�T2n�1�
(y) � f(U1)�2n�1pV 1

2(n�1)
+b1

2(n�1)
U2n�1

(yi1 � yi2)

� pV 2
2(n�1)

+b2
2(n�1)

U2n�1
(yi3 � yi4); and IT2n�1

= fi1 ; i3 g:

By symmetry we may assume IT2n�1
= fi1g, i.e. i3 switches via i1 at t = T2n�1. This gives

�T2n�1
(y) � f(U1)�2n�1pV 1

2(n�1)
+b1

2(n�1)
U2n�1

(yi1 � yi2)

� pV 2
2(n�1)

+b2
2(n�1)

U2n�1
(yi1 � yi4)Æyi1�yi3 (y):

Set W i
2(n�1)

= V i
2(n�1)

+ bi
2(n�1)

U2n�1 and use the semigroup property of the Brownian densities to

see that for T2n�1 < t < T2n,

�t(y) � f(U1)�2n�1

Z
R
2
pW 1

2n�1+t�T2n�1
(zi1 � yi2)(5.5)

� pW 2
2n�1+t�T2n�1

(zi1 � yi4)pt�T2n�1
(zi1 � yi3)pt�T2n�1

(zi1 � yi1)dzi1

� f(U1)�2n�1

Z
R
2

h
1(jzi1 � yi2 j < jzi1 � yi4 j)pW 1

2n�1+t�T2n�1
(0)(5.6)

� pW 2
2n�1+t�T2n�1

(
yi2 � yi4

2
)

+ 1(jzi1 � yi2 j > jzi1 � yi4 j)pW 2
2n�1+t�T2n�1

(0)

� pW 1
2n�1+t�T2n�1

(
yi2 � yi4

2
)

�
� pt�T2n�1

(zi1 � yi3)pt�T2n�1
(zi1 � yi1)dzi1 :

In the last line we use the fact that jzi1 � yi2 j < jzi1 � yi4 j implies jzi1 � yi4 j � jyi2 � yi4 j =2 and

also monotonicity in jzj of ps(z). Now set Wm
2n�1 =W 1

2n�1 ^W 2
2n�1 and W

M
2n�1 =W 1

2n�1 _W 2
2n�1.

Use the inequality

pt2(0)pt1(x) � pt1(0)pt2(x); if t1 � t2;(5.7)

in (5.6) to conclude that for T2n�1 < t < T2n ,

�t(y) � f(U1)�2n�1pWm
2n�1+t�T2n�1

(0)pWM
2n�1+t�T2n�1

((yi2 � yi4)=2) p2(t�T2n�1)(yi1 � yi3)

� f(U1)�2n�1
4c0

Wm
2n�1 + t� T2n�1

p4WM
2n�1+4(t�T2n�1)

(yi2 � yi4) p2(t�T2n�1)(yi1 � yi3)

� 2�(t)p4WM
2n�1+4(t�T2n�1)

(yi2 � yi4) p2(t�T2n�1)(yi1 � yi3):(5.8)
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This implies (I)n�1(b) for appropriately chosen V 1
2n�1; i

2n�1
j and b12n�1 = 4. Rather than using

this to derive (I)n(a), we can do a bit better with (5.5) which implies (set W i
2n = W i

2n�1 + U2n �
U2n�1 + U2n)

�T2n�(y) � f(U1)�2n�1

Z
R
2
pW 1

2n
(zi1 � yi2)pW 2

2n
(zi1 � yi4)pU2n

(zi1 � yi3)pU2n
(zi1 � yi1) dzi1 ;

IT2n� = fi1g :

Note the roles of i2 ; i4 and of i1 ; i3 are symmetric in the above and so there are 3 cases to

consider.

