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Abstract. The paper is devoted to study the long-time behaviour of solutions of

the following 4th order parabolic system in a bounded smooth domain 
 �� R
n :

(1) b@tu = ��xu (a�xu� �@tu� f(u) + ~g) ;

where u = (u1; � � � ; uk) is an unknown vector-valued function, a and b are given

constant matrices such that a + a� > 0, b = b� > 0, � > 0 is a positive number,

and f and g are given functions. Note that the nonlinearity f is not assumed to be

subordinated to the Laplacian. The existence of a �nite dimensional global attractor

for the system (1) is proved under some natural assumptions on the nonlinear term f .

Introduction

In the paper we study the longtime behaviour of solutions of the following 4th

order parabolic system in a bounded smooth domain 
 �� R
n :

(0.1) b@tu = ��x (a�xu� �@tu� f(u) + ~g) ;

where u = (u1; � � � ; uk) is an unknown vector-valued function, a and b are given

constant matrices such that a+ a� > 0 and b = b� > 0, � > 0 is a positive number,

f and ~g are given functions.

Systems of type (0.1) arise in mathematical study of phase transitions in mul-

ticomponent systems and are of great recent interest (see e.g. [4]{[6], [8], [19] and

references therein). In particular, M.Gurtin (see [8]) proposed a model which takes

into account microforces and described their in
uence in terms of @tu. To derive

the equation (0.1) he used a mass balance

(0.10) @tu = � div h ;

where u is an order parameter (corresponding to a density of atoms) and h is the

mass 
ux which is related to the chemical potential � and to the order parameter

by the formulae

(0.100) h = �rx� and � = f(u)��xu+ �@tu :

Inserting (0.100) to (0.10) one obtains an equation of type (0.1).

It is well known that in many cases the longtime behaviour of solutions of evo-

lution PDE can be described in terms of an attractor of the semi-group generated

by this equation (see [1], [9], [16] and references therein). Attractors for the system

(0.1) under various assumptions on the nonlinear interaction function f have been

constructed in [3], [11], [14], [15]. Note however, that to the best of our knowledge

the �nite dimensionality of the obtained attractor has been established only under

the following growth restriction

(0.2) jf(u)j � C(1 + jujq); q < qmax =
n+ 2

n� 2
;

which guarantees the nonlinear terms in (0.1) to be subordinated to the linear ones

in the corresponding energetic phase space. This assumption is used in order to

obtain the di�erentiability with respect to the initial values, which is essential for
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the standard scheme of estimating the fractal dimension by using k-contraction

maps (see [1], [9] or [16]).

In the present paper we mainly consider the case where the assumption (0.2) is

not satis�ed. In this case the regularity of solutions which can be deduced from the

energetic arguments is not suÆcient for obtaining the di�erentiability with respect

to the initial values and consequently the standard scheme does not work. So

additional arguments must be involved.

Additional regularity of the attractor (A 2 H4(
)) of the three dimensional

(n = 3) potential Cahn{Hilliard system (0.1) without microforces (� = 0, a = a�,

f = rxF ) has been obtained in [11] under the assumption that the potential F

is positive, suÆciently smooth and quasi-convex, i.e. F (u) + Kjuj2 is convex for

an appropriate constant K (without the growth restriction (0.2)!). Note that this

regularity is enough for proving the quasi-di�erentiability and applying the standard

methods of investigating the attractor.

A �nite dimensional attractor for the second order reaction-di�usion system

(b = 0, � = 1 in (0.1)) with a supercritical nonlinearity has been obtained in [18]

for an arbitrary dimension n without proving the additional regularity of solutions.

In that paper a new scheme of estimating the fractal dimension of invariant sets

which does not require the corresponding map to be quasi-di�erentiable has been

suggested.

In the present paper we extend this result to a more general class of 4th order

Cahn{Hiliard systems (0.1) (b 6= 0) with microforces (� 6= 0) and supercritical

nonlinearity. We will assume that the nonlinear interaction function (which is not

assumed to be potential) satis�es the following conditions:

(0.3)

8><
>:

1: f 2 C1(Rk ;Rk ) ;

2: f(u):u � �C ;

3: f 0(u) � �K :

For simplicity we complete the system (0.1) by the Dirichlet boundary conditions

(0.4) u
��
@


= �xu
��
@


= 0 :

(The case of physically more relevant Neumann boundary conditions is discussed

in Section 5).

