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ABSTRACT. The twisted geodesic flow of compact locally symmetric spaces of 
rank one gives rise to a series of meromorphic functions on the complex plane 
satisfying simple functional equations. These results are discussed as part of 
geometric quantization and index theory. 





1. INTRODUCTION. 

The present paper is part of a program (initiated in [10] ) to understand dy-
namical zeta functions from the point of view of index theory. 

The dynamical zeta functions of interest here are the generalized Selberg zeta 
functions Zu being canonically associated to certain twists a of the geodesic flows 
of compact locally symmetric spaces X of negative curvature. The zeta function 
Zu is defined in terms of the classical mechanics (periods of closed orbits, Poincare 
mappings and monodromy operators) of the corresponding a-twisted geodesic fl.ow. 
It is a holomorphic function in an open half-plane and admits a meromorphic 
continuation to the whole complex plane. 

Moreover, the zeta function Zu satisfies a dynamical functional equation. Its 
formulation only refers 

(1) to the spectrum of the geometric quantization of the Hamiltonian fl.ow ob-
tained from the a-twisted geodesic fl.ow by replacing the real-valued time 
variable t by the imaginary-valued time variable it and 

(2) to the classical mechanics of the underlying a-twisted geodesic fl.ow in terms 
of canonically associated secondary char~cteristic classes. 

For more details we refer to [10]. 

Now in the present paper we introduce the dynamical theta functions 8u. In 
analogy to theta functions of Schrodinger operators the theta functions 8u are 
defined by sets of quantum numbers of the geometric quantization of the corre-
sponding a-twisted geodesic flows. These quantum numbers also occur as zeros 
and poles of the corresponding zeta function Zu and we use this relation to define 
e(T. 

The theta functions 8u should oe regarded as spectral theoretical counterparts 
of the generalized Selberg zeta functions Zu. The theta functions 8u turn out to 
be meromorphic functions on the complex plane and satisfy beautiful functional 
equations. 

The definition of the theta functions is motivated also by some classical results 
in the theory of the Riemann zeta function. 

2. THETA FUNCTIONS OF RIEMANN SURFACES. CRAMER'S THETA FUNCTION. 

Let X be a compact Riemann surface of genus g 2:: 2 regarded by uniformization 
as a two-dimensional hyperbolic manifold of constant negative curvature -1. Then 
the Laplacian -tlx is non-negative and has a discrete spectrum. We define the 
theta function 

8x(t) =I: m(µ)e-t"', Re(t) > 0, (2.1) 
µ 

where µ runs over 
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(1) the non-negative roots of the non-negative eigenvalues of the shifted Lapla-
cian -/J.x - 1 and 4 . 

(2) the purely imaginary roots.of the eigenvalues of -!J.x - ~in [-~,O) with 
negative imaginary part. 

Here m(µ) is the dimension of the eigenspace of -!J.x - ~ for the eigenvalue µ2 • 

In [4] Cartier and Voros proved the existence of a meromorphic continuation of 
ex to the complex plane and discovered the following beautiful functional equation 
for Bx. Let 

ed(t) ~£ cosh ~ '. t =I= 0. 
2 sinh2 ! 2 

(2.2) 

Then ed(t) = ed(-t), ed extends to. a meromorphic function on C and we have 
the functional equation 

Bx(t) + Bx(-t) == (1 - g) ( ed(it) + ed(-it)). (2.3) 

In [4] the functioned( t) is regarded as the theta function of the positive square-root 
of the operator 

-/J.52 + ~' 
where -/J.82 is the Laplacian of the 2-sphere S 2 with respect to the metric of 
constant positive curvature + 1. 

In fact, since 
cosh t / 2 d ( 1 ) 

2 sinh2 t/2 == - dt sinh t/2 
and 

1 00 

--- == 2 L e-t(n+t) 
sinh t/2 n=O 

fort> 0, we have 
00 

ed(t) == L: e-t(n+t)(2n + 1) 
n=O 

for t > 0. On the other hand, the sequence 

{n+~,n~o} 
coincides with the sequence of positive square-roots of the eigenvalues 
n( n + 1) + ~, n ~ 0 of the shifted Laplacian 

-/J.52 + ~ 

(2.4) 

and the dimension of the eigenspace of -/J.82 for the eigenvalue n(n + 1) is well-
known to be 2n + 1. 

By classical polar decomposition we have the formula 

.. d _ (-1r e ( t) - 2 L: ( 2 . )2 
nEZ t - 7rin (2.5) 

== e~(t) + e~(-t), 
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where 
1 00 

e~(t) ~f 2 + 2 2::(-lt(t + 27rint2
• 

t n=l 
(2.6) 

Thus e~ (it) extends to a meromorphic function on <C with the property that all 
of its poles are double poles contained in the non-positive real line. More precisely, 
et(t) has poles only at the points t = -27rn, n = o, 1, 2, .... 

Moreover, it turns out (see [4]) that the theta function 8x(t) has double poles 
at the double poles of et (it) and simple poles at the points in the set 

where le denotes the length of a (not necessarily prime) closed geodesic c in X. 
The residue of the pole in ±ilc is determined by the Poincare-mapping of the 
corresponding closed loop c. 

In analogy to this one can interpret the set 

{27rn,n E Z} 

as the set of all lengths of the closed geodesics in 82 (with respect to the metric of 
curvature +l). Note that all geodesics in 8 2 are closed and have the same prime 
length 27r. In accordance with the general theory of the trace of the wave-operator 
(see [6]) the multiplicity of the poles of ed(t) should be interpreted as 

1 + ~ dimension (space of all closed geodesics of 82). 

