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We consider the two{dimensional TE and TM di�raction problems for a time harmonic plane wave incident

on a periodic grating structure. An inverse di�raction problem is to determine the grating pro�le from measured

re
ected and transmitted waves away from the structure. We present a new approach to this problem which is

based on the material derivative with respect to the variation of the dielectric coeÆcient. This leads to local

stability estimates in the case of interfaces with corner points.

1. Introduction

Consider scattering of electromagnetic waves by a di�raction grating periodic in the
x1 variable and constant in the x3 variable. More speci�cally we assume that the three{
dimensional space is �lled with two di�erent materials having dielectric constants �+ in

the region G+ above S and �� in the region G� below S, where the interface S is 2�{
periodic in x1 direction. The magnetic permeability is assumed to be constant (� = 1)
throughout. Suppose further that a plane wave of the form

vI = exp(i�x1 � i�x2) ; (�; �) := !(�+)1=2(sin �; cos �)

is incident to S (from G
+), where ! is the frequency and � 2 (��=2; �=2) the angle of

incidence.

Then the total �eld may be decomposed into a linear combination of two polarizations:

transverse electric (TE) polarization where the electric �eld is transverse to the (x1; x2)
plane and transverse magnetic (TM) polarization where the magnetic �eld is transverse
to the (x1; x2) plane. In either case of polarization, the electromagnetic wave propagation
which is governed by the time harmonic Maxwell equations can be determined from a

single scalar quantity v = v(x1; x2) (the x3 component of the total electric or magnetic
�eld).

The function v satis�es the Helmholtz equation (� + k
2)v = 0 for TE polarization,

and Maxwell's equations simplify as r � (k�2rv) + v = 0 in the TM case, where k =
k
� = !(��)1=2 in G�. Moreover, v satis�es radiation conditions as x2 ! �1 and is �
quasi{periodic in x1: v(x1 + 2�; x2) = exp(2��i)v(x1; x2). For TE polarization v and its
normal derivative @�v have to cross the interface continuously, whereas in TM polarization
k
�2
@�v has to be continuous; cf. the monograph [16] for more details. The corresponding

variational formulations of these transmission problems will be presented in Section 2.

An inverse di�raction problem may be formulated as follows: given the incident �eld,
determine the interface S frommeasured re
ected and transmitted �elds, say at x2 = �b, b

large. In applications, it is impossible to make exact measurements. Stability is crucial in
the practical reconstruction of pro�les since it contains necessary information to determine
to what extend the data can be trusted.

In the present paper, we study the local stability of this problem for both the TE and the
TM case. Suppose Sh is a small perturbation of the interface S such that the Hausdor�
distance d(S; Sh) is of order h as h ! 0, and denote by v and vh the electromagnetic
�elds of the corresponding scattering problems. We are interested in proving Lipschitz
type estimates

d(S; Sh) � C ( j(v � vh)( � ; b)j+ j(v � vh)( � ;�b)j )(1.1)

in a suitable norm j � j; see Section 3 for a precise formulation.

For smooth surfaces S and Sh such estimates were �rst obtained by Bao and Friedman;
see [2] where also the more general case of two material interfaces has been considered.
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Earlier related local stability results are known for the inverse conductivity problem [3],
even in the case of only piecewise smooth interfaces [4].
To prove (1.1) for polygonal interfaces, we employ the concept of the material derivative

(instead of the usual domain derivative); see Section 4. This approach allows to treat more

general perturbations of non{smooth interfaces than those considered in [4] and enables
us to handle the rather strong singularities occurring in the solutions of TM di�raction
problems at corner points of the grating pro�le. Sections 5 and 6 are devoted to the proof
of the stability estimates.

2. Direct di�raction problems

The TE and TM transmission problems admit variational formulations in a bounded
periodic cell in R2, enforcing implicitly the transmission and radiation conditions (cf. [1],
[7], [8]). Introduce two arti�cial boundaries �� = fx2 = �bg lying above resp. below

the grating pro�le S, and denote by 
 the rectangle (0; 2�)� (�b; b). Since we consider
solutions v for which u := exp(�i�x1)v is 2�{periodic in x1, the di�raction problems can
be transformed to variational problems for u in the set 
.
In TE polarization u satis�es the equation

��u+ k
2
u = 0

where we use the notation

r� = r+ i(�; 0) ; �� = r� � r� = �+ 2i�@1 � �
2
:

