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We consider the two—dimensional TE and TM diffraction problems for a time harmonic plane wave incident
on a periodic grating structure. An inverse diffraction problem is to determine the grating profile from measured
reflected and transmitted waves away from the structure. We present a new approach to this problem which is
based on the material derivative with respect to the variation of the dielectric coefficient. This leads to local

stability estimates in the case of interfaces with corner points.

1. Introduction

Consider scattering of electromagnetic waves by a diffraction grating periodic in the
x; variable and constant in the z3 variable. More specifically we assume that the three—
dimensional space is filled with two different materials having dielectric constants €' in
the region G* above S and €~ in the region G~ below S, where the interface S is 27—
periodic in z; direction. The magnetic permeability is assumed to be constant (u = 1)
throughout. Suppose further that a plane wave of the form

vr = exp(iaz; — ifzs), (a,f):= w(e")Y?(sin b, cos h)

is incident to S (from G*), where w is the frequency and 0 € (—n/2,7/2) the angle of
incidence.

Then the total field may be decomposed into a linear combination of two polarizations:
transverse electric (TE) polarization where the electric field is transverse to the (z1,z2)
plane and transverse magnetic (TM) polarization where the magnetic field is transverse
to the (z1, z2) plane. In either case of polarization, the electromagnetic wave propagation
which is governed by the time harmonic Maxwell equations can be determined from a
single scalar quantity v = v(z1,z3) (the 3 component of the total electric or magnetic
field).

The function v satisfies the Helmholtz equation (A + k?)v = 0 for TE polarization,
and Maxwell’s equations simplify as V - (k™2Vv) + v = 0 in the TM case, where k =
k* = w(e™)/? in G*. Moreover, v satisfies radiation conditions as 3 — Zoo and is «
quasi—periodic in z1: v(zq + 27, z2) = exp(27ai)v(zy, z2). For TE polarization v and its
normal derivative 0,v have to cross the interface continuously, whereas in TM polarization
k~28,v has to be continuous; cf. the monograph [16] for more details. The corresponding
variational formulations of these transmission problems will be presented in Section 2.

An inverse diffraction problem may be formulated as follows: given the incident field,
determine the interface S from measured reflected and transmitted fields, say at o = +b, b
large. In applications, it is impossible to make exact measurements. Stability is crucial in
the practical reconstruction of profiles since it contains necessary information to determine
to what extend the data can be trusted.

In the present paper, we study the local stability of this problem for both the TE and the
TM case. Suppose Sy, is a small perturbation of the interface S such that the Hausdorff
distance d(S, Sy) is of order h as h — 0, and denote by v and v, the electromagnetic
fields of the corresponding scattering problems. We are interested in proving Lipschitz
type estimates

(1.1) d(S,Sn) < C([(v —vn)(+,b)[+ [(v = vn) (-, =b)[)

in a suitable norm |- |; see Section 3 for a precise formulation.
For smooth surfaces S and S, such estimates were first obtained by Bao and Friedman,;
see [2] where also the more general case of two material interfaces has been considered.
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Earlier related local stability results are known for the inverse conductivity problem [3],
even in the case of only piecewise smooth interfaces [4].

To prove (1.1) for polygonal interfaces, we employ the concept of the material derivative
(instead of the usual domain derivative); see Section 4. This approach allows to treat more
general perturbations of non—smooth interfaces than those considered in [4] and enables
us to handle the rather strong singularities occurring in the solutions of TM diffraction
problems at corner points of the grating profile. Sections 5 and 6 are devoted to the proof
of the stability estimates.

2. Direct diffraction problems

The TE and TM transmission problems admit variational formulations in a bounded
periodic cell in R?, enforcing implicitly the transmission and radiation conditions (cf. [1],
[7], [8]). Introduce two artificial boundaries T+ = {x, = +b} lying above resp. below
the grating profile S, and denote by Q the rectangle (0,27) x (—b,b). Since we consider
solutions v for which u := exp(—iaz;)v is 2r—periodic in zy, the diffraction problems can
be transformed to variational problems for u in the set 2.