In fact, the space of all closed geodesics of 8 2 is a manifold of dimension 2. 

L~t us notice also that the coefficient 1 - g in (2.3) coincides with the quotient 

x(X)/x(82
) 

of the Euler characteristics of X and the compact dual symmetric space 82 • 

To sum up, we see that there is a very precise relation between the singularities of 
ex and the p·eriods of closed geodesics in X and in 8 2 • By regarding the geodesics 
flows of X and 8 2 as real and imaginary part of a flow with a complex time variable, 
the philosophy of these results is similar to the philosophy of the basic conjectures of 
Balian and Bloch (see [2]) on theta functions associated to real-analytic Schrodinger 
operators derived within the path-integral approach to quantum mechanics. Cartier 
and Voros regarded these results as a new example of a quantum tunnel effect. 

Next let us briefly compare these results for Riemann surfaces with some classical 
results of H. Cramer and A.P. Guinand (see [5], [8]). Cramer introduced and studied 
a theta function using the non-real zeros of the Riemann zeta function 

00 

(R(s) == L n-s == Il(l - p-st1, Re(s) > 1. 
n=l P 

( extends to a meromorphic function on <C with a simple pole in s = 1 (and no 
other poles) and satisfies the well-known symmetric functional equation 

((1 - s) == ((s), 
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where 
((s) ~f ?r-~r(~)((s). 

Cramer defined, under the assumption that the Riemann hypotheses ( ((p) = 0, p (/:. 
JR => Re(p) = ~) is true, the theta function 

BR( s) ~f L e-(Imp)s' (2.7) 
lmp>O 

where the sum is over all zeros p of (R on the critical line Re( s) = ~ with positive 
imaginary part. BR is absolutely converge'nt and thus holomorphic for Re( s) > 0. 
Moreover; BR admits a meromorphic continuation to C\(-oo, O] with simple poles 
only at s = im log p, m =/:- 0, m E Z with residues 

logp 
27rplml/2' 

BR (defined for arg( s) E ( - ~, ~), s =/:- 0 by ( 2. 7)) extends to a function on the 
logarithmic Riemann surface. The only additional poles (of the branches) of BR (as 
a function of s) are simple poles at s = ±27rm with residues 

( -1 r ( arg s) / 27ri 

and simple poles at s = -(2m + 1 )7r, m = 0, 1, 2, ... with residues, 

H-1r+i 
and a branch point at s = 0. Moreover, the function 

BR(s) ~f BR(s) + (47r sin v-1 1ogs (2.8) 
has a unique continuation to C\ 0 and satisfies the functional equation 

BR(s) + BR(-s) = 2cos ~ -(4cos v-1 . (2.9) 
(see [8], theorem 3). 

Note that only the non-trivial r-factor 7r-~r( v of (R forces one to go to the 
logarithmic Riemann surface to establish a meromorphic continuation of (} R· 

In particular, we see that, in contrast to eR, the behaviour of the theta function 
8x of a compact Riemann surface Xis even more simple and more beautiful. 

3. THE MAIN IDEAS. 

Now the purpose of the present paper is to formulate and discuss some far-
reaching generalizations of the functional equation (2.3) in the framework of twisted 
geodesic flows of compact locally symmetric spaces X of negative curvature and 
even dimension. D~tailed proofs will be given in part II. 

Let us emphasize, first of all, that the existence of a meromorphic continuation 
of a theta function as well as the validity of a corresponding functional equation 
is a rather singular phenomenon and very strongly depends on the proper choice 
of the defining data. In particular, in the case of a Riemann surface X all the 
nice properties of 8 x are lost if one replaces the shifted Laplacian -!:ix - ~, for 
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instance, by a different shifted Laplacian -~x - c, c =/:. ~· Thus a prerequisite of 
any generalization of (2.3) is a deeper understanding of the nature of a nice theta 
function (a theta function with a functional equation). · 

Now our general principle to obtain such theta functions is as follows. Nice theta 
functions are induced by the set of quantum numbers of a (possibly twisted) geodesic 
flow on the sphere bundle S( X) of X. These quantum numbers are determined by 
the geometric quantization of the geodesic flow using the stable foliation of S(X) as 
polarization. A basic result (see [10]) tells us that these quantum numbers coincide 
with the singularities (zeros and poles) of generalized Selberg zeta functions. 

In the case of a Riemann surface X the zeros of the Selberg zeta function 

Zx( s) 1~{ II II ( 1 - e-(s+n)le) , Re( s) > 1 (3.1) 
c n~O 

are of the form 
1±· s - - iµ -2 ' µ2 E spec(-~x - ~) 

and 
s = -N, N ~ 0, N E Z. 

Here the same numbers µ as in the definition (2.1) of 0x occur, but there are 
additional zeros of Zx at the non-positive integers. However, the latter zeros are 
only those of the r-factor r x(s) of Zx( s) (in sense of [10]). 

By completing Zx(s) by the r-factor I'x(s) defined by 

r x(1 - s) ~r (II '( n - s )c2n-1>y~cx>, 
n~l 

where n' denotes a zeta-regularized product' (see [10]), one obtains a completed 
Selberg zeta function 

Zx(s) = I'x(s)Zx(s) (3.2) 

with a symmetric functional equation 

Zx(l - s) = Zx(s) (3.3) 

and Zx(s) has no zeros (and poles) outside the critical strip Re(s) E [O, l]. In fact, 
the zeros of Z x are all of the form 

~ ± iµ, µ2 E spec(-~x - i), (Riemann hypotheses), 

and (up to the shift ~ and the factor i) this set is the symmetrization of the set of 
complex numbers µ defining 0 x. Note that there is also a more explicit formula 
for I'x(s) in terms of the Barnes' double I'-function (see .[15]). 