The radiation conditions are equivalent to the nonlocal boundary conditions

@�uj�+ = �T
+
� u� 2i� exp(�i�b) ; @�uj�� = �T

�

� u ;

where T�� is the periodic pseudodi�erential operator (of order 1)

(T�� v)(x1) := �

X
n2Z

i�
�

n v̂ne
inx1; v̂n = (2�)�1

2�Z
0

v(x1)e
�inx1 dx1(2.1)

and the coeÆcients ��n = �
�

n (�) are de�ned by

�
�

n (�) := j(k�)2 � (n + �)2j1=2 ei

�

n =2

with



�

n = arg((k�)2 � (n+ �)2) ; 0 � 

�

n < 2� :

The operator T�� is continuous from H
s
p(�

�) to H
s�1
p (��) where Hs

p(�
�) denotes the

trace space of Hs+1=2
p (
), the Sobolev space of functions on 
 which are 2�{periodic in

x1. Integration by parts then leads to the variational formulation for the TE di�raction

problem:

BTE(k; u; ') :=

Z



(r�u � r�'� k
2
u �') +

Z
�+

(T+
� u) �'+

Z
��

(T�� u) �'

= �2i�e�i�b
Z
�+

�' ; 8' 2 H
1
p(
) :

(2.2)
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Analogously, the TM di�raction problem

r� � (k
�2
r�u) + u = 0 in 
 ;

T
+
� u+ @�u = �2i� exp(�i�b) on �+ ;

T
�

� u+ @�u = 0 on ��

admits the variational formulation

BTM(k; u; ') :=

Z



� 1
k2
r�u � r�'� u �'

�
+

1

(k+)2

Z
�+

(T+
� u) �'+

1

(k�)2

Z
��

(T�� u) �'

= �

2i� e�i�b

(k+)2

Z
�+

�' ; 8' 2 H
1
p(
) :

(2.3)

We will assume throughout that the refractive index satis�es

k
+
> 0 ; Re k� > 0 ; Im k

�
� 0 :(2.4)

Then the sesquilinear forms BTE and BTM are strongly elliptic, i.e., after multiplication by
some complex number they are coercive modulo compact operators on H1

p(
). This leads
to existence and uniqueness results for the variational equations (2.2) and (2.3); see [1],

[6], [7], [8]. In particular, the TE and TM di�raction problems are uniquely solvable for
all but a sequence of frequencies !j, !j !1, and the solution is unique for all frequencies
if Im k

�
> 0.

While the solution to the TE problem is suÆciently smooth (u 2 H
2
p(
)), the TM

solution may have singularities at the corner points of the grating pro�le. More precisely,

near a corner O of S with angle Æ, one has u = r
�
f + g, where r denotes the distance to

O, the exponent � with 0 < Re � < 1 is the solution with minimal positive real part of
the equation

 
sin (� � Æ)�

sin��

!2

=

 
(k+)2 + (k�)2

(k+)2 � (k�)2

!2

;(2.5)

and f; g are certain smoother functions. Note that Re � 2 (1=2; 1) if k� is real, whereas
Re � may become arbitrarily close to 0 for Im k

�
> 0. A detailed regularity theory of

the TM problem can be found in [8]; see also [11] for the more general case of di�raction
by a time harmonic oblique incident plane wave.

3. Stability estimates for the inverse problem

As above, let S be the pro�le curve dividing the rectangle 
 = (0; 2�)� (�b; b) into the
two subregions 
� of refractive index k�, and let f(x1) = (f1(x1); f2(x1)), 0 � x1 � 2�,

be a parametric representation of S. We shall assume in the following that S is a curved
polygon of class C1;1, i.e., the derivative of f is Lipschitz continuous with the exception of
a �nite number of corner points (with angles di�erent from 0 and 2�). Consider a family
of perturbed interfaces

Sh = ff(x1) + hg(x1) : 0 � x1 � 2�g; 0 < h � h0;(3.1)
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where the function g = (g1; g2) is 2�{periodic, Lipschitz and satis�es the condition

(g � �)(x1) 6= 0 a.e. on [0; 2�]:(3.2)

Here � = (�1; �2) denotes the normal to S pointing from 
+ to 
�. Clearly, Sh converges

to S in the Hausdor� distance d and (3.2) implies that

C1h � d(S; Sh) � C2h as h! 0; C1; C2 > 0:(3.3)