In TE polarization u satisfies the equation

Ayu+Eku=0
where we use the notation
Vo=V +i(a,0), Ap=V4-Vo=A+2iad —a’.
The radiation conditions are equivalent to the nonlocal boundary conditions
Oyulpy = —T.fu— 2iBexp(—iBdb) , Oyulp- =T, u,

where T is the periodic pseudodifferential operator (of order 1)

2T
(2.1) (TE0) (1) = — 3 iBE0ne™, 6, = (2m)" /,U(xl)e—inzl dz,
neZ 0

and the coefficients 3 = 3 () are defined by
ﬁf(a) = |(k:|:)2 _ (n + 01)2|1/2 ei%%/g
with
() (), 0o <o

The operator Ty is continuous from Hj('*) to H;~'(T'*) where H;(I'*) denotes the

trace space of H;“/?(Q), the Sobolev space of functions on 2 which are 2r—periodic in
z1. Integration by parts then leads to the variational formulation for the TE diffraction
problem:

Bra(k; u, go)::/(Vau-m—kzu@)—i—/(Tju)@—i—/(T;u)@
(2.2) Q r+ r-

= -2ip [6, Ve HLQ).
T+



Analogously, the TM diffraction problem
Vo (B3Vau)+u = 0 in Q,

Tru+0,u = —2iBexp(—ifb) on TI'T,

T, u+0u = 0 on [

admits the variational formulation

1 S _ 1 TN 1 N
Bru(k; u, go)::g/ (? Vau-Vago—ugo) + (k+)2F[(T u) @+ (k_)2r/(Ta u) @
(23) 213 et
=~ [e, veem

We will assume throughout that the refractive index satisfies
(2.4) kt >0, Rek >0, Imk >0.

Then the sesquilinear forms Brg and B, are strongly elliptic, i.e., after multiplication by
some complex number they are coercive modulo compact operators on HI}(Q). This leads
to existence and uniqueness results for the variational equations (2.2) and (2.3); see [1],
[6], [7], [8]. In particular, the TE and TM diffraction problems are uniquely solvable for
all but a sequence of frequencies w;, w; — 0o, and the solution is unique for all frequencies
if Im £~ > 0.

While the solution to the TE problem is sufficiently smooth (u € HZ(2)), the TM
solution may have singularities at the corner points of the grating profile. More precisely,
near a corner O of S with angle 6, one has u = r*f + g, where 7 denotes the distance to
O, the exponent A with 0 < Re A < 1 is the solution with minimal positive real part of
the equation

and f, g are certain smoother functions. Note that Re A € (1/2,1) if k™ is real, whereas
Re A may become arbitrarily close to 0 for Im £~ > 0. A detailed regularity theory of
the TM problem can be found in [8]; see also [11] for the more general case of diffraction
by a time harmonic oblique incident plane wave.

3. Stability estimates for the inverse problem

As above, let S be the profile curve dividing the rectangle Q = (0, 27) x (—b, b) into the
two subregions QF of refractive index k%, and let f(z,) = (fi(z1), fo(1)), 0 < 2y < 2m,
be a parametric representation of S. We shall assume in the following that S is a curved
polygon of class C1, i.e., the derivative of f is Lipschitz continuous with the exception of
a finite number of corner points (with angles different from 0 and 27). Consider a family
of perturbed interfaces

(31) Sh = {f(fEl) + hg(:l:l) :0 S 1 S 27'('}, 0<h S h(),
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where the function g = (g1, g2) is 2r—periodic, Lipschitz and satisfies the condition
(3.2) (g-v)(z1) #0 a.e. on [0, 27].

Here v = (11, 1) denotes the normal to S pointing from Q7 to Q~. Clearly, S, converges
to S in the Hausdorff distance d and (3.2) implies that

(3.3) Cih < d(S,Sy) < Coh as h—0, Cy,Cy> 0.