Now, in general, the idea is to use the singularities of the completed general-
ized Selberg zeta function Zu (defined below) in a similar way to define the theta 
function e(T. 

All but :finitely many quantum numbers of the er-twisted geodesic flow, used in 
the definition of Zu, can be related to the spectrum of principal series representa-
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tions Ih,u in the canonically associated right-regular unitary representation, Rr, 
of the isometry group G of the universal cover Y of X on L2(I' /G) . . 

It is very important to emphasize that our theta functions 0u are not canonically 
associated to a differential operator (at least in general). As a consequence, the 
possibly still existing relations between eO" and the spectra of certain differential 
operators on X have to be regarded as being of a secondary nature, in contrast to 
the traditional point of view. 

Now the next problem in generalizing (2.3) is to find the proper substitute for the 
right hand side of the functional equation. At first glance, (2.3) seems to suggest 
that it might be natural to generalize the relation between ed, and the Laplacian 
of the compact dual symmetric space S2 • 

In fact, this idea is one of the basic point of views behind Kurokawa's recent 
results (see [12)) on the r-factors of Selberg zeta functions. In the case of the 
untwisted geodesic flow (cr = 1) this idea works well (see also [3]), but in the 
general case it is misleading. In the appendix of [3] one can find a more detailed 
discussion of the relations between this idea and the point of view of the present 
paper. 

Since the theta function 0u itself is no longer canonically associated to the 
spectrum of an operator but canonically associated to a twisted geodesic flow (real 
time) on S( X) (via the corresponding twisted Selberg zeta function) it seems to be 
more natural to look for a dual theta function e: in terms of the twisted geodesic 
flow (imaging time) related to the compact dual symmetric space Yd. 

Moreover, since all the singularities of the Selberg zeta function Zu entering 
into the definition of eO" have a natural interpretation as quantum numbers of the 
twist-ed geodesic flow on S(X) it would be very satisfying to have an analogous 
definition of e: in terms of quantum numbers of a twisted geodesic flow on S(Yd) 
as well. In fact, this turns out to be the case! 

The underlying observation is very simple and can be described as follows. The 
complexification of the tangent bundle of the stable foliation of S(X) can be re-
garded canonically as the holomorphic tangent bundle of the Kahler manifold 

~~o = S(Yd)/<I!d 

of all orbits of the geodesic flow q>d on the sphere bundle S(Yd) of Yd. This is 
a version of the unitary trick. In particular, we have a q>d-equivariant twisted 
Dolbeault. complex on S(Yd) being transversally elliptic with respect to the orbits 
of the geodesic flow q>d on S(Yd). Since all geodesics in yd are closed and have the 
same prime period this complex is transversally elliptic with respect to the action 
of a one-dimensional torus. In particular, the proper analog of the set of quantum 
numbers obtained by geometric quantization of the geodesic flow on S(X) now is 
the set of characters of the latter torus contributing to the distributional index 
(in sense of [1]) of the transversally elliptic twisted Dolbeault complex on S(Yd). 
These characters and their corresponding indices enter into the definition of our 
dual theta function e:. 

In the case of a Riemann surface X this yields a new way to look at the theta 
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function ed. In fact, from the new point of view the sequence 

{n+~,nEZ} 
is the sequence of those (infinitesimal) characters of the torus S0(2) (acting on the 
unit sphere bundle S(S2 ) of the compact dual symmetric space S 2 by the geodesic 
flow) that contribute to the distributional index of the S0(2)-transversally elliptic 
complex on S(S2 ) = S0(3) that projects under 

S(S2
) = S0(3) ~ S(S2)/il!d = S0(3)/ S0(2) = S 2 

to the Dolbeault complex associated to the canonical complex structure on S 2 , 

shifted by ·~. 
Moreover, the multiplicity 2n + 1 coincides with the multiplicity of the corre-

sponding character Xn in the distributional index of the transversally elliptic com-
plex on S(S2

) ( = index of xn-twisted Dolbeault-cohomology on S(S2)/if!d = S 2 ) 

which by Borel-Weil-Bott theory is given by the dimension of an irreducible S0(3)-
module of highest weight n. 

Finally we have to find the proper meaning and corresponding generalization of 
the coefficient (1 - g) in (2.3). It turns out that in full generality this coefficient 
coincides with the proportionality factor.known from the proportionality formulas 
(Hirzebruch proportionality) relating the index of a locally invariant elliptic differ-
ential operator on X to the index of a corresponding invariant differential operator 
on the compact dual space Yd. This coefficient is equal to · 

X( X) = ( - l )'lim{X)/2 vol ( X) 
x(Yd) vol (Yd)' (3.4) 

where canonically compatible volumes are used. Thus the functional equation for 
a theta function eC7 also can be regarded as a proportionality theorem. 

4. DEFINITION OF THE DYNAMICAL THETA FUNCTIONS IN THE GENERAL 
CASE. FORMULATION OF THE MAIN RESULTS. 

Now let us give the precise definitions concerning the theta functions. Let us 
begin. with the definition of the functions eu. 

Let X = r\ G / K be a compact smooth quotient of the non-compact symmetric 
space Y = G/ K by a discrete subgroup r of G. Assume that the rank of G/ K is 
one. Then the sectional curvature of the locally symmetric metric on X is strictly 
negative. The curvature is negatively constant iff X is the quotient of a real hyper-
bolic space. Moreover, let us assume that the dimension of X is even. 