Set kh = k
+ above Sh, kh = k

� below Sh, and consider the corresponding perturbed TE

and TM problems

BTE(kh; uh; ') = �2i�e�i�b
Z
�+

�' ; 8' 2 H
1
p(
) ;(3.4)

BTM(kh; uh; ') = �

2i� e�i�b

(k+)2

Z
�+

�' ; 8' 2 H
1
p(
) :(3.5)

We will always assume that the original problems (2.2) and (2.3) have a unique solution

u 2 H
1
p(
). Then, as it was proved in [9], the perturbed problems (3.4) and (3.5) are

uniquely solvable in H1
p(
) for any suÆciently small h > 0. This is also a special case of

the more general result on conical di�raction in [10].
We are now ready to state our results on the local stability of the inverse di�raction

problems.

Theorem 3.1. Let S be a curved polygon of class C1;1. Assume (3.1), (3.2), and suppose
that �2(x) � 0 a.e. on S if k� is real. Then in the TE case the estimate

d(S; Sh) � Cku� uhkH
1=2
p (�+)

(3.6)

holds, where C is a constant independent of h.

Theorem 3.2. The conditions of the preceding theorem imply the stability estimate

d(S; Sh) � Cfku� uhkH
1=2
p (�+)

+ ku� uhkH
1=2
p (��)

g(3.7)

for TM di�raction.

The results indicate that for small h, if the measurements are O(h) close to the true
scattered �elds in the H1=2 norm, then Sh is O(h) close to the true pro�le in the Hausdor�
distance. The stability properties (3.6) and (3.7) will be established in Sections 5 and
6, respectively. It is possible to extend them to the slightly more general case that the

interfaces Sh are parameterized by f + hgh, where the Lipschitz functions gh satisfy

jg
0

h(x1)j � C a.e.; gh(x1)! g(x1) uniformly as h! 0

and g ful�ls condition (3.2). Related results for smooth pro�les were obtained in [2]; see

also [3], [4] for the inverse conductivity problem.
At present we do not know whether the above theorems hold if (3.2) is replaced by the

less restrictive condition g �� 6� 0, though [2] presents some results along this direction for
TM di�raction and smooth interfaces. However, in our opinion, the proof there contains
a gap since a solution of the homogeneous Helmholtz equation in 
�, which has vanishing

tangential and normal derivatives on some open subset of S, is (in contrast to Laplace's
equation) not necessarily constant on the whole domain 
�.
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4. The material derivative

Let � be an in�nitely smooth cut{o� function in R2, 2�{periodic in x1, and such that
0 � � � 1; � = 1 in some neighbourhood of the interface S and � = 0 outside a somewhat
larger neighbourhood. With � and the perturbed interfaces (3.1) we associate a family of
Lipschitz di�eomorphisms of the strip � = R� (�b; b) onto itself,

�h(x) := x + h�(x)g(x1); 0 < h � h0;(4.1)

where h0 is suÆciently small. Note that �h(S) = Sh, �h = id outside some neighbourhood
of S, and the Jacobian �0

h of (4.1) satis�es �0

h(x) = id +O(h) uniformly in x 2 R2. It is
now easy to check that �h is indeed a di�eomorphism of � onto itself:

Fix y0 and let x0 be a solution of the equation �h(x) = y0, which is equivalent to

Fh(x) := x� �0

h(x0)
�1(�h(x)� y0) = x:(4.2)

Since the Jacobian of Fh,

F
0

h(x) := id� �0

h(x0)
�1�0

h(x);

satis�es F 0

h(x) = O(h) uniformly in R2, the mapping (4.2) is contracting on each disk of
centre x0 if h is suÆciently small. Hence the mapping �h is globally one{to{one, which

�nishes the proof.

For a �xed cut{o� function � (and the corresponding di�eomorphism (4.1)), we now
de�ne the material derivative u� by

lim
h!0

h
�1(uh Æ �h � u) ;(4.3)

where the limit is understood in the sense of H1
p(
); compare Lemma 4.1 below. Here u

denotes the solution of the TE problem (2.2) resp. the TM problem (2.3) and uh is the
solution of the perturbed problem (3.4) resp. (3.5). To de�ne the limit (4.3) correctly,

we have to consider uh as a function given on the "curved\ rectangle 
h = �h(
) whose
lateral boundaries are slightly perturbed segments; note that integration over 
 in the
corresponding variational formulations can be replaced by that over 
h since �h is 2�{
periodic in x1.