Set kp, = k* above Sy, ki, = k= below Sj, and consider the corresponding perturbed TE
and TM problems

(3.4) Bris(n un, ¢) = ~2i8™ [ 6, Vo e HXQ),
T+
2i3 e~ tPP _
(3.5) By (kn; un, @) = — (k)2 /go , Ve H;(Q)

We will always assume that the original problems (2.2) and (2.3) have a unique solution
u € H)(Q). Then, as it was proved in [9], the perturbed problems (3.4) and (3.5) are
uniquely solvable in HI}(Q) for any sufficiently small A > 0. This is also a special case of
the more general result on conical diffraction in [10].

We are now ready to state our results on the local stability of the inverse diffraction
problems.

Theorem 3.1. Let S be a curved polygon of class Ct. Assume (3.1), (3.2), and suppose
that v5(z) < 0 a.e. on S if k= is real. Then in the TE case the estimate

(3.6) d(S, 1) < Cllw—wnll ooy

holds, where C' is a constant independent of h.

Theorem 3.2. The conditions of the preceding theorem imply the stability estimate
(3'7) d(Sa Sh) < C{“u - uhHH;/Z(FJr) + Hu - uh“H;/?(pf)}

for TM diffraction.

The results indicate that for small h, if the measurements are O(h) close to the true
scattered fields in the H'/2 norm, then Sy, is O(h) close to the true profile in the Hausdorff
distance. The stability properties (3.6) and (3.7) will be established in Sections 5 and
6, respectively. It is possible to extend them to the slightly more general case that the
interfaces S;, are parameterized by f + hgp, where the Lipschitz functions g; satisfy

lgi(z1)| < C ae., gn(z1) — g(z1) uniformly as h — 0

and g fulfils condition (3.2). Related results for smooth profiles were obtained in [2]; see
also [3], [4] for the inverse conductivity problem.

At present we do not know whether the above theorems hold if (3.2) is replaced by the
less restrictive condition g-v # 0, though [2] presents some results along this direction for
TM diffraction and smooth interfaces. However, in our opinion, the proof there contains
a gap since a solution of the homogeneous Helmholtz equation in Q*, which has vanishing
tangential and normal derivatives on some open subset of S, is (in contrast to Laplace’s
equation) not necessarily constant on the whole domain Q.



4. The material derivative

Let x be an infinitely smooth cut—off function in R2, 2r—periodic in z;, and such that
0 < x <1, x = 11in some neighbourhood of the interface S and x = 0 outside a somewhat
larger neighbourhood. With x and the perturbed interfaces (3.1) we associate a family of
Lipschitz diffeomorphisms of the strip Il = R x (—b,b) onto itself,

(4.1) Qp(z) ==z + hx(z)g(z1), 0<h < hy,

where hy is sufficiently small. Note that ®,(S) = Sy, ®, = id outside some neighbourhood
of S, and the Jacobian ®) of (4.1) satisfies ®,(z) = id + O(h) uniformly in z € R?. Tt is
now easy to check that ®; is indeed a diffeomorphism of II onto itself:

Fix yo and let zo be a solution of the equation ®(z) = yo, which is equivalent to

(4.2) Fi(z) =2 — @} (zo) Y(®n(z) — 10) = 2.
Since the Jacobian of F},
Fy(z) == id — ®},(z0) ' @} (2),

satisfies Fj(z) = O(h) uniformly in R?, the mapping (4.2) is contracting on each disk of
centre z if h is sufficiently small. Hence the mapping ®;, is globally one-to—one, which
finishes the proof.

For a fixed cut—off function x (and the corresponding diffeomorphism (4.1)), we now
define the material derivative u, by
(4.3) lim A~ (up o @ — u),

h—0

where the limit is understood in the sense of H}(Q); compare Lemma 4.1 below. Here u
denotes the solution of the TE problem (2.2) resp. the TM problem (2.3) and wuy, is the
solution of the perturbed problem (3.4) resp. (3.5). To define the limit (4.3) correctly,
we have to consider uy as a function given on the ”curved“ rectangle Q;, = ®,(Q) whose
lateral boundaries are slightly perturbed segments; note that integration over 2 in the
corresponding variational formulations can be replaced by that over Q since ®, is 27—
periodic in z;.