The theta functions depend on parameters in M x a*, where P == MAN is a 
fixed but arbitrary (minimal) parabolic subgroup of G. 

We fix a representation a E M. 
Let Z17 (.A), A E a* be the associated generalized Selberg zeta function. Recall 

that for Re(.A) > h, a~ 3 h = 2p0 == topological entropy of the abstract geodesic 
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flow ~a on I'\G/M, the zeta function Zu is defined by the doubly infinite product 

Zu(A) ~fII II det(l - a(mc)SN(P:)e-A(Xc)), ( 4.1) 
c N>O 

where t runs over the (prime) periodic orbits c of (prime) period Xe E at, and P; 
is the stable part of the Poincare mapping of the closed loop c in the unit sphere 
bundle S(X) (see [10], [7]). 

Zu extends to a meromorphic function on the complex plane a*. The extension 
satisfies the dynamical functional equation 

( 4.2) 

(here rv means equality up to a holomorphic exponential polynomial), where r u(A) 
is the corresponding r-factor (as defined in [10]). The singularities (zeros and poles) 
of r u(A) are contained in the real half line (-oo, ~) = (-oo, p0 ). Moreover, the zeros 
and poles of Zu in the critical strip 

~ ~ Re(A) ~ h 
are either on the critical line 

Re(A) = ~ 
(these are zeros being distributed symmetrically with respect to A = ~) or in the 
interval 

(~, h] 
where, in general, zeros and poles occur. 

In particular, ~ + iAo, Ao E a~, is a zero of Zu iff the multiplicity Nr(Ih0 ,u) of 
the unitary principal representation Il).0 ,u in the unitary right regular representa-
tion, Rr, on L 2(I'\G), being defined by · 

(Rr(g)u)(g') = u(I'g'g), u E L2(r\G), ( 4.3) 

doesn't vanish. Moreover, for Ao ;f. 0 its multiplicity is given by Nr(Il).0 ,u ). 

Now define 

0u(X) ~f L m(µ) exp(iµ(X)) exp(-i~(X)) ( 4.4) 
µED(Zu)+ 

for X E at, where µ runs over the set D( Zu )+ C a* of singularities of Zu in 

[ ~, ~ + iat) U ( ~, h] . 
The multiplicity m(µ) of µ in ( 4.3). is given by the corresponding multiplicity of 
the singularity of Zu in A =µifµ ;f. -~ = p0 • Here we use the convention that zeros 
have positive (integral) multiplicity and poles have negative (integral) multiplicity. 

The multiplicity of the singularity of Zu in A= ~ is even and we take half of its 
multiplicity as the coefficient of the exponential 1 in the definition of eO'. 

The infinite sum ( 4.3) naturally decomposes into an infinite sum running over 
the zeros of Zu on Re( A) = ~ and a finite sum running over the zeros and poles in 
(~, h]. Moreover, the multiplicity ofµ=~+ iA, A> 0 (A being positive on at) 
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coincides with the multiplicity of the unitary principal series representation Ih,u in 
L2(I'\G). However, for the zeros and poles of Zu in(~, h) there exist, in general, no 
analogous explicit description in terms of multiplicities of unitary representations 
in L2(r\G). 

According to the theory developed in [10] it is natural to think of the zeta 
function Zu as being associated to the (abstract) a-twisted geodesic flow ~ u,a 
defined by the A-action 

~u,a: r\G XM Vu 3 (I'g,v) ~ (I'ga- 1 ,v) E r\G XM Vu. (4.5) 
on the locally homogeneous vector bundle 

Vu: r\G XM Vu~ r\G/M 

over the unit sphere bundle S(X) ~ I'\G/M with typical fibre Vu= representation 
space of a E M. The a-twisted geodesic flow is a lift of the usual (abstract) geodesic 
flow ~a on I'\G/M. 

The analytical properties of Zu then are all reflected by a canonically associated 
cohomology theory on S(X). In particular, all the singularities of Zu have a common 
cohomological meaning in the sense that they are characterized by the condition 
that a certain analytical Euler characteristic doesn't vanish. Moreover, these Euler 
characteristics coincide with the corresponding multiplicities of the singularities. 

The cohomological nature of Zu also is the deeper reason for the validity of the 
functional equation of eu. 

In fact, the functional equation for the dynamical theta function 8u relates the 
sum 

8u(X) + 8u(-X) 
to an analogous sum defined by a theta function e: of a similar cohomological na-
ture being associated to the a-twisted geodesic flow of the compact dual symmetric 
space yd'= Gd/ K. It is a special function with a close relation to Harish--Chandra's 
c-functions and, for shortness, it will be referred to as the theta function dual to 
eu. 

Now let us give the definition of e:. In analogy to the identification of the sphere 
bundle S(X) with the space I'\G/M the sphere bundle S(Yd) of the compact dual 
symmetric space yd= Gd/K will be identified (as a Gd-space) with Gd/M. Then 
the (abstract) geodesic flow ~d on Gd/ M has the form 

( 4.6) 

Let us note that the compact group M and the 1-torus Ad may have a non-
trivial intersection containing at most one non-trivial element (of order 2). The 
intersection Mn Ad is trivial if and only if Y = G/ K is a real hyperbolic space (of 
even dimension). 