Case 1 i4 switches via i2 (i2 switches via i4 is similar). Then IT2n = fi1 ; i4g and

�T2n(y) � f(U1)�2n�1

Z
R
2
pW 1

2n
(zi1 � yi2)pW 2

2n
(zi1 � yi2)pU2n

(zi1 � yi3)pU2n
(zi1 � yi1) dzi1Æyi4�yi2 (y) :

Case 2 i4 switches via i3 (i2 switches via i3 is similar). Then IT2n = fi1 ; i4g and

�T2n(y) � f(U1)�2n�1

Z
R
2
pW 1

2n
(zi1 � yi2)pW 2

2n
(zi1 � yi3)pU2n

(zi1 � yi3)pU2n
(zi1 � yi1) dzi1Æyi4�yi3 (y) :

Case 3 i3 switches via i4 (i3 switches via i2 is similar). Then IT2n = fi1 ; i3g and

�T2n(y) � f(U1)�2n�1

Z
R
2
pW 1

2n
(zi1 � yi2)pW 2

2n
(zi1 � yi4)pU2n

(zi1 � yi4)pU2n
(zi1 � yi1) dzi1Æyi3�yi4 (y) :

Now we may de�ne fi2nj g and ~V i
2n(= W 1

2n;W
2
2n or U2n) � U2n, and use W i

2n � U2n�1 + U2n to

combine these three cases into the simple bound (write ij for i
2n
j now),

�T2n(y) � f(U1)�2n�1(c0=(U2n�1 + U2n))

Z
R
2
p ~V 1

2n
(zi1 � yi2)p ~V 2

2n
(zi1 � yi4)pU2n

(zi1 � yi1) dzi1Æyi3�yi4 (y) ;

IT2n = fi1 ; i3g:

Therefore if T2n < t < T2n+1, then It = fi1 ; i3g and

�t(y) � f(U1)�2n�1(c0=(U2n�1 + U2n))

Z
R
2

Z
R
2
p ~V 1

2n+t�T2n
(zi1 � yi2)p ~V 2

2n
(zi1 � zi4)(5.9)

� pU2n+t�T2n(zi1 � yi1)pt�T2n(yi3 � zi4)pt�T2n(yi4 � zi4) dzi1 dzi4 :

Use (5.7) and the fact that ~V i
2n � U2n and argue again as in the derivation of (5.8) to see thatZ

R
2
p ~V 1

2n+t�T2n
(zi1 � yi2)p ~V 2

2n
(zi1 � zi4)pU2n+t�T2n(zi1 � yi1) dzi1

�
Z
R
2

h
1(jzi1 � yi2 j < jzi1 � yi1 j)p ~V 1

2n+t�T2n
(0)pU2n+t�T2n((yi1 � yi2)=2)

+1(jzi1 � yi1 j < jzi1 � yi2 j)pU2n+t�T2n(0)p ~V 1
2n+t�T2n

((yi1 � yi2)=2)
i
p ~V 2

2n
(zi1 � zi4) dzi1

� (c0=(U2n + t� T2n))p ~V 1
2n+t�T2n

((yi1 � yi2)=2)

= 4(c0=(U2n + t� T2n))p4 ~V 1
2n+4(t�T2n)

(yi1 � yi2):
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Use this in (5.9) to conclude that for T2n < t < T2n+1, �t = fi1; i3g and

�t(y) � f(U1)�2n�1

�
2c0

U2n�1 + U2n

��
2c0

U2n + t� T2n

�
p4 ~V 1

2n+4(t�T2n)
(yi1 � yi2)p2(t�T2n)(yi3 � yi4)

= �(t)p4 ~V 1
2n+4(t�T2n)

(yi1 � yi2)p2(t�T2n)(yi3 � yi4):

This gives (I)n(a) and the induction is complete.

Now we are ready to complete the

Proof of Theorem 5.1 Fix 0 < Æ < T <1. Let 0 < p < 1=2; N > 0 and de�ne

 N (XÆ) = 1( max
1�i;j�2

sup
0<s�T

sp=2
Z Z

ps(x1 � x2)X
i
Æ(dx1)X

j
Æ (dx2) � N) � 1KN

(XÆ)

We claim �rst that it su�ces to show:

sup
�>0

P

�Z T

Æ

H�(Xs) ds N (XÆ)