The function u, has the advantage that it is in general ”less singular“ at corner points
of the interface than the usual domain derivative lim A~ (us — u), h — 0. The material
derivative approach (we refer to [20] for an introduction) has recently successfully been
used to derive effective formulas for the derivatives of far field pattern with respect to
small perturbations of non—smooth boundaries or interfaces; see [8], [9] for problems in
diffractive optics and [5] for some acoustic scattering problems.

The following two lemmas, taken from [9], are crucial for establishing our local stability
estimates. They are also special cases of the more general results in [10].

Lemma 4.1. The solution uy, € H)(Qn) of the problem (3.4) resp. (3.5) takes the form
(44) Up, © (I)h =u-+ hUX + ]’L2U2’h,
where the remainder term satisfies

lugnl|m3) < C for 0 <h < hy.
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Moreover, in the TE case the material derivative u, € H;(Q) solves the equation

(4.5) Brg(k;uy, ) = Cre(x;u, @), Vo€ HI}(Q) )

where the sesquilinear form on the right—-hand side is given by
Cre(Xx;u, @) = /k2(81(xgl) + 02(xg2))u @
Q
+ / {01(x91) (01 B1p — Bau Dop — aup) + 02(xg2)(Oau Do — 01 o u By 00)}
Q
+ [ 1010x02) (01,0 Bop + 02 B ap) + Dalx9r) (1 Bop + O Bup) -
Q

For TM polarization, u, is the HI}(Q) solution of the problem
(4.6) Bru (k;uy, ¢) = Crar(x;u, ), Vo € Hy(),

where the sesquilinear form Crys is defined by

Cru(x;u, p) = / (01(xg1) + 02(x92))u®

o,
—I—/ Xgl (U O — Oatt Oap — uP) + 2(k2 )(82 Oap — 01 o Oy ago)}
(9 0 - -
+/ ! X92 (10 02 + O5u D1 ) + 2(;91)(81ua2g0+82u8190)}.

Here we have used the notation 0; = 0/0z; and 0, o = 01 + . For the proof of Lemma
4.1, it is in fact not necessary to assume (as in [9], [10]) that ®, is a diffeomorphism of
Q) onto itself. As we have noticed above, it is sufficient to work with the diffeomorphism
d,, : Q— Qh.

The second lemma shows that, under additional assumptions on the test functions ¢, the
domain integrals of Crg and Crjs can partly be transformed to integrals over the interface
S. This follows by repeated application of Green’s formula; see [9]. Let 7 = (—vs,1;) be
the tangential vector to S, and introduce the weighted normal and tangential derivatives

Opa = V101, + 1202, Orq = —1201 4 + 110 .

Furthermore [v]s stands for the jump v|§ — v|g across S, where v|5 represents the limit
as the interface is approached from the region Q*.

Lemma 4.2. For all p € H}(Q)

Cre(x;u, @) =— /(Xglalu + xg20a) (Aup + )
(4.7) —i—/ g-v) ks up,

and for all ¢ € H)(Q) with |+ € HZ(OF) and [(1/5°)0,4¢]s = 0, we have

T
Cra (X u, ¥) Z—/(xy181u+xgzazU) (Vo ?Vasoﬂo)
Q

1 . -
(48) + /(g . V) I:ﬁ (au,au 8u,aQ0 - a‘r,au 87',6!()0)]5



5. Proof of Theorem 3.1

To verify the stability property (3.6), we shall apply the relations (4.5) and (4.7)
for a sequence of cut—off functions x with support shrinking to the interface S, i.e.
d(S,supp x) — 0. The proof is essentially based on the following lemma.