The next step in the process to define e: is to define the complex structure 
and the corresponding twisted Dolbeault complex on ~~0 = Gd/MA d. Moreover, 
it is a crucial step to see the .canonical relation of this structure to the hyperbolic 
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structure of the geodesic flow of X on S(X). As a convenient tool to discuss these 
structures we use again the group-theoretical models 

I'gM ~ I'ga-1M (right A - action) 

gd M ~ l( adt1 M ( right Ad - action) (4.7) 

of the geodesic flows of x and yd. In terms of the right A-action on r\ GI M we 
obtain the following simple description of the hyperbolic (or Anosov) structure of 
the geodesic flow of X. The (real) tangent bundle T(I'\G/M) of I'\G/M admits a 
canonical smooth Anosov-deomposition 

( 4.8) 

into flow-invariant integrable sub bundles T±, T 0 • The geodesic flow (exponentially) , 
expands and contracts tangent vectors in T+ and T-, respectively. T 0 is the one-
dimensional tangent bundle to the orbits of the flow. Note that the subbundle 
T+ EB r- is completely non-integrable in the sens that the commutators of its 
sections generate T. 

The Anosov-decomposition of T(I'\ G / M) is locally homogeneous, i.e., it is in-
duced by a corresponding G-invariant decomposition of the tangent bundle T( G / M) 
of the sphere bundle G/M of Y = G/ K. It follows that the Anosov-decomposition 
of T(G/M) also admits a description in Lie-algebraic terms. In fact, the (real) Lie 
algebra g0 of G has a Ad(MA)-invariant decomposition 

( 4.9) 

into the Lie algebras n6= and m0 EBa0 • Here the (at most) step 2 nilpotent Lie algebras 
ncl and nQ can be constructed as the direct sum of the eigenspaces of ad( X) for X E 
at acting on g0 for positive and negative eigenvalues, respectively. Moreover, ad(X) 
centralizes the subalgebra m0 EB no of g0 • let N± C G be the Lie subgroups with 
Lie algebras aj=. Then the tangent space T!e_M(I'\G/M)(TreM(I'\G/M)) coincides 
with the tangent space to the N+- orbit (N-- orbit) through I'eM. 

Next we regard the complexification of the decomposition ( 4.9) as a decompo-
sition of the complexification of the real Lie algebra 

d k . g0 = o EB ipo, 

i.e., 

( 4.10) 

where n± = (n~)c and m = (m0 )c, a= (ao)c = (ag)c (ag = iao). 

It follows that by regarding the complex Lie algebras n+ and n- as the subspaces 
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of holomorphic and antiholomorphic tangent vectors (in~== eM Ad) in the complex-
ified tangent space T~( Gd/ M Ad)c, respectively, a Gd-invariant complex structure 
on Yg~o = Gd/ M Ad is defined. · · 

Moreover, the (infinitesimal) Cartan involution 8 (of g0 ) yields an isomorphism 

e: nci -7 n;;-
and it is easy to check that the involution on T( Gd IM Ad)c induced by e yields an 
isomorphism 

T(1,0)( Gd IM Ad) ~ T(0,1)( Gd IM Ad) 

which is nothing else than complex conjugation In fact, if we write X E g0 in the 
form 

i(X + 8X) - HiX - i8X) E ko EB i(ipo) 

then complex conjugation with respect to the real form gg = k0 EB ip0 yields 

i(X + 8X) + ~(iX - iBX) ==ex. 
~~0 can be regarded also as a symplectic manifold obtained by Marsden-Weinstein-
reduction from the canonical symplectic phase space 

the isomorphism ~ being induced by the invariant Riemannian metric. The space 
~~0 is, in fact, a Kahler manifold. Moreover, T 110 and T 011 are two transversal 
complex Lagrangian subbundles of T(~~0)c. 

The latter observation corresponds to the fact that the (real) tangent bundle of 
the stable and the unstable foliations of S(X) are real Lagrangian subbundles of 
r+(s(X)) EB r-(.s(X)). 

Now set T(l,o)(S(Yd)) == 7r~(TC1 ,o)(~~0 )) and T(o,1)(S(Yd)) == 7rd(T(o,1)(~~0 )), 
wh~e · 

?ro : S(Yd) -7 Yg~o 

is the canonical projection. 

Then the Ad-invariant decomposition 

( 4.11) 

where T 0 is the line bundle formed by the tangent vectors to the orbits of the 
geodesic flow ~d of yd defines an Ad-invariant complex structure transversally to 
the foliation by the orbits of the geodesic flow ~d. ( 4.11) serves as the structure 
dual to the hyperbolic structure of the geodesic flow of X. 

In addition to the A-invariant hyperbolic structure on S(X) and the corre-
sponding Ad-invariant transversally complex structure on S(Yd) we need on both 
phase spaces S(X) and S(Yd) certain compatible vect~r bundles. In fact, each 
representation a E M induces the·locally homogeneous vector bundles 

Vu: r\G XM Vu -7 r\G/M ( 4.12) 
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and the homogeneous vector bundle 

v:: Gd XM Vu~ Gd/M. ( 4.13) 

Moreover, the A-action on I'\/M as well as the Ad-action on Gd JM lift to 
actions on Vu and v:, respectively. 

Next we have to consider the distributional index of the Ad-transversally elliptic 
Dolbeault complex formed by the differential forms of type (0, *) on Gd/ M with 
coefficients in v;. Recall that the Ad-transversal invariant complex structure on 
S(Yd) is given by 

T;~1)(S(Yd)) ~ n- and Te<if0)(S(Yd)) ~ n+. 

Let n<o,q)( S(Yd)) be the space of smooth sections of the bundle 
Aq((T(O,l))*(S(Yd))) ~ Gd XM (Aq(n-)*). Sections in nco,q)(S(Yd)) will be re-
garded also as differential forms on S(Yd) annihilating sections of T~( S(Yd)) E9 
T(1,o)( S(Yd) ). 