The function u� has the advantage that it is in general "less singular\ at corner points
of the interface than the usual domain derivative limh

�1(uh � u), h ! 0. The material
derivative approach (we refer to [20] for an introduction) has recently successfully been

used to derive e�ective formulas for the derivatives of far �eld pattern with respect to
small perturbations of non{smooth boundaries or interfaces; see [8], [9] for problems in
di�ractive optics and [5] for some acoustic scattering problems.

The following two lemmas, taken from [9], are crucial for establishing our local stability

estimates. They are also special cases of the more general results in [10].

Lemma 4.1. The solution uh 2 H
1
p(
h) of the problem (3.4) resp. (3.5) takes the form

uh Æ �h = u+ hu� + h
2
u2;h;(4.4)

where the remainder term satis�es

ku2;hkH1
p(
)

� C for 0 < h � h0:
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Moreover, in the TE case the material derivative u� 2 H
1
p(
) solves the equation

BTE(k; u�; ') = CTE(�; u; ') ; 8' 2 H
1
p(
) ;(4.5)

where the sesquilinear form on the right{hand side is given by

CTE(�; u; ') =

Z



k
2(@1(�g1) + @2(�g2))u'

+

Z



f@1(�g1)(@1u @1'� @2u @2'� �u') + @2(�g2)(@2u @2'� @1;�u @1;�')g

+

Z



f@1(�g2)(@1;�u @2'+ @2u @1;�') + @2(�g1)(@1u @2'+ @2u @1')g:

For TM polarization, u� is the H1
p(
) solution of the problem

BTM(k; u�; ') = CTM(�; u; ') ; 8' 2 H
1
p(
) ;(4.6)

where the sesquilinear form CTM is de�ned by

CTM(�; u; ') =

Z



(@1(�g1) + @2(�g2))u'

+

Z



n@1(�g1)
k2

(@1u @1'� @2u @2'� �u') +
@2(�g2)

k2
(@2u @2'� @1;�u @1;�')

o

+

Z



n@1(�g2)
k2

(@1;�u @2'+ @2u @1;�') +
@2(�g1)

k2
(@1u @2'+ @2u @1')

o
:

Here we have used the notation @j = @=@xj and @1;� = @1+ i�. For the proof of Lemma

4.1, it is in fact not necessary to assume (as in [9], [10]) that �h is a di�eomorphism of

 onto itself. As we have noticed above, it is suÆcient to work with the di�eomorphism
�h : 
! 
h.
The second lemma shows that, under additional assumptions on the test functions ', the

domain integrals of CTE and CTM can partly be transformed to integrals over the interface
S. This follows by repeated application of Green's formula; see [9]. Let � = (��2; �1) be
the tangential vector to S, and introduce the weighted normal and tangential derivatives

@�;� = �1@1;� + �2@2 ; @�;� = ��2@1;� + �1@2 :

Furthermore [v]S stands for the jump vj+S � vj
�

S across S, where vj�S represents the limit

as the interface is approached from the region 
�.

Lemma 4.2. For all ' 2 H2
p(
)

CTE(�; u; ') =�

Z



(�g1@1u+ �g2@2u) (��'+ k
2
')

+

Z
S

(g � �) [k2]S u' ;(4.7)

and for all ' 2 H1
p(
) with 'j
� 2 H

2
p(


�) and [(1=k
2
)@�;�']S = 0, we have

CTM(�; u; ') =�

Z



(�g1@1u+ �g2@2u)
�
r� �

1

k
2r�'+ '

�

+

Z
S

(g � �)
h 1
k2
(@�;�u @�;�'� @�;�u @�;�')

i
S
:(4.8)
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5. Proof of Theorem 3.1

To verify the stability property (3.6), we shall apply the relations (4.5) and (4.7)
for a sequence of cut{o� functions � with support shrinking to the interface S, i.e.
d(S; supp�)! 0. The proof is essentially based on the following lemma.