Lemma 5.1. In the TE case the material derivative u, satisfies
(5.1) tuyllr2) < C as d(S,suppx) — 0,

where C' is a constant independent of x.
Proof: Let f € L*(Q) and consider the adjoint TE diffraction problem

(5.2) Bri(k; 0, 0) = /ﬁ, Vo € HA(9).
Q

Since (2.2) is assumed to be uniquely solvable, the problem (5.2) has a unique solution
v € H?(Q) which satisfies the estimate

[vllzz@) < C || fllz2@)

with a constant C independent of f; see [7] or [8]. In particular, equation (5.2) with the
right-hand side f = u, has a unique solution v, with the bound

(5.3) [oxllmz@) < C lluxlle2@)
uniformly in x. Moreover, by Lemma 4.1 we have the equation
BTE(k; Uy, Ux) = CTE(X; u, Ux) ’

and in view of the relation (4.7) (with ¢ = v,) the right-hand side can be uniformly
bounded as
Cre(x; u, v0)| < C lullmye) [[oxllaz@)

Together with (5.3), this implies the inequality

/ i = [Bra(ks g, v)| < C ull e lullze)

which finishes the proof of (5.1). |
To prove Theorem 3.1 by contradiction, we assume that estimate (3.6) is not true. Then
we have, upon using (3.3),

||h*1(uh—u)||H1/z( +) —0, h—>0,

and (4.4) gives
Uylps =0, Oyuylpy = =T u, =0

for any cut-off function x. Then u,, which solves the homogeneous Helmholtz equation
in Q" \supp x, vanishes in that domain by Holmgren’s theorem. Furthermore, Lemma 5.1
implies that u, converges weakly to some element ug in L*(Q2) as d(S, supp x) — 0 (more
precisely, for some sequence x,). Hence uy =0 in Q7.

Next we show that ug coincides with the (unique) solution u* € H,(f2) of the problem

(5.4) Brg(k; u*, ) = /(g-l/) s u®, Ve H(Q).
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Note that the right-hand side of (5.4) generates a continuous linear functional on H, ().
If ¢ is chosen as the solution of the adjoint problem (5.2), we obtain using (4.5)

(5.5) [ ux T = Bra(k; uy, ) = Cra(x; v, 9)
Q

From (4.7) we see that the right-hand side of (5.5) tends to [(g-v)[k?]su v for d(S, supp x)
S
— 0, whereas the left-hand side converges to [ ug f. Moreover, the left—hand side of (5.4)
)

takes the form [wu* f, and therefore we get
Q

/(ug —u*)f=0 forany fecL*Q),
)

hence u* = ug in Q and u* = 0 in Q7.
Now we observe that u*|o- € H}(Q") is a solution of the Dirichlet problem

A+ (K7)v=0 in Q,
(5.6) vls =0, Oulp-+T,v=0.

Then it follows from Lemma 5.2 below that v* = 0 in 2~. Consequently, »* = 0 in €2 and
(5.4) implies the relation

/(g-y)ugozo, Vo € HY(Q).

Employing Gagliardo’s trace lemma and condition (3.2), we then obtain u = 0 on S,
hence u = 0 in Q by Lemma 5.2, which is a contradiction to (2.2). This finishes the proof
of Theorem 3.1.

Remark. It can be proved that the solution u* of problem (5.4) is just the domain
derivative lim h~*(us — u), h — 0, where the limit is understood in the sense of H}(Q).

We now present the required uniqueness result for the Dirichlet problem which is well
known, at least in the case of smooth boundaries (see [13], [6]). Nevertheless we include
a proof since the arguments can be used in Section 6 to establish a uniqueness result for
the Neumann problem.

Lemma 5.2. Let S be a curved polygon of class C*', and assume that either Im k= > 0,
or k= > 0 and »y(z) < 0 a.e. on S. Then any solution v € H (") of the Dirichlet
problem (5.6) vanishes on Q.
Proof: If Im k= > 0, then a simple partial integration argument yields [ |v|? = 0,
o

hence v = 0; compare Lemma 3.1 in [8]. Let £~ > 0. Integrating by parts we obtain
0=2Re / (Ayv + (7)) 8,0
i
(5.7) — / (B o + Br.00 Braw + o (k™) [0]?).
G

Note that the integrals in (5.7) are well defined since v has H® regularity on the polygonal
domain Q~ for some s > 3/2 (see e.g. [12]), which implies that Vv|s € L*(S).