�
<1;(5.10)

where

H�(Xs) � H�;R2(Xs) =

Z
R
2

Z
R
2

�
1 + jx� yj�1

�
S�X

1
s (x)S�X

2
s (x)S�X

1
s (y)S�X

2
s (y) dx dy; � > 0:

Assume (5.10) and recall that XÆ 2Mf;se, a.s., (by Proposition 24(a) of [3]). The latter implies

that P (XÆ 2 KN ) " 1 as N !1. Therefore

P

�
P

�Z T

Æ

H�(Xs) dsjFÆ
�
> M

�
� P (XÆ 2 Kc

N ) + P

�
P

�Z T

Æ

H�(Xs) ds N (XÆ)jFÆ
�
> M

�
� P (XÆ 2 Kc

N ) +M�1P

�Z T

Æ

H�(Xs) ds N (XÆ)

�
If � > 0 we may �rst choose N > 0 such that the �rst term is at most �=2 and then choose M large

enough so that the second term is at most �=2 for all � > 0. This proves (IntC).
Turning to (5.10), a change of variables shows thatZ 1

0

u�1=2(1 + pu(x)) du � c(�)(jxj�1 + 1):(5.11)

If � > 0; u 2 (0; 1], and

�
u;�
0 (y) = �0(y1 ; y2 ; y3 ; y4) =

Z Z
(1 + pu(x� y))

2Y
i=1

p�(yi � x)
4Y
j=3

p�(yj � y) dx dy;

then (5.10) is therefore equivalent to

sup
�>0

Z 1

0

Z T

Æ

P

�Z
�
u;�
0 (y1 ; y2 ; y3 ; y4)(5.12)

X1
t (dy1)X

1
t (dy3)X

2
t (dy2)X

2
t (dy4) N (XÆ)

�
u�1=2 du dt <1
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If (�t ; It) is the dual process starting at (�u;�0 ; f1; 3g), then for t < T1,

�t(y) = p2(�+t)(y1 � y2)p2(�+t)(y3 � y4)(5.13)

+

Z Z
pu(x� y)

2Y
i=1

p�+t(yi � x)
4Y
j=3

p�+t(yj � y) dx dy:

Use the fact that jx� y1j < jx� y2j implies jy1 � y2j =2 � jx� y2j to bound the second term byZ Z
[1(jx� y1j < jx� y2j)p�+t(x� y1)p�+t((y1 � y2)=2)

+1(jx� y1j > jx� y2j)p�+t(x� y2)p�+t((y1 � y2)=2)]

� pu(x� y)p�+t(y3 � y)p�+t(y4 � y) dx dy

� p�+t((y1 � y2)=2)

Z
(p�+t+u(y � y1) + p�+t+u(y � y2)) p�+t(y3 � y)p�+t(y4 � y) dy

� 2c0
�+ t+ u

4p4(�+t)(y1 � y2)p2(�+t)(y3 � y4):

Put this into (5.13) to see that for 0 � t < T1,

�t(y) �
�
2 +

8c0
�+ t+ u

�
p4(�+t)(y1 � y2)p2(�+t)(y3 � y4):

This shows the hypothesis (5.4) of Lemma 5.2 holds with f(t) = 2 + 8c0
t+u .

If �(t) is de�ned as in Lemma 5.2, then that result and (MB)Æ implyZ T

Æ

P

�Z
�
u;�
0 (y)X1

t (dy1)X
1
t (dy3)X

2
t (dy2)X

2
t (dy4) N (XÆ)

�
dt(5.14)

�
Z T

Æ

P̂�u;�0 ;I0 � P

24Z �t�Æ(y)
Y
i2It�Æ

X1
Æ (dyi)

Y
j 62It�Æ

X2
Æ (dyj) N (XÆ)

35 e3
T dt
�

Z T

Æ

e3
T
1X
n=0

P̂�u;�0 ;I0
� P

�
1(Tn < t < Tn+1)2�(t)(t � Tn)

�p
�
N2 dt

� c(
; T;N)

Z T

Æ

n
P̂�u;�0 ;I0

�
1(t < T1)(1 + (t+ u)�1)t�p

�
(5.15)