More generally, let 

( 4.14) 

be the space of smooth sections of the bundle 

Aq((T(O,l))*(S(Yd) ® v:) ~Gd XM (Aq(n-)* ®Vu). ( 4.15) 

The spaces n<0 ,•)(V:) from an Ad-transversally elliptic complex 

Gd( n-; a) : 0 ~ n<o,o)(v:) .! n<o,i)(V:) .! · · · .! n<o,n-i)(V:) ~ 0, ( 4.16) 

n = dim(X) = dim(Yd). 

The compactness of Ad allows us to define the index 

ind( n-; a) = ind( Cd( n-; a)) 

of the complex Cd(n-; a) as a distribution in c-00 (Ad) (see [1]). In the sense of 
distributions ind( n-, a) admits a Fourier decomposition 

ind(n-;a)(ad) = I: ind(n-;xd,a)xd(ad) ( 4.17) 
xde..Jd 

with integral coefficients 

The integer ind(n;;_; xd, a) is the multiplicity of the Ad-character xd in the index 
ind( n-; a). On the other hand, characters of Ad with a non-trivial contribution in 
ind(n-; a) are only those in the subset Du C Ad of characters xd which satisfy the 
condition that the representation 
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Gd xMAd (C(xd) 0 Vu)~ Gd/MAd = Y;0 

on the Kahl.er. manifold ~~0 • 

( 4.18) 

Now let Dt C Du be the subset of those characters xd E Du ~ Ad satisfying 
the condition (positivity) 

x>~=po ( 4.19) 

on at, where x E a~ is the real-valued linear form on a0 induced by xd via 

expix(X) = xd(exp(iX)) ( 4.20) 

for XE ao. 

Now we define for X E at the dual theta function e: by the absolutely conver-
gent series 

e:(x) ~f - E ind( n-; xd, a) exp(-x(X)) exp( ~(X)) ( 4.21) 
xdEDt 

where xd is the complex-conjugate character to Xd· Note that xd belongs to Du, 
too.· 

The first observation is that the function E>~, defined for Re(X) E at, extends 
to a meromorphic function on the complex plane a. More precisely, we have 

Theorem 4.1. e: admits a meromorphic continuation to a. The only poles of e: 
are contained in the set of periods E iao of the geodesic flow 

exp(iao) x Gd/M ~ Gd/M. 

Moreover, the continuation of e: satisfies the functional equation 

e:(x) = e:(-X). ( 4.22) 

The main technical tool in our proof of Theorem 3.1. is an identity which is also 
of independent interest. 

Proposition 4.1. (Residue formula). There exists a constant c0 (independent of 
a) such that on the open Weyl-chamber at 

co j e-iA(X)lcu(.:\)l-2 d.:\ = L ind(n-;xd,a)exp(-(x-p)(X)) (4.23) 
~ xdEDt 

as an identity of (regular) distributions. Here Cu ( ,\) is H arish-Chandra 's c-function 
for the M -type a. 
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The function lcu(.\)l-2 is the Plancherel density of the unitary principal series 
representations Il>.,u of G which are (parabolically) induced by the. product of a 
(unitary) character of a0 and the unitary representation a E M. Recall that the 
function lcu(.\)l-2 can be explicity written as the product of a polynonial (depend-
ing on a) and either a hyperbolic tangent or a hyperbolic cotangent (see [13]). 
Moreover, lcu(.\)l-2 is an even function in .\. 

By the theory of Borel-Weil-Bott the index ind( n-; xd, a), xd E Du either co-
incides (up to a sign) with the dimension of an irreducible representation of the 
compact Lie group Gd or vanishes. Moreover, in the former case at most one of the 
cohomology groups of Gd(n-; xd, a) is non-trivial and the natural action of Gd on 
it turns it into an irreducible module. 

Now we are able to formulate the main results. 

Theorem 4.2. (i) 8u (defined on at by (4.3)) extends to a meromorphic function 
on the complex plane a. 

(ii) The poles of 8u are contained in the union of the set 

0 U ±iPerjf,-

where Peri C at is the set of {real) periods of the geodesic flow 

exp(at) x r\G/M --4 r\G/M, 
and the set 

iPerj c a0 =-at, 
where Perj C iat is the set of (imaginary) periods of the geodesic flow 

exp(iaci) x Gd /M --4 Gd /M. 
{iii) The continued theta functions 8u and e: satisfy the functional equation 

x(X) (8d(iX) + ed(-iX)) 
x(Yd) · u u 

(4.24) 

x(X) d(· ) 
2 x(Yd) eO" ix . 

It is an easy exercise to claim that ( 4.24) is, in fact, a generalization of the 
functional equation (2.3). 

In the untwisted case a = 1 the theta functions ex = 8 1 and 8yd = ef have 
the following equivalent descriptions. 

8x(t) = :L: m(µ) exp(-µt), t > 0, ( 4.25) 
µ 

where µ E C is in 
[O., oo) u (O, -ieo] 

and satisfies 
µ2 + c~ E spec(-~x ). 
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Here c0 E JR is the infimum of the essential spectrum of the Laplacian - ~Y on the 
universal cover Y of X and - ~x is the positive Laplacian (on functions) '?n X. The 
multiplicity m(µ) coincides with the dimension of the eigenspace E(µ2 +c~) of -b,.x 
for t_he eigenvalue µ2 + c~. ( 4.25) is a consequence of the well-known description of 
the zeros of the spherical Selberg zeta function Zx = Z1 (see [7]). 