On the straight line I'", the integrand on the right-hand side of (5.7) takes the form
—020* + |01,00* — (K )*[0]?,
and we show next that the corresponding integral vanishes. Since v satisfies the relation
[ (Vav- Voo = (62 o) + [ (T v)7=0,
Q- r-
the integral (cf. (2.1))

[T o= i % 8l

r- neZz

is real. Therefore 4, = 0 if 8, = ((k7)? — (n+a)?)'/2 > 0. Thus for z < —b the function
v admits the Rayleigh expansion

T) = Zan exp(inz; — i, ©3), a, € C

where the sum is taken over all indices n € Z such that 8, = i|8,|. This implies

/ A=21Y (= (B + (n+ @)® — (k7)) |anf* exp(—2b18;]) = 0.

From (5.7) we now obtain the equality

(5.8) / (Bt 0o + By.0v Braw + 1y (k)2 [u]2) = 0.
s
Using the boundary condition v|g = 0, (5.8) leads to

/8,,,0,11 Oy = /(8,,,0,11 + a1 v) (1,0,T + 1110,7) = /1/2 10,0 =0.
S s s
Hence v = 0,v = 0 on an open subset of S, which gives the result. |

6. Proof of Theorem 3.2

To prove the stability estimate (3.7), we shall proceed as in Section 5. However,
because of the strong singularities of the solution to problem (2.3) at interface corners,
more effort is needed to derive an analogue of Lemma 5.1. Therefore we begin with some
considerations about the Fredholm property of the TM diffraction problem.

Consider the adjoint variational problem

(6.1) Bru(k; ¢,v) = /@7, Vo € Hy(),
Q

or equivalently, the transmission problem
Agv+ (E¥)?v=f in QF,

1
(6.2) [?a,,,av]s =0, Bulp: + (THv=0,

where (T)* denotes the adjoint of the boundary operators (2.1). Denote by r = r(z) the
distance of z to the (finite) set of corner points of the polygonal interface S, and introduce
for o > 0 the weighted L? space Y¢(Q2) with norm

[vllye) = lIrvllz2(@)
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and the weighted Sobolev space
X0(Q) :={u € Hy(Q) : ||[re0idhul| 202y < 00, i+j=2}

equipped with the canonical norm.

Since (2.3) is uniquely solvable by assumption, the adjoint problem (6.1) (or (6.2))
generates an invertible continuous linear operator B : H}(Q) — H,*(€2). Moreover, B
is a bounded operator with trivial kernel from X?¢(Q) into Y¢(2), and the next lemma
presents a result on its Fredholm property.

Lemma 6.1. If o > 0 s sufficiently small, then B is an injective Fredholm operator of
Xe(Q) into Y°(Q).

Proof: We can apply well known techniques for elliptic boundary value problems in
polygonal domains. Let f € Y¢(Q2). If U is a subdomain of € not containing a corner
point of S, then standard elliptic estimates for transmission problems (see e.g. [19], [18])
imply that v € H2(U N QF) for any solution v of (6.2).

Let O be a corner point of S and let x, be a smooth cut—off function with support in a
small neighbourhood of O. Then the regularity of x,v can be studied using Kondratiev’s
method of local Mellin transformation [14]. We refer to [11] for the specific case of TM
diffraction, which leads to an eigenvalue problem for a system of ordinary differential
equations. The eigenvalues A of that problem are given by the roots of the transcendental
equation (2.5), where ¢ is the angle at O seen from Q7.