+
1X
n=1

P̂�u;�0 ;I0

�
1(Tn < t < Tn + Un+1)

�
1 +

1

u+ U1

�

�
n�1Y
k=1

(Uk + Uk+1)
�1(Un + t� Tn)

�1(t� Tn)
�p

#
cn1

)
dt:

Recall (5.1), write out the appropriate exponential densities, and set u0 = u to bound (5.15) by

(c(
; T; n) may change from line to line)

c(
; T;N)

�Z T

Æ

(1 + (t+ u)�1)t�p dt

+

1X
n=1

6n=2
ncn1

Z T

Æ

Z
R
n
+

1

 
nX
i=1

ui < t

!�
1 +

1

u0 + u1

� n�1Y
k=1

(uk + uk+1)
�1
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�
 
un + t�

nX
i=1

ui

!
�1 

t�
nX
i=1

ui

!
�p

du1 : : : dun dt

9=;
� c(
; T;N)

�
1 +

Z T

0

(t+ u)�1t�p dt +
1X
n=1

(
p
6
c1)

n

Z
R
n+1
+

1

 
n+1X
i=1

ui < T

!
(5.16)

�
 

nY
k=1

(uk + uk+1)
�1 +

nY
k=0

(uk + uk+1)
�1

!
u
�p
n+1 du1 : : : dun+1

)
:

If c(p) = �(sin((1 � p)�))�1 and

In;p(u0) =

Z
R

n

+

(u0 + u1)
�1

n�1Y
j=1

(uj + uj+1)
�1u�pn du1 : : : dun ;

then (5.16) is at most

c(
; T;N)

(
1 + I1;p(u) +

1X
n=1

(
p
6
c1)

n

�Z T

0

In;p(u1) du1 + In+1;p(u)

�)

= c(
; T;N)

(
1 + c(p)u�p +

1X
n=1

(
p
6
c1c(p))

n

�Z T

0

u
�p
1 du1 + c(p)u�p

�)
; (by Lemma 60 of [3])

� c(
; T;N; p; �)
�
1 + u�p

�
;

where we used (a) in the last line and have chosen p < 1=2, su�ciently close to 1=2 so thatp
6c1
c(p) < 1. Put the above upper bound for (5.14) into (5.12) (and recall (5.11) to conclude

that

sup
�>0

P

�Z T

Æ

H�(Xs) ds N (XÆ)

�
� c(�)�1c(
; T;N; p; �)

Z 1

0

u�1=2(1 + u�p) du(5.17)

� c(
; T;N; p; �) <1;

since p < 1=2. This concludes the proof of (a).

(b) This is the minor modi�cation of the above. We need the estimate (5.12) with Æ = 0 and

 N = 1. The only change is in the derivation of (5.15) where instead of using  N to get a factor

of N2 we simply use X0 2 Mf;se to get a constant depending on X0. The rest of the proof is the

same.

5.2 Existence of collision measure

Theorem 5.3 Let X0 2 Mf;e and X be the unique in law solution of (MP)�;

X0

satisfying (IntC)

on (
;F;Ft; P ). There is a jointly measurable map

KX : R+ � 
 7! Mf(R
2)

such that

LX(t; �) =
Z t

0

KX(s; �) ds; 8t � 0; P � a.s.
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Proof We work with (
̂; F̂; P̂ ) = (
 � [0; 1];F � B; P � dx) on which we de�ne Mf(R
2)-valued

random vectors ZÆ (for Æ > 0) by

ZÆ(w; s) =
LX(s+ Æ)� LX(s)

Æ
:

Let ' 2 C+b . Then s 7! LX(s)(') is a continuous non-decreasing process and so by standard

di�erentiation theoryD
ZÆ; '

E
! 


L0
X
(s); '

� � hKX(s); 'i ; P̂ � a.s., as Æ # 0:(5.18)

By Proposition 52 of [3]


L
�;�
X

(s); 1
�! hLX(s); 1i in P -probability as � # 0 for each s � 0.