It will be convenient for us to assume that f(0) = 0, � = 1, and to rewrite the

equation (0.1) in the following (formally) equivalent form:

(0.5)

�
@t
�
1 + b(��x)

�1
�
u� a�xu+ f(u) = g; x 2 
 ;

u
��
t=0

= u0; u
��
@


= 0 ;

where (��x)
�1 is the inverse operator to the Laplacian with Dirichlet bound-

ary conditions, the function g = ~g � G and G is a solution of the following non-

homogeneous Dirichlet boundary problem

(0.6) �xG = 0; G
��
@


= ~g
��
@


:

It is assumed that the function g in (0.5) belongs to the space L2(
)

(0.7) g 2 L2(
)
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and the initial value u0 is supposed to belong to the nonlinear set

(0.8) D := fv 2 H2(
) : v
��
@


= 0; f(v) 2 L2(
)g

(i.e. D is the domain of de�nition of the nonlinear maximal monotone operator

v ! �a�xv+ f(v)+Kv (in L2(
)) in notations of the monotone operator theory,

see e.g. [2] or [7]) and the 'norm' in this set is de�ned by the following expression:

(0.9) kvk2D := kvk2
H2(
) + kf(v)k2

L2(
) :

A solution of the equation (0.5) is de�ned to be a function

(0.10) u 2 Cw([0; T ]; D )

(i.e. u 2 C([0; T ]; H2
w
(
)), u

��
@


= 0, and f(u) 2 C([0; T ]; L2
w
(
)), where the

symbol 0w0 means the weak topology), which satis�es the equation (0.5) as a relation

in L2(
).

It is not diÆcult to verify that a solution of the equation (0.5) thus de�ned

coincides with the variational solution of the initial problem (0.1), (0.4) if g 2 H1(
)

and g
��
@


= 0 (see [16]). Thus, instead of studying the behaviour of solutions of the

initial problem (0.1), (0.4) we will study below the longtime behaviour of (0.5).

The paper is organized as follows. The existence of a solution for the problem

(0.5) and it's uniqueness is veri�ed in Section 1. The extension of the semi-group

St : D ! D generated by the equation (0.5) in the spirit of the monotone operator

theory in L2 and the attractor A of the obtained semi-group are constructed in

Section 2. Some regularity properties of the attractor are studied in Section 3.

The proof of the fact that the attractor A has a �nite fractal dimension is given in

Section 4.

The case of Neumann boundary conditions

@nu
��
@


= @n�xu
��
@


= 0

is considered in Section 5.

Acknowledgements. The authors have greatly bene�ted from helpful com-

ments of A.Miranville.

x1 Existence of solutions.

In this Section we deduce a number of a priori estimates for the problem (0.5)

and prove that for every u0 2 D this problem has a unique solution. The main

result of this Section is the following Theorem.

Theorem 1.1. Let the assumptions (0.3) and (0.7) be valid. Then for every u0 2 D

the problem (0.5) has a unique solution u in the class (0.10) and the following

estimate holds:

(1.1) ku(t)k2
D
� C1(ku(0)k

2
D
+ kgk2

L2)e
2(K�")t

with some " > 0.

We give below only a formal proof of the estimate (1.1) which can be justi�ed for

instance using Galerkin's approximation method. To this end we need the following

Lemmata.
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Lemma 1.1. Let u be a solution of the equation (0.5). Then the following estimate

holds

(1.2) ku(t)k2
H1 � C1

�
ku(0)k2

H1 + kgk2
L2

�
e2(K�")t ;

where K is the same as in (0.3) and " > 0 is small enough.

Proof. Indeed, multiplying the equation (0.5) by ��xu and integrating over 
 we

obtain after the standard integration by parts that

(1.3) @t
�
krxu(t)k

2
L2 + (bu(t); u(t))

�
+ ((a+ a�)�xu(t);�xu(t))+

+ 2 (f 0(u(t))rxu(t);rxu(t)) + 2 (g;�xu(t)) = 0 ;

Using that a+a� > 0, f 0(u) � �K and applying Friedrichs and H�older's inequality

we deduce from (1.3) that

(1.4) @t
�
krxu(t)k

2
L2 + (bu(t); u(t)

�
+2"krxu(t)k

2
L2 �2Kkrxu(t)k

2
L2 � C"kgk

2
L2 ;

where " > 0 is a suÆciently small positive number. Applying Gronwall's inequality

to the estimate (1.4) and using that b is positive, we obtain the assertion of the

lemma.