In particular, adapting the general approach of [14] or [15] (for weighted Sobolev spaces
with nonhomogeneous norms) to our special case, we obtain that x,v € X¢(Q) if (2.5)
has no root on the “critical line” Re A = 9 — 1 and the right—hand side f of (6.2) satisfies
a finite number of solvability conditions on Y¢(€Q2). Then, for any sufficiently small ¢ > 0,
those critical lines can be avoided for each corner point of S, and B(X?¢(R2)) C Y¢() is
a closed subspace of finite codimension which gives the result. |

Note that for small g the operator B does not map X¢(2) onto Y¢(2), in general. Recall
from Section 2 that the solution of (6.2) may have a singularity of order 7* where Re A
is close to zero. Nevertheless the above result will be sufficient for our purpose; see the
proof of Lemma 6.2 below.

To prove Theorem 3.2, we argue by contradiction and suppose that the estimate (3.7)
is not valid. Then we obtain using (3.3)

(6.3) 1A (un — Wl yrzpey =0, h—0,

which together with (4.4) gives
Uylpe =0, Optuylpe = —Tuy, =0.

Hence the material derivative u, vanishes in Q\supp x, where x is an arbitrary cut—off
function with support around the interface S. The following lemma is the analogue of
Lemma 5.1 and establishes the uniform boundedness of u,.

Lemma 6.2. For sufficiently small o > 0 there exists a constant C not depending on x
such that

(6.4) /7"(9v)’29|ux(:1:)|2 <C as d(S,suppyx)—0.
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Proof: We begin with a discussion of the solvability of equation (6.1), or equivalently
Bv = f, where f € Y¢(Q2) and ¢ > 0 is sufficiently small. By Lemma 6.1 we have the
direct topological sum

(6.5) B(X°(Q)) ® N = Y°(Q)

with some finite dimensional space N. Since the linear set M of all infinitely smooth
functions with support in Q\S is dense in Y2(Q), we can assume that N is the span
of certain functions f; € M, j = 1,...,q = dim N; see e.g. [17, Chap.1l, Lemma 2.2].
Choosing a corresponding biorthogonal system {¢;} of continuous linear functionals on
Y¢(Q), we conclude from (6.5) and Lemma 6.1 that the modified equation

q
Bv=f—> 4;(f) fj, with suppfy nS=0, j=1,..,4q,
j=1

has always a unique solution v € X¢(2), which satisfies the estimate

vl xe) < Cllfllye),

where C' is independent of f.
We now apply the above considerations to the problem (6.1) with right—hand sides

(6.6) f=Ff = 7‘_29ux Zgb] QQUX

and obtain unique solutions v, € X¢() satisfying the uniform bound
(6.7) loxllxe) < Clir*uyllye(@) < CllrCuyllr2@)
Note that r=2¢u, € Y¢(Q2) for small g since u, € H, (), hence f, € Y2(2). On the other
hand, by Lemma 4.1 we have
(6.8) Uy Jx = Bru (ks uy, vy) = Orar (3 4, 0y) -
Q

From (4.8) we see that the last term can be uniformly bounded as

|Crn (2, 0) | < C ([Juflz2@) + (17 Vullz2e) ) [loxllxeo)
(6.9) < Cllvyllxe(o

Note that the solution u to (2.3) satisfies 77¢Vu € L*(Q) for small o > 0 (cf. [8, Sec. 3.3].
Then (6.9) is obvious for the domain integral in (4.8). To estimate the interface integral,
we make use of the inequalities

||7‘QVLW><|§||HI/2 ) S C gl xe@)
Ir=eVaulsll =12y < C (llullza@ + I Vullza @) -

The first estimate is a consequence of the trace theorem for weighted Sobolev spaces (see
[15]). The proof of the second bound is analogous to that of the well known version
for o = 0 (see e.g. [12, Chap. 1]), using Green’s formula and the fact that u satisfies
homogeneous Helmholtz equations in Q.
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Now we observe that if d(.S, supp x) is sufficiently small then supp u, N supp f;
= () for all , so that the left—hand side of (6.8) takes the form [772¢|u,|?; compare (6.6).
O

Combining this with (6.7) and (6.9) gives the uniform estimate

I eulegy = [ 7 2l < Cllr eyl . B

Q

Remark. It can be proved (even without the assumption that u, vanishes outside a
small neighbourhood of the interface S) that estimate (6.4) holds with o = 1/2 if £~
is real; see also [4] where the domain derivative approach was applied to the inverse
conductivity problem in polygonal domains. However, in the case Im k= > 0 where
stronger singularities may occur at corners of S, the mentioned property of the material
derivative u, (following from (6.3)) was crucial for establishing its uniform boundedness.