Now let us �x arbitrary u 2 (0; 1). (IntC) implies that there exists a sequence F1 � F2 � : : : of

events in Fu such that Fl " 
, as l!1 and for each n � 1:

lim sup
�#0

P

�Z t

u

H�(Xs) ds1Fn

�
<1; 8t � u:(5.19)

For each l � 1 de�ne the measure Pl on 
 by

Pl(B) = P (1Fl1B) ; B 2 F ;

and for each u 2 (0; 1) de�ne P̂l;u on 
� [0; 1] by

P̂l;u(B) = P̂
�
1Fl�[u;1]1B

�
; B 2 F � B:

In the following denote Lt � LX(t), Kt � KX(t).
Fix 1 > Æ > 0. Then we may choose �n # 0 so that

Æ�1


L
�;�n
s+Æ (!)� L�;�ns (!); 1

�! D
ZÆ(!; s); 1

E
; P̂ � a.s. as n!1:

Fix some l � 1 and u 2 (0; 1). P̂l;u is absolutely continuous with respect to P̂ , therefore

Æ�1


L
�;�n
s+Æ (!)� L�;�ns (!); 1

�! D
ZÆ(!; s); 1

E
; P̂l;u � a.s. as n!1:

Therefore Fatou's lemma and Jensen's inequality imply

P̂l;u

�D
ZÆ; '

E2�
� k'k2

1
lim inf
n!1

P̂l;u

h

L
�;�n
�+Æ (�)� L�;�n

�
(�); 1�2i Æ�2

= k'k2
1
lim inf
n!1

Pl

"Z 1

u

�Z s+Æ

s

Z �n

0

Z
R
2
SrX

1
v (x)SrX

2
v (x) dx

dr

�n

dv

Æ

�2

ds

#

� k'k2
1
lim inf
n!1

Pl

"Z 1

u

Z s+Æ

s

Z �n

0

�Z
R
2
SrX

1
v (x)SrX

2
v (x) dx

�2
dr

�n

dv

Æ
ds

#

� k'k2
1
lim inf
n!1

Z �n

0

Pl

"Z 1+Æ

u

�Z
R
2
SrX

1
v (x)SrX

2
v (x) dx

�2

dv

#
dr

�n

� k'k2
1
lim inf
n!1

Z �n

0

P

�Z 2

u

Hr(Xv) dv1Fl

�
dr

�n

� k'k2
1
C;
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by (5.19) independent of Æ. This together with (5.18) shows thatD
ZÆ; '

E
! Ks('); in L1(P̂l;u) as Æ # 0:(5.20)

Therefore

P

�Z 1

u

Ks(') ds1Fl

�
= lim

Æ#0
P̂l;u

hD
ZÆ; '

Ei
= lim

Æ#0
Pl

�Z 1

u

hLs+Æ; 'i � hLs; 'i ds
�
Æ�1

= lim
Æ#0

Pl

�Z 1+Æ

1

hLs+Æ; 'i dsÆ�1 �
Z u+Æ

u

hLs; 'i dsÆ�1
�

= P [(hL1; 'i � hLu; 'i) 1Fl ](5.21)

where the last equality follows by continuity of hL1; 'i and fact that hLt; 'i is P -integrable. Now
take l!1. Then by Monotone Convergence we get from (5.21)

P

�Z 1

u

Ks(') ds

�
= P [hL1; 'i � hLu; 'i]

Now let u ! 0, use Monotone Convergence on the left side again, and continuity of Lt and Domi-

nated Convergence on the right side to get

P

�Z 1

0

Ks(') ds

�
= P [hL1; 'i](5.22)

This equality implies that the singular part of s 7! Ls(') is P -a.s. 0 and so,

hLt; 'i =

Z t

0

Ks(') ds; 8t 2 [0; 1] P � a.s. 8' 2 C+b :(5.23)

It remains to choose a version of K(!; s) which is a �nite measure on R 2. First note that by

the same arguments as in (5.21) we can see that

lim
Æn#0

P̂
hD
ZÆn ; '

Ei
= P [hL1; 'i] :(5.24)

Since P [L1(dx)] is a �nite measure on R 2 we can easily get that the sequence of measures fZÆng is
tight inMf ; P̂ -a.s.. Let f'kg be a countable determining class in C+b . By considering an appropriate
subsequence Æn in (5.18) we may assume limÆn#0



ZÆn ; 'k

�
= K('k); 8k P̂ -a.s. It follows that there

is a random measure ~K 2 Mf on (
̂; F̂) such that ZÆn ! ~K P̂ -a.s. and K(') =
D
~K; '

E
P̂ -a.s.