Lemma 5.1. In the TE case the material derivative u� satis�es

ku�kL2(
) � C as d(S; supp�)! 0 ;(5.1)

where C is a constant independent of �.
P r o o f : Let f 2 L2(
) and consider the adjoint TE di�raction problem

BTE(k;'; v) =

Z



'f ; 8' 2 H
1
p(
) :(5.2)

Since (2.2) is assumed to be uniquely solvable, the problem (5.2) has a unique solution
v 2 H

2
p(
) which satis�es the estimate

kvkH2
p(
)

� C kfkL2(
)

with a constant C independent of f ; see [7] or [8]. In particular, equation (5.2) with the

right{hand side f = u� has a unique solution v� with the bound

kv�kH2
p(
)

� C ku�kL2(
) ;(5.3)

uniformly in �. Moreover, by Lemma 4.1 we have the equation

BTE(k; u�; v�) = CTE(�; u; v�) ;

and in view of the relation (4.7) (with ' = v�) the right{hand side can be uniformly
bounded as

jCTE(�; u; v�)j � C kukH1
p
(
) kv�kH2

p
(
) :

Together with (5.3), this implies the inequalityZ



ju�j
2 = jBTE(k; u�; v�)j � C kukH1

p
(
) ku�kL2(
) ;

which �nishes the proof of (5.1).
To prove Theorem 3.1 by contradiction, we assume that estimate (3.6) is not true. Then

we have, upon using (3.3),

kh
�1(uh � u)k

H
1=2
p (�+)

! 0 ; h! 0 ;

and (4.4) gives
u�j�+ = 0 ; @�u�j�+ = �T

+
� u� = 0

for any cut{o� function �. Then u�, which solves the homogeneous Helmholtz equation
in 
+

nsupp�, vanishes in that domain by Holmgren's theorem. Furthermore, Lemma 5.1
implies that u� converges weakly to some element u0 in L

2(
) as d(S; supp�)! 0 (more

precisely, for some sequence �n). Hence u0 = 0 in 
+.
Next we show that u0 coincides with the (unique) solution u� 2 H1

p(
) of the problem

BTE(k; u
�
;  ) =

Z
S

(g � �) [k2]S u ; 8 2 H
1
p(
) :(5.4)
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Note that the right{hand side of (5.4) generates a continuous linear functional on H1
p(
).

If  is chosen as the solution of the adjoint problem (5.2), we obtain using (4.5)Z



u� f = BTE(k; u�;  ) = CTE(�; u;  )(5.5)

From (4.7) we see that the right{hand side of (5.5) tends to
R
S

(g ��)[k2]Su for d(S; supp�)

! 0, whereas the left{hand side converges to
R



u0 f . Moreover, the left{hand side of (5.4)

takes the form
R



u
�
f , and therefore we get

Z



(u0 � u
�) f = 0 for any f 2 L

2(
) ;

hence u� = u0 in 
 and u� = 0 in 
+.

Now we observe that u�j
� 2 H
1
p(


�) is a solution of the Dirichlet problem

��v + (k�)2v = 0 in 
�
;

vjS = 0 ; @�vj�� + T
�

� v = 0 :(5.6)

Then it follows from Lemma 5.2 below that u� = 0 in 
�. Consequently, u� = 0 in 
 and
(5.4) implies the relation Z

S

(g � �) u' = 0 ; 8' 2 H
1
p(
) :

Employing Gagliardo's trace lemma and condition (3.2), we then obtain u = 0 on S,
hence u = 0 in 
 by Lemma 5.2, which is a contradiction to (2.2). This �nishes the proof

of Theorem 3.1.

Remark. It can be proved that the solution u
� of problem (5.4) is just the domain

derivative limh
�1(uh � u); h! 0, where the limit is understood in the sense of H1

p(
).

We now present the required uniqueness result for the Dirichlet problem which is well
known, at least in the case of smooth boundaries (see [13], [6]). Nevertheless we include
a proof since the arguments can be used in Section 6 to establish a uniqueness result for
the Neumann problem.