Moreover, the spherical dual theta function 8yd is given by 

8yd(t) = L m(µd) exp(-µdt), t > 0, ( 4.26) 
µd 

where the sum runs over all positive µd E JR such that 

(µd) 2 - c~ E spec( -Llyd) 
and m(µd.) is the dimension of the corresponding eigenspace of -~yd + c~, -~yd 
being the Laplacian for the invariant metric on yd with the opposite signs of the 
sectional curvatures. This is a consequence of Helgason's characterization of the 
spherical representations of Gd (Le., those occuring as irreducible subrepresenta-
tions in L2(Yd) = L2 (Gd / K)) (see [9]) and the Borel-Weil-Bott theory identifying 
the indices in ( 4.21) as dimensions of representations. For more details see the 
appendix of [3]. 

The functional equation then is 

0x(t) + 0x(-t) = ~(C:J) (0y•(it) + 0y•(-it)), t E IC. ( 4.27) 

[3] contains an independent proof of ( 4.27) resting on the observation that the 
wave kernels of ( - ~Y - c~) ~ and ( - ~yd+ c~) t are related by some sort. of analytic 
continuation. On the other hand, our proof .of theorem 4.2. (even in the special 
case (J = 1) rests on the functional equations satisfied by the Selberg zeta functions 
which, in turn, are consequences of the natural compatibility relations for the char-
acters of (unitary) representations of G on both types (compact and non-compact) 
of Cartan subgroups of G. In fact, the functional equation ( 4.27) can be reformu-
lated. as a functional equation relating the theta functions which are canonically 
associated to each type of Cartan subgroups. This will be the starting point of a 
generalization of the present theory to higher rank spaces in part III. 

( 4.27) might suggest to look for more general pairs of geometric operators defin-
ing theta functions that satisfy similar functional equations. 

As we already mentioned in section 2 this is not a good perspective. For in-
stance, no analogous duality is known for the theta functions defined by (shifted) 
Laplacians on differential forms on X and yd (see, however, the discussion on E> R 
at the end of the paper). 

The coefficients (of the exponentials) in the definition ( 4.21) of e: are given 
by the indices (Euler characteristics) of twisted Dolbeault complexes on ~~0 • In 
analogy to this the multiplicities of the exponentials exp( iµ - i~) contributing to 
E>u (see ( 4.3)) also can be interpreted as Euler characteristics of certain complexes 
on Xgeo = space of all geodesics in X. Of course, this only can be done in a formal 
sense since Xgeo is not a manifold. However, by using the .hyperbolic structure of 
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S( X) and the vector bundle Vu on S( X) an A-equivariant complex on S( X) can 
be constructed with the property that a given A-character contribu_tes to the A-
equivariant Euler characteristics according to its multiplicity in 0u. This is a basic 
principle in the cohomological theory of the zeta functions Zu (as developed in 
[10]). 

In other words, both sides of the functional equation ( 4.27) have cohomological 
interpretations which are, in some sense, dual to each other. Thus ( 4.27) very 
much resembles the proportionality formulas in elliptic index theory (Hirzebruch 
proportionality). 

The functional equation ( 4.27) can be regarded also as a spectral counterpart to 
the dynamical functional equation satisfied by the zeta function Zu (see [10]). In 
fact; one of the forms of the dynamical functional equation of Zu (equivalent to 
( 4.2)) relates the quotient 

to a similar quotient 
( z;p..)Jz:(h - A) y~cx)Jx(Yd), 

where the dual zeta function z; is a regularized determinant constructed from 
the data (xd,ind(n-;xd,u)),xd E Du. In later papers we will show that, while 
for compact higher rank spaces X there is, in general, no theory of Selberg type 
zeta functions, there still exist many theta functions satisfying functional equations 
similar to those discussed here! 

Note that the functional equation ( 4.24) is completely determined only by con-
struytions using the hyperbolic structure and the dual complex structure. In par-
ticular, notions from harmonic analysis are not needed for its formulations. 

Next recall that the Ruelle zeta function 

( 4.28) 
c 

of the geodesic flow of x = r\ GI K (the product runs over closed oriented geodesics 
in X) can be written as a complicated alternating product of generalized Selberg 
zeta functions. Since, by definition, the divisor of the singularities of the zeta func-
tion Zu determines the theta function 0u it is natural to expect a functional equa-
tion of the form ( 4.24) for a theta function which is defined by using the divisor 
of the Ruelle zeta function ZR. In fact, the resulting functional equation is very 
beautiful and, again, should be regarded as a spectral counterpart to the dynamical 
functionai equation for ZR (see [10]). 

Let D( ZR) C a* ~ C denote the divisor of zeros and poles A (with multiplicities 
m(.X)) of the Ruelle zeta function ZR. We define 

D( ZR)+ c D( ZR) 

as the subset of all A E D( ZR) such that 

Im(A) > 0. 
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Then 

where 
D(ZR)0 ={.XE D(ZR), lm(.X) = O} 

and A E D(ZR)+, Re(.X) > 0, implies -"XE D(ZR)+, Re(-"X) < 0. Moreover, for 
A E D(ZR)+ with the property Re(.X) > 0 we have the identity 

m(-X) = -m(.X) 

for the multiplicities. The zeros and poles in D( ZR)+ are to be found on the union 
of finitely many vertical lines (parallel to the imaginary axis), also called the critical 
lines of ZR. 