8' 2 Cb. The required result is now clear from (5.23), at least for t 2 [0; 1]. Simply repeat the

above construction on [i; i + 1] 8i 2 N to complete the proof.

5.3 Proof of Proposition 1.14

Let X be any solution to (MP)�;

X0

satisfying (IntC) on (
;F;Ft; P ) for some F0 measurable initial

condition X0 2 Mf;e satisfying (EnC). Let eX0 = (~x10 dx; ~x
2
0 dx) where (~x10; ~x

2
0) 2 (C+b )2. Take
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'n = ('1;n; '2;n) 2 (C+com)2; n � 1 such that 'i;n " ~xi0 ; i = 1; 2; pointwise. Let eX and eXn

be particular solutions of (MP)�;

eX0

and (MP)�;
'n respectively, constructed in Section 1.4 on some

probability space (~
; ~F; ~Ft; eP ).
Then����P hE�Xt; eX0

�i
� lim

�#0
P � eP hE�X0; S� eXt

�i����
�

���P hE�Xt; eX0

�i
� P [E (Xt; '

n)]
��� + ����lim�#0P � eP hE�X0; S� eXn

t

�i
� P � eP hE�X0; SÆ eXn

t�Æ

�i����
+
���P � eP hE�X0; SÆ eXn

t�Æ

�i
� P � eP hE�X0; SÆ eXt�Æ

�i���
+

����P � eP hE�X0; SÆ eXt�Æ

�i
� lim

�#0
P � eP hE�X0; S� eXt

�i���� (by Proposition 1.12)

� 4
(
��'1;n��

1

��'2;n��
1

+
��~x10��1 ��~x20��1)P

�Z
R
2
�gÆ(X

1
0 ;X

2
0 )(x) dx

�
(by Lemma 4.1(b))

+
���P hE�Xt; eX0

�i
� P [E (Xt; '

n)]
���+ ���P � eP hE�X0; SÆ eXn

t�Æ

�i
� P � eP hE�X0; SÆ eXt�Æ

�i���
= I1;Æ;n + I2;Æ;n + I3;Æ;n

for any 0 < Æ < t and n � 1. Now take n!1. Then by Proposition 4.2 we get that eXn
t�Æ ) eXt�Æ

in M2
tem. Since SÆX

j
0 ; j = 1; 2; is not necessarily in Cexp, we need to check that eXj;n

t�Æ(SÆX
j
0) )eXj

t�Æ(SÆX
j
0). But this follows easily by L2(P � eP ) boundedness of eXj;n

t�Æ(SÆX
j
0) uniformly in n and

the fact that

P � eP h eXj;n
t�Æ(SÆX

j
0)
i

= P
h eXj;n

0 (StX
j
0)
i

! P
h eXj

0(StX
j
0)
i

= P � eP h eXj
t�Æ(SÆX

j
0)
i
<1:

These two facts together easily give that eXj;n
t�Æ(SÆX

j
0)) eXj

t�Æ(SÆX
j
0) (details are left for the reader).

Therefore I3;n;Æ ! 0 as n ! 1. Since 'n;j ! ~xj0 boundedly pointwise we get that I2;n;Æ ! 0 as

n!1. The �rst term I1;n;Æ is bounded by

4


�
sup
n

��'1;n��
1

��'2;n��
1

+
��~x10��1 ��~x20��1�P �Z

R
2
�gÆ(X

1
0 ;X

2
0 )(x) dx

�
� 8


��~x10��1 ��~x20��1 P

�Z
R
2
�gÆ(X

1
0 ;X

2
0 )(x) dx

�
uniformly in n. Now by (EnC) and Dominated Convergence we get limÆ#0 supn I

1;n;Æ = 0 and so

we are done.