Lemma 5.2. Let S be a curved polygon of class C1;1, and assume that either Im k
�
> 0,

or k� > 0 and �2(x) � 0 a.e. on S. Then any solution v 2 H
1
p(


�) of the Dirichlet

problem (5.6) vanishes on 
�.
P r o o f : If Im k

�
> 0, then a simple partial integration argument yields

R

�
jvj

2 = 0,

hence v � 0; compare Lemma 3.1 in [8]. Let k� > 0. Integrating by parts we obtain

0=2Re

Z

�

(��v + (k�)2v) @2v

=

Z
@
�

(@�;�v @2v + @�;�v @1;�v + �2(k
�)2jvj2) :(5.7)

Note that the integrals in (5.7) are well de�ned since v has Hs regularity on the polygonal
domain 
� for some s > 3=2 (see e.g. [12]), which implies that rvjS 2 L

2(S).
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On the straight line ��, the integrand on the right{hand side of (5.7) takes the form

A := �j@2vj
2 + j@1;�vj

2
� (k�)2jvj2 ;

and we show next that the corresponding integral vanishes. Since v satis�es the relationZ

�

(r�v � r�v � (k�)2 jvj2) +

Z
��

(T�� v) v = 0 ;

the integral (cf. (2.1)) Z
��

(T�� v) v = �i
X
n2Z

�
�

n jv̂nj
2

is real. Therefore v̂n = 0 if ��n = ((k�)2� (n+�)2)1=2 > 0. Thus for x2 � �b the function
v admits the Rayleigh expansion

v(x) =
X

an exp(inx1 � i�
�

n x2) ; an 2 C

where the sum is taken over all indices n 2 Z such that ��n = ij�
�

n j. This impliesZ
��

A = 2�
X

(� j��n j
2 + (n + �)2 � (k�)2) janj

2 exp(�2bj��n j ) = 0 :

From (5.7) we now obtain the equalityZ
S

(@�;�v @2v + @�;�v @1;�v + �2 (k
�)2 jvj2) = 0 :(5.8)

Using the boundary condition vjS = 0, (5.8) leads toZ
S

@�;�v @2v =

Z
S

(@�;�v + i��1v) (�2@�v + �1@�v) =

Z
S

�2 j@�vj
2 = 0 :

Hence v = @�v = 0 on an open subset of S, which gives the result.

6. Proof of Theorem 3.2

To prove the stability estimate (3.7), we shall proceed as in Section 5. However,
because of the strong singularities of the solution to problem (2.3) at interface corners,
more e�ort is needed to derive an analogue of Lemma 5.1. Therefore we begin with some
considerations about the Fredholm property of the TM di�raction problem.
Consider the adjoint variational problem

BTM(k;'; v) =

Z



'f ; 8' 2 H
1
p(
) ;(6.1)

or equivalently, the transmission problem

��v + (k�)2v = f in 
�
;

h 1
k
2@�;�v

i
S
= 0 ; @�vj�� + (T�� )

�
v = 0 ;(6.2)

where (T�� )
� denotes the adjoint of the boundary operators (2.1). Denote by r = r(x) the

distance of x to the (�nite) set of corner points of the polygonal interface S, and introduce
for % � 0 the weighted L2 space Y %(
) with norm

kvkY %(
) = kr
%
vkL2(
)
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and the weighted Sobolev space

X
%(
) := fu 2 H

1
p(
) : kr

%
@
i
1@

j
2ukL2(
�) <1 ; i+ j = 2g

equipped with the canonical norm.

Since (2.3) is uniquely solvable by assumption, the adjoint problem (6.1) (or (6.2))
generates an invertible continuous linear operator B : H1

p(
) ! H
�1
p (
). Moreover, B

is a bounded operator with trivial kernel from X
%(
) into Y %(
), and the next lemma

presents a result on its Fredholm property.

Lemma 6.1. If % > 0 is suÆciently small, then B is an injective Fredholm operator of
X

%(
) into Y %(
).

P r o o f : We can apply well known techniques for elliptic boundary value problems in
polygonal domains. Let f 2 Y

%(
). If U is a subdomain of 
 not containing a corner
point of S, then standard elliptic estimates for transmission problems (see e.g. [19], [18])
imply that v 2 H2(U \ 
�) for any solution v of (6.2).

Let O be a corner point of S and let �o be a smooth cut{o� function with support in a
small neighbourhood of O. Then the regularity of �ov can be studied using Kondratiev's
method of local Mellin transformation [14]. We refer to [11] for the speci�c case of TM
di�raction, which leads to an eigenvalue problem for a system of ordinary di�erential

equations. The eigenvalues � of that problem are given by the roots of the transcendental
equation (2.5), where Æ is the angle at O seen from 
+.