Lemma 1.2. Let u be a solution of the problem (0.5). Then the following estimate

is valid:

(1.5) k@tu(t)k
2
L2 � C1(ku(0)k

2
D + kgk2

L2)e
2(K�")t ;

where K is the same as in (0.3) and " > 0 is small enough.

Proof. Di�erentiating the equation (0.5) with respect to t and denoting �(t) =

@tu(t) we get

(1.6)

�
@t
�
1 + b(��x)

�1
�
�(t)� a�x�(t) + f 0(u(t))�(t) = 0 ;

�
��
t=0

= a�xu(0)� f(u(0)) + g ; �
��
@


= 0 :

Multiplying this equation by �(t), integrating over x 2 
 and arguing as in the

proof of the previous lemma, we deduce that

(1.7) @t

�
k�(t)k2

L2 + (b(��x)
�1=2�; (��x)

�1=2�)
�
+

+ 2"k�(t)k2
L2 � 2Kk�(t)k2

L2 � 0 :

Applying Gronwall's inequality to the estimate (1.7) we obtain the assertion of the

lemma.

Lemma 1.3. Let u be a solution of the problem (0.5). Then the following estimate

is valid:

(1.8) ku(t)k2
H2 � C1(ku(0)k

2
D
+ kgk2

L2)e
2(K�")t ;

where " > 0 is small enough.

Proof. Let us rewrite the equation (0.5) in the form of an elliptic boundary problem

(1.9) a�xu(t)� f(u(t)) = @t
�
1 + b(��x)

�1
�
u(t)� g � hu(t); u(t)

��
@


= 0 :
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Multiplying (1.9) by �xu(t) and integrating over x 2 
, we obtain, arguing as in

the proof of Lemma 1.1, that

(1.10) k�xu(t)k
2
L2 � C1Kkrxu(t)k

2
L2 + C2(k@tu(t)k

2
L2 + kgk2

L2) :

According to (L2; H2)-regularity of solutions of the Laplace equation, we have (see

[17])

(1.11) ku(t)k2
H2 � Ck�xu(t)k

2
L2 :

Inserting the inequalities (1.2) and (1.5) into the right-hand side of (1.10) and using

(1.11), we obtain (1.8) after simple calculations. Lemma 1.3 is proved.

Now we are in position to complete the proof of the estimate (1.1). Indeed,

according to (0.9) we should estimate the H2-norm of u(t) and the L2-norm of

f(u(t)). The H2-norm is already estimated in Lemma 1.3, so it remains to estimate

kf(u(t))kL2. But it follows immediately from the equation (0.5) that

(1.12) kf(u(t))k2
L2 � Cku(t)k2

H2 + Ck@tu(t)k
2
L2 + Ckgk2

L2 :

Inserting the inequalities (1.5) and (1.8) into the right-hand side of (1.12) we obtain

the estimate of the L2-norm of f(u(t)). The estimate (1.1) is proved.

The existence of a solution u 2 Cw([0; T ]; D ) for the problem (0.5) can be derived

in a standard way using the a priori estimate (1.1) and the Galerkin's approximation

method with a special choice of basis generated by eigenfunctions of the Laplacian

(see for example [1], [16]). So it remains to prove the uniqueness.

Lemma 1.4. Let u1; u2 2 Cw([0; T ]; D ) be two solutions of the equation (0.5) with

the initial values u1(0) and u2(0) respectively. Then

(1.13) ku1(T )�u2(T )k
2
L2+

Z
T+1

T

ku1(t)�u2(t)k
2
H1 dt � ku1(0)�u2(0)k

2
L2e

2(K�")T

for some positive " > 0. Particularly, the problem (0.5) has a unique solution for

every u0 2 D .