5.4 Markov and Strong Markov Properties

Lemma 5.4 Let eX0 2 (C+rap)2 and eX be the particular solution of (MP)�;

eX0

constructed in Sec-

tion 1.4 on some (~
; ~F; ~Ft; eP ).
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(a) There is a time-homogeneous Borel Markov transition kernel P = fPt(�; d�) : t > 0; � 2
Mf;eg on Mf;e such thatZ

Mf;e

E

�
�; eX0

�
Pt(�; d�) = lim

�#0

eP hE��; S�(eXt)
�i
:

(b) Let X satisfy (IntC) and (EnC) and solve (MP)�;

X0

. Then for any bounded Borel measurable

function h on Mf;e and any a.s. �nite Ft-stopping time � ,

P [h(X�+t))jF� ] =

Z
Mf;e

h (�) Pt(X� ; d�) a:s:;(5.25)

i.e. X is a strong Markov process.

Proof

(a) Fix a (deterministic)X0 2Mf;e. By Theorem 1.9(a) for any X0 2Mf;e there exists a solution

X to the martingale problem (MP)�;

X0

satisfying (IntC) and by Proposition 1.12

P
h
E

�
Xt; eX0

�i
= lim

�#0

eP hE�X0; S�(eXt)
�i
:(5.26)

By Theorem 1.9(b) the solutionX is unique. Let Pt(X0; �) be the unique law ofXt. Then (5.26)

shows Z
Mf;e

E

�
�; eX0

�
Pt(X0; d�) = lim

�#0

eP hE�X0; S�(eXt)
�i
:(5.27)

The right side is Borel measurable in X0 2 Mf;e. A monotone class argument shows the

bounded pointwise closure of the complex linear span of fE
�
�; eX0

�
: eX0 2 (C+rap)2g is the set

of all bounded complex-valued measurable maps in Mf;e (e.g. see Lemma 6.2 of [5]). The

Borel measurability of X0 7! Pt(X0; �) from Mf;e to M1(Mf;e) follows.

(b) We now proceed by modifying the proof of Theorem 4.4.2 of [7] to accommodate the side

conditions (IntC) and (EnC). Let X be the unique solution to (MP)�;

X0

on (
;F;Ft; P )
satisfying (IntC) withX0 (possibly random) satisfying (EnC). Let � be any bounded stopping

time and F 2 F� with P (F ) > 0. De�ne

P1(B) = P (1FP (1B jF� ))=P (F ); B 2 F;

and Ys = X�+s. Then by Lemma 3.3 Y, solves (MP)�;
Y0 on (
;F;F�
t ; P1) with L(Y0) =

P (X� 2 �jF ) and satis�es (IntC) and (EnC). So by Proposition 1.12 if eX0 2 (C+rap)2 and

% = L(Y0) then

P
h
E

�
Yt; eX0

�i
= lim

�#0

Z
Mf;e

eP hE��; S�(eXt)
�i
%(d�)

=

Z
Mf;e

Z
Mf;e

E

�
�; eX0

�
Pt(�; d�)%(d�)
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by (5.27) and Dominated Convergence. A monotone class argument again as in Lemma 6.2

of [5] shows that for any bounded Borel h : Mf;e 7! R

P1 [h(Yt)] =

Z
Mf;e

Z
Mf;e

h(�)Pt(�; d�)%(d�)

and so

P (1FP (h(X�+t)jF� )) = P (1F

Z
Mf;e

h(�)Pt(X� ; d�)):

The required result follows for bounded stopping times, and the obvious truncation argument then

gives the result for a.s. �nite stopping times.

Remark 5.5 Lemma 5.4 completes the proof of Theorem 1.9(c).