In particular, adapting the general approach of [14] or [15] (for weighted Sobolev spaces

with nonhomogeneous norms) to our special case, we obtain that �ov 2 X
%(
) if (2.5)

has no root on the \critical line" Re � = %� 1 and the right{hand side f of (6.2) satis�es
a �nite number of solvability conditions on Y %(
). Then, for any suÆciently small % > 0,
those critical lines can be avoided for each corner point of S, and B(X%(
)) � Y

%(
) is
a closed subspace of �nite codimension which gives the result.

Note that for small % the operator B does not map X%(
) onto Y %(
), in general. Recall
from Section 2 that the solution of (6.2) may have a singularity of order r� where Re �
is close to zero. Nevertheless the above result will be suÆcient for our purpose; see the

proof of Lemma 6.2 below.

To prove Theorem 3.2, we argue by contradiction and suppose that the estimate (3.7)
is not valid. Then we obtain using (3.3)

kh
�1(uh � u)k

H
1=2
p (��)

! 0 ; h! 0 ;(6.3)

which together with (4.4) gives

u�j�� = 0 ; @�u�j�� = �T
�

� u� = 0 :

Hence the material derivative u� vanishes in 
nsupp�, where � is an arbitrary cut{o�
function with support around the interface S. The following lemma is the analogue of
Lemma 5.1 and establishes the uniform boundedness of u�.

Lemma 6.2. For suÆciently small % > 0 there exists a constant C not depending on �
such that Z




r(x)�2%ju�(x)j
2
� C as d(S; supp�)! 0 :(6.4)
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P r o o f : We begin with a discussion of the solvability of equation (6.1), or equivalently
Bv = f , where f 2 Y

%(
) and % > 0 is suÆciently small. By Lemma 6.1 we have the
direct topological sum

B(X%(
))�N = Y
%(
)(6.5)

with some �nite dimensional space N . Since the linear set M of all in�nitely smooth
functions with support in 
nS is dense in Y

%(
), we can assume that N is the span
of certain functions fj 2 M; j = 1; :::; q = dimN ; see e.g. [17, Chap.1, Lemma 2.2].

Choosing a corresponding biorthogonal system f jg of continuous linear functionals on
Y
%(
), we conclude from (6.5) and Lemma 6.1 that the modi�ed equation

Bv = f �

qX
j=1

 j(f) fj ; with supp fj \ S = ; ; j = 1; :::; q ;

has always a unique solution v 2 X%(
), which satis�es the estimate

kvkX%(
) � CkfkY %(
) ;

where C is independent of f .

We now apply the above considerations to the problem (6.1) with right{hand sides

f = f� := r
�2%

u� �

qX
j=1

 j(r
�2%

u�) fj(6.6)

and obtain unique solutions v� 2 X
%(
) satisfying the uniform bound

kv�kX%(
) � Ckr
�2%

u�kY %(
) � Ckr
�%
u�kL2(
) :(6.7)

Note that r�2%u� 2 Y
%(
) for small % since u� 2 H

1
p(
), hence f� 2 Y

%(
). On the other
hand, by Lemma 4.1 we haveZ




u� f� = BTM(k; u�; v�) = CTM(�; u; v�) :(6.8)

From (4.8) we see that the last term can be uniformly bounded as

jCTM(�; u; v�)j �C ( kukL2(
) + kr
�%
rukL2(
) ) kv�kX%(
)

�Ckv�kX%(
) :(6.9)

Note that the solution u to (2.3) satis�es r�%ru 2 L2(
) for small % > 0 (cf. [8, Sec. 3.3].
Then (6.9) is obvious for the domain integral in (4.8). To estimate the interface integral,
we make use of the inequalities

kr
%
r�v�j

�

S kH
1=2
p (S)

�C kv�kX%(
) ;

kr
�%
r�uj

�

SkH
�1=2
p (S)

�C ( kukL2(
) + kr
�%
rukL2(
) ) :

The �rst estimate is a consequence of the trace theorem for weighted Sobolev spaces (see
[15]). The proof of the second bound is analogous to that of the well known version

for % = 0 (see e.g. [12, Chap. 1]), using Green's formula and the fact that u satis�es
homogeneous Helmholtz equations in 
�.
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Now we observe that if d(S; supp�) is suÆciently small then supp u� \ supp fj
= ; for all j, so that the left{hand side of (6.8) takes the form

R



r
�2%
ju�j

2; compare (6.6).