Proof. Let w(t) = u1(t)� u2(t). Then the function w satis�es the equation

(1.14)

�
@t
�
1 + b(��x)

�1
�
w(t)� a�xw(t) = f(u2(t))� f(u1(t)) ;� hu1;u2(t)

w
��
t=0

= u1(0)� u2(0) :

Note, that hu1;u2 2 Cw([0; T ]; L
2). Moreover, since f 0(v) � �K then

(1.15) (f(�1)� f(�2)):(�1 � �2) � �Kj�1 � �2j
2

for every �1; �2 2 R
k . Thus,

(1.16) (hu1;u2(t); w(t)) � Kkw(t)k2
L2 :

Multiplying now the equation (1.14) by w(t), integrating over x 2 
 and using the

estimate (1.16) we deduce that

(1.17) @t

�
kw(t)k2

L2 + (b(��x)
�1=2w(t); (��x)

�1=2w(t))
�
+

+ "kw(t)k2
H1 � 2Kkw(t)k2

L2 � 0 :
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Applying Gronwall's inequality to (1.17) we obtain the estimate (1.13). Lemma 1.4

is proved. Theorem 1.1 is proved.

Remark 1.1. Note, that the dissipativity assumption f(u):u � �C has not been

used in the proof of Theorem 1.1, consequently this theorem remains valid without

this assumption. However the dissipativity assumption will be essentially used

in the next Section in order to prove the existence of an absorbing set for the

semigroup, generated by the equation (0.5).

x2 The attractor.

In this Section we describe the longtime behavior of solutions of the autonomous

equation (0.5) in terms of the attractor for the corresponding semigroup. Recall

that, according to Theorem 1.1, the problem (0.5) generates a Lipschitz continuous

semigroup fSt; t � 0g in D :

(2.1) St : D ! D ; Stu0 = u(t) :

Moreover, (1.1) implies that

(2.2) ku(t)k2
D
� C

�
ku(0)k2

D
+ kgk2

L2

�
e2(K�")t

for a suÆciently small positive ". But the right-hand side of (2.2) tends to +1 as

t!1. (The case K� " < 0 is not considered because in this situation it is easy to

prove that the attractor consists of a unique exponentially attracting equilibrium.)

Hence, the estimate (2.2) does not guarantee that St will be bounded in D when

t ! 1. In fact under our assumptions we can prove that it will be bounded in

L2 or H1 only and not in D . To avoid this diÆculty we extend by continuity the

semigroup St, which is initially de�ned for only u0 2 D to Ŝt : L
2 ! L2. Indeed, D

is dense in L2 and according to (1.13) St is uniformly continuous on D in L2-metric

for every �xed t. Consequently it can be extended in a unique way to a semigroup

Ŝt on L2 by

(2.3) Ŝtu0 = L2
�lim
n!1

Stu
n

0 ; un0 2 D ; u0 = L2
�lim
n!1

un0 :

Moreover, the estimate (1.13) implies that

(2.4) kŜtu
1
0 � Ŝtu

2
0k

2
L2 +

Z
T+1

T

kŜtu
1
0 � Ŝtu

2
0k

2
H1 dt � e2(K�")T ku10 � u20kL2

for every u10; u
2
0 2 L2 and since un(t) = Stu

n

0 2 C([0; T ]; L2) if un0 2 D then

u(t) = Ŝtu0 also belongs to C([0; T ]; L2) for every u0 2 L2.

Thus, we can naturally interpret the function u(t) = Ŝtu0 as a unique solution

of the problem (0.5) for u0 2 L2 and study the longtime behavior of the semigroup

Ŝt : L2 ! L2. The following Theorem is of fundamental signi�cance for these

purposes.

Theorem 2.1. Let u0 2 L2 and u(t) = Ŝtu0. Then u 2 C([0; T ]; L2) for every

T � 0 and

(2.5) ku(T )k2
L2 +

Z
T+1

T

ku(t)k2
H1 dt � C1ku(0)k

2
L2e

�"t + C2(1 + kgk2
L2)
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for a suÆciently small positive " > 0. Moreover, for every t > 0, u(t) 2 H1,

u 2 C([t; T ]; H1
w
), and the following estimate is valid:

(2.6) ku(T )k2
H1 +

Z
T+1

T

ku(t)k2
H2 dt � C

t+ 1

t

�
ku(0)k2

L2e
�"t + 1 + kgk2

L2

�
:

Proof. According to (2.3), it is suÆcient to deduce the estimates (2.5) and (2.6)

only for u0 2 D . Let us prove �rstly the estimate (2.5).