We now continue the proof of Theorem 3.2. Choose an arbitrary element ¢ € H,(Q)
such that plo+ € H2(Q*) and [(1/%2) Ouapls = 0. An integration by parts gives

1
BTM(k;uxago) = _/ux (va . ?VQQD‘F QD)
Q

since u, = 0 in Q\supp x. Thus from (4.6) and (4.8) we conclude that

/ux (Vo %Vaso +)= /(xglalu + x9202u) (Vo - %Vaso +¢)
Q

Q
1 S -
(6.10) — /(g V) [ﬁ(&,’au Opatp — Or ol 8T,ag0)]s .
s

Furthermore, since u,, is uniformly bounded in L?(Q2) by Lemma 6.2, we observe that u,
converges weakly to 0 in L?(Q) as d(S,supp x) — 0. Therefore (6.10) implies that

1 - -
(6.11) /(g V) [? (0y,0t Oy ap — Orqu 8T,ag0)]s =0.
5

Applying the trace theorem for polygonal domains (see [12, Thm. 1.5.2.1]), for any
¥ € Hy/?(S) we find a function ¢ € H}(Q) such that |+ € H2(Q*) and
= -2
pls =0, dpls=v, [(1/k)d¢ls=0.
Then it follows from (6.11) that
1 — k)2 — (k) _

[0 [0 ] = [(0-0) (i) Dl =0

s s
for any ¢ € H}/?(S), hence 8,,4ulg = 0 by condition (3.2). Consequently, u € H}()
solves the homogeneous Neumann problem

Ayu+ (k") u=0 in Q,

(6.12) Oyat|s =0, Oulp- +T,u=0.

If Im £~ > 0 then integration by parts easily leads to u = 0 in 7, hence v = 0 in (2,
which is a contradiction proving estimate (3.7) in this case.
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Finally, let &~ > 0 and let ¢ be an arbitrary smooth function on Q. Since u € H3(QF)
for some s > 3/2 (see [8, Sec. 3.3]), the relations (4.8), (6.10) and (6.11) may be extended
to the case ¢ = (u giving

(6.13) /aaﬂau 0ra(Cu) =0, with o:=[1/k*sg-v.
s

Now we proceed as in the proof of Corollary 3.4 in [3]. For any & > 0, choose a smooth
cut—off function ¢, such that

¢:=1 on Sn{oc>e}, (=0 on SN{oc<0}, |V <C/e on Q.

Taking ¢ = (, in (6.13) we get

/ 0 |Oraul? = — / (0¢. |0rqul® + 0T 8, qu 0:C.) .

Sn{o>e} Sn{0<o<e}

Since Vu € L*(S) and meas {0 < o < €} — 0, the last integral tends to 0 as & — 0.
Hence 0, ,u = 0 on SN {c > 0} by condition (3.2), and one verifies analogously that
Or.ou vanishes on SN {o < 0}.

Consequently, u is a solution of the homogeneous Neumann problem (6.12) satisfying
the additional condition 0, ,uls = 0, and in that case an analogue of Lemma 5.2 holds.
Indeed, repeating the arguments leading to relation (5.8), we obtain

0= [ (Buats 85+ Ora D+ v (k)% ul®) = [ (k)% uf®.
S S

Hence u = 0,u = 0 on an open subset of S, which gives v = 0 in 2. This contradiction
finishes the proof of Theorem 3.2.
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