Combining this with (6.7) and (6.9) gives the uniform estimate

kr
�%
u�k

2
L2(
) =

Z



r
�2%
ju�j

2
� Ckr

�%
u�kL2(
) :

Remark. It can be proved (even without the assumption that u� vanishes outside a
small neighbourhood of the interface S) that estimate (6.4) holds with % = 1=2 if k�

is real; see also [4] where the domain derivative approach was applied to the inverse
conductivity problem in polygonal domains. However, in the case Im k

�
> 0 where

stronger singularities may occur at corners of S, the mentioned property of the material
derivative u� (following from (6.3)) was crucial for establishing its uniform boundedness.

We now continue the proof of Theorem 3.2. Choose an arbitrary element ' 2 H
1
p(
)

such that 'j
� 2 H
2
p(


�) and [(1=k
2
) @�;�']S = 0. An integration by parts gives

BTM(k; u�; ') = �

Z



u�

�
r� �

1

k
2r�'+ '

�

since u� = 0 in 
nsupp�. Thus from (4.6) and (4.8) we conclude that

Z



u�

�
r� �

1

k
2r�'+ '

�
=

Z



(�g1@1u+ �g2@2u)
�
r� �

1

k
2r�' + '

�

�

Z
S

(g � �)
h 1
k2
(@�;�u @�;�'� @�;�u @�;�')

i
S
:(6.10)

Furthermore, since u� is uniformly bounded in L2(
) by Lemma 6.2, we observe that u�
converges weakly to 0 in L2(
) as d(S; supp�)! 0. Therefore (6.10) implies thatZ

S

(g � �)
h 1
k2
(@�;�u @�;�'� @�;�u @�;�')

i
S
= 0 :(6.11)

Applying the trace theorem for polygonal domains (see [12, Thm. 1.5.2.1]), for any
 2 H

1=2
p (S) we �nd a function ' 2 H1

p(
) such that 'j
� 2 H
2
p(


�) and

'j
�

S = 0 ; @�'j
�

S =  ; [(1=k
2
) @�']S = 0 :

Then it follows from (6.11) that

Z
S

(g � �)
h 1
k2
(@�;�u @�;�'

i
S
=

Z
S

(g � �)
�k+)2 � (k�)2

(k�)4

�
@�;�uj

�

S  = 0

for any  2 H
1=2
p (S), hence @�;�uj

�

S = 0 by condition (3.2). Consequently, u 2 H
1
p(
)

solves the homogeneous Neumann problem

��u+ (k�)2u = 0 in 
�
;

@�;�ujS = 0 ; @�uj�� + T
�

� u = 0 :(6.12)

If Im k
�
> 0 then integration by parts easily leads to u � 0 in 
�, hence u � 0 in 
,

which is a contradiction proving estimate (3.7) in this case.
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Finally, let k� > 0 and let � be an arbitrary smooth function on 
. Since u 2 H
s
p(


�)

for some s > 3=2 (see [8, Sec. 3.3]), the relations (4.8), (6.10) and (6.11) may be extended
to the case ' = �u givingZ

S

� @�;�u @�;�(�u) = 0 ; with � := [1=k2]S g � � :(6.13)

Now we proceed as in the proof of Corollary 3.4 in [3]. For any " > 0, choose a smooth

cut{o� function �" such that

�" = 1 on S \ f� > "g ; �" = 0 on S \ f� � 0g ; jr�"j � C=" on 
 :

Taking � = �" in (6.13) we getZ
S\f�>"g

� j@�;�uj
2 = �

Z
S\f0<�<"g

(��" j@�;�uj
2 + �u @�;�u @��") :

Since ru 2 L
2(S) and meas f0 < � < "g ! 0, the last integral tends to 0 as " ! 0.

Hence @�;�u = 0 on S \ f� > 0g by condition (3.2), and one veri�es analogously that
@�;�u vanishes on S \ f� < 0g.

Consequently, u is a solution of the homogeneous Neumann problem (6.12) satisfying
the additional condition @�;�ujS = 0, and in that case an analogue of Lemma 5.2 holds.

Indeed, repeating the arguments leading to relation (5.8), we obtain

0 =

Z
S

( @�;�u @2u+ @�;�u @1;�u+ �2 (k
�)2 juj2 ) =

Z
S

�2 (k
�)2 juj2 :

Hence u = @�u = 0 on an open subset of S, which gives u = 0 in 
. This contradiction
�nishes the proof of Theorem 3.2.
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