Now define 

eR(X) ~f ( E m(.X)exp(i.X(X))) + ( E m(.X)exp(i.X(X))) 
>.eD(ZR)+ >.eD(ZR)o 

Re(>.)>O 

( E m(.X) exp(i.X(X))) - ( E m(.X) exp(-i"X(X))) 
>.eD(ZR)+ >.eD(ZR)+ (4.30) 
Re(>.)>O 

+ ( 

for XE at. 

Re(>.)>O 

m(.X) exp(i.X(X))) 
>.eD(ZR) 

lm(>.)=O, Re(>.)>O 

Theorem 4.3. Let the situation be as in Theorem 4.2. 
{i} 8R extends to a meromorphic function on the complex plane a. 
(ii} The continued theta function satisfies the functional equation 

eR(X)-eR(-X) = ;f;J)(e~(iX)-0~(-iX)) (4.31) 

on a. Here 

8~(X) i!2 x(~~0 ) coth(µo(X)/2), 
2 

where µ0 E aci, µo > 0 {on at} is characterized by the property 

µo(Xt) = 27r 

for the prime period iXt of the geodesic flow 

exp(iat) x Gd /M-+ Gd /M 
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Since -0~(-X) = e~(X) the functional equation ( 4.31) also call" be written in 
the form · ' 

x(X) d 
0R(X) - 0R(-X) = x(Yd)x(Ygeo) coth(µo(X)/2). ( 4.33) 

Note also that the integer 
x(X) d 
x(Yd) x(Ygeo) 

coincides with the multiplicity of the central singularity of ZR.1 in ,\ = 0. Moreover, 
there is an intrinsic formula for this integer only in terms of a curvature tensor 
associated to the hyperbolic structure of S(X) (see [11]). 

The theta function 0~ is canonically associated to the geodesic flow of yd since 

x(Yd ) oo 
0~(X) = seo + :E x(~~0 ) exp(-N µo(X)) 

2 N=l 

and the coefficient x(~~0 ) coincides with the indices of the twisted de Rham com-
plexes of differential forms on ~~0 with values in the Hne bundles on ~~0 = Gd/ M Ad 
which are induced by the characters exp(N µ0 ), NE Z, of Ad. 

On the other hand, we know from [10] that the multiplicities of all elements in 
D(ZR) are given by (analytical) Euler characteristics of certain complexes on S(X) 
which are, in some sense, dual to the twisted de Rham complexes on ~~0 • 

Whereas the definition of eR (by the divisor of the Ruelle zeta function ZR) 
is quite analogous to the definition of the theta function BR of Cramer (by the 
zeros of the Riemann· zeta function) Theorem 4.3. shows, in particular, that the 
corresponding functional equations seriously di.ff er fr~m each other. 

In the case of a compact Riemann surface X (of genus g ~ 2) we obtain the 
functional equation 

0R(t) - 0R(-t) = x(X) coth(~) 
for 0R directly from the functional equation for 0x. Jn fact, we have 

0R(t) = eft(0x(t) + :E m(iµ)e-iµt) - e-ft(0x(t)- :E m(-iµ)eiµt) 

and thus we obtain (using m(iµ) = m(-iµ)) 

eR(t) - eR(-t) = (Gx(t) + Gx(-t))( eft - e-ft) 
= 2(1 - g)Gd(it)(eft - e-ft) 

= (X) · cosh( it f 2) 2 sinh(it/2) 
X 2 sinh2

( it/2) 
= x(X) coth(~). 
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In the case of a compact hyperbolic space X = I'\HR (n even) it is iRteresting 
to make the definition of eR more explicit. On X we use the metric of constant 
negative curvature -1. Then the critical lines of 

ZR(A) = Il(l .c- e->-lc), A E C, Re()) > n - 1, 
c 

are 
Re(A)=n;1 -p, p=O,l, ... ,n-1, 

each containing an infinite set of singularities (zeros or poles} of ZR. 
More precisely, the multiplicity of the singularity of ZR in 

n;1 
- p + iµ, _µ E IR, 0 ::; p ::; ~ - 1 

is given by 

(-l)P dime {w E 0 00 (AP(T*(X))), 8Pw = 0, -/J.pw = (µ2 + (n;1 - p) 2 )w} 
if µ -=/= 0, whereas the multiplicity of the singularity of ZR in A = n;1 - p is twice 
the corresponding signed dimension. Here /J.p ~£ dp_18p + 8P+1dp. 

A with Im( A) > 0 is a singularity iff Xis a singularity and the multiplicities of 
A and X coincide. 

A with Im())> 0 is a zero (pole) of ZR iff -A is a pole (zero) and 

lm(A)I = lm(-))1. 
On the real line we have a slightly more complicated behaviour. To define eR 

we only need a description of the zeros and poles in (0, n - l]. 
(1) In A = n - 1 there is a zero of multiplicity 1. 
(2) In each open inter".'al (0, n-l-2p) = (n;l -p-(n;l -p), n;l -p+(n;l -p)) 

there are finitly many singularities of the form 
( n; 1 _ p) ± A, A E ( 0, n; 1 _ p) 

of multiplicity 

(-l)P dime {w E 0 00 (AP(T*(X))), 8Pw = 0, -!J.Pw = (-)2 + (n;1 - p)2 )w }. 
(3) In A = n - 1 - 2p, p = 0, ... , ~ - 1 there is a singularity of multiplicity 

bo - b1 ± · · · + (-l)Pbp, bp = bp(X) = pth Betti number. 

This description shows how the spectra of all the operators -/J.P on the differ-
ential forms on X contribute to 8 R· 

It would be interesting to have an analogous description for all other compact 
rank 1 spaces. 
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