Appendix

Lemma A.1 For any � 2 R and t > 0, set

cA1(t; �) �
Z
R
2

1
2�t�2

e�jyj
2=2t�2ej�yj dy;

Then, for any � 2 R and ' 2 C�, we have

St'(x) � cA1(t; �) j'j� ��(x); 8x 2 R 2;(A.1)

and

sup
0�t�T

cA1(t; �) = cA1(T; �) <1; 8T > 0:(A.2)

Proof (A.2) is obvious because ej�Btj is a submartingale. We will prove (A.1) for � � 0. For a

negative � the proof is analogous. For � � 0, we haveZ
R
2
pt(x� y)'(y) dy =

Z
R
2

1
2�t�2

e�jx�yj
2=2t�2'(y) dy

� j'j�
Z
R
2

1
2�t�2

e�jx�yj
2=2t�2e��jyj dy

= j'j� e��jxj
Z
R
2

1
2�t�2

e�jx�yj
2=2t�2e�jxj��jyj dy

� j'j� ��(x)
Z
R
2

1
2�t�2

e�jx�yj
2=2t�2e�jx�yj dy

= j'j� ��(x)
Z
R
2

1
2�t�2

e�jyj
2=2t�2e�jyj dy;

and we are done by de�nition of cA1(t; �).

Lemma A.2 Assume ' 2 C� for some � 2 R . Then, for any t > 0, there is a constant cA2(t; �)
such thatZ

R
2
pt(x� y1)pt(x� y2)'(x) dx � cA2(t; �)t

�1 j'j� ��=2(y1)��=2(y2); 8y1 ; y2 2 R 2
:
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Proof By the Holder inequality, we haveZ
R
2
pt(x� y1)pt(x� y2)'(x) dx �

sZ
R
2
pt(x� y1)2'(x) dx

sZ
R
2
pt(x� y2)2'(x) dx

= ct�1

sZ
R
2
pt=2(x� y1)'(x) dx

sZ
R
2
pt=2(x� y2)'(x) dx

� cA2(t; �)t
�1 j'j�

p
��(y1)��(y2)

where the last inequality follows by Lemma A.1.

Lemma A.3 For any �; t > 0, set

cA3(t; �) � e2t�
2�2 ;

cA4(t) =
1

2�t�2
:

Then, for any � 2Mrap,Z
pt(x� y)�(dy) � cA3(t; �)cA4(t)��(x)�(���); 8� > 0; t > 0:(A.3)

If � 2Mtem ; thenZ
pt(x� y)�(dy) � cA3(t; �)cA4(t)���(x)�(��); 8� > 0; t > 0:(A.4)

Proof For any � 2MrapZ
pt(x� y)�(dy) =

1

2�t�2

Z
e
�

jx�yj
2

2t�2 �(dy)

= cA4(t)��(x)

Z
e
�

jx�yj
2
�jxj�2t�2

2t�2 �(dy)

� cA4(t)��(x)

Z
e
�2t�2jyj+�2(2t�2)2

2t�2 �(dy)

= cA3(t; �)cA4(t)��(x)

Z
e�jyj�(dy)

where in the third line we used the trivial inequality a jxj� jx� yj2 � a jyj+a2 for any a > 0. (A.3)
follows and the proof of (A.4) goes along the same lines.

Corollary A.4 For any � 2Mrap, � > 0 and 0 < � < T

sup
��t�T

Z
pt(x� y)�(dy) � cA3(T; �)cA4(�)��(x)�(���):(A.5)

For any � 2Mtem, � > 0 and 0 < � < T

sup
��t�T

Z
pt(x� y)�(dy) � cA3(T; �)cA4(�)���(x)�(��):(A.6)
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Proof Immediately from Lemma A.1.

Corollary A.5 For any � 2Mtem and x 2 R 2
, t 7! St�(x) is continuous on (0;1).

Proof By Corollary A.4 with �(dy1) = Æy(dy1), for any 0 < � < T , � > 0,

sup
��t�T

pt(x� y) � cA3(T; �)cA4(�)���(x)��(y)(A.7)

= cA3(T; �)cA4(�)e
�jxje��jyj

and the result follows by Dominated Convergence since cA3(T; �)cA4(�)e
�jxj
R
R
2 e��jyj�(dy) <1.
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