Multiplying the equation (0.5) by u(t) and integrating over x 2 
, we obtain

that

(2.7) @t

�
ku(t)k2

L2 + (b(��x)
�1=2u(t); (��x)

�1=2u(t))
�
+

+ 2 ((a+ a�)rxu(t);rxu(t)) = �2 (f(u(t)); u(t)) + 2 (g(t); u(t)) :

Using that a+ a� > 0 and b = b� > 0, the dissipativity assumption (0.3) on f(u),

H�older and Friedrichs inequalities we derive that

(2.8) @t

�
ku(t)k2

L2 + (b(��x)
�1=2u(t); (��x)

�1=2u(t))
�
+

+ "ku(t)k2
L2 + "ku(t)k2

H1 � C
�
1 + kgk2

L2

�
:

Applying Gronwall's lemma to (2.8) we obtain the estimate (2.5).

Let us prove now the estimate (2.6). We give below only a formal deriving of it

which can be justi�ed by Galerkin's approximation method.

Multiplying the equation (0.5) by t�xu(t) integrating over x 2 
, we obtain

after integration by parts that

(2.9) @t
�
tkrxu(t)k

2
L2 + t(bu(t); u(t))

�
�

� ku(t)k2
H1 � (bu(t); u(t)) + t ((a+ a�)�xu(t);�xu(t)) =

= �2t (f 0(u)rxu(t);rxu(t))� 2t(g;�xu(t)) :

Using now the quasimonotonicity assumption (0.3) on f(u) and that a + a� > 0

and b = b� > 0, we obtain as in the proof of the previous estimate that

(2.10) @t
�
tku(t)k2

H1 + t(bu(t); u(t))
�
+ "(tku(t)k2

H1) + "(tku(t)k2
H2) �

� C
�
(t+ 1)ku(t)k2

H1 + tkgk2
L2

�

for a suÆciently small positive ". Applying Gronwall's inequality to (2.10) and using

the estimate (2.5) for the integral of ku(t)k2
H1 , we obtain after simple calculations

the estimate (2.6).

Thus, it remains to prove the continuity of u(t) with respect to t. Indeed, the

fact u 2 C([0; T ]; L2) follows from (2.3) and from the continuity of solutions un for

(0.5) with un(0) 2 D proved in Theorem 1.1 (un 2 C([0; T ]; L2)).

The weak continuity inH1 for t > 0 follows from u 2 C([0; T ]; L2)\L1([t; T ]; H1)

(see [12] for instance). Theorem 2.1 is proved.

Now we are in a position to construct a compact attractor for the semigroup Ŝt
in L2. Let us remind that a set A � L2 is called an attractor for Ŝt : L

2 ! L2, if

7



1. The set A is compact in L2.

2. The set A is strictly invariant with respect to Ŝt, i.e.

(2.11) ŜtA = A for t � 0 :

3. A is an attracting set for Ŝt in L
2. The latter means that for every neighbor-

hood O(A) of the set A in L2 and for every bounded subset B � L2 there exists

T = T (B;O) such that

(2.12) ŜtB � O(A) for every t � T :

(See [1], [9], [16] for details).

Theorem 2.2. Let the assumptions (0.3) be valid and let g 2 L2. Then the semi-

group Ŝt, de�ned by (2.3), possesses a compact attractor A �� L2 (A � H1) which

has the following structure

(2.13) A = �0K ;

where K denotes the set of all complete bounded trajectories of the semigroup Ŝt:

(2.14) K = fû 2 Cb(R; L
2) : Ŝhu(t) = u(t+ h) for t 2 R, h � 0; ku(t)kL2 � Cug

and �0u � u(0).

Proof. According to the abstract attractor existence theorem (e.g. see [1] ) it is

suÆcient to verify that

1. The operators Ŝt : L
2 ! L2 are continuous for every �xed t � 0.

2. The semigroup Ŝt possesses a compact attracting set K in L2.

The continuity is an immediate corollary of (2.4). So it remains only to verify

the existence of the attracting set.

The estimate (2.6) implies that the H1-ball

K � fv 2 H1(
) : kvkH1 � Rg

will be the attracting (and even the absorbing) set for the semigroup Ŝt in L2, if

R is large enough. Since H1 �� L2 then K is compact in L2 and consequently the

semigroup Ŝt possesses the attractor A � K � H1. Theorem 2.2 is proved.

x3 The regularity of solutions.

Let us remind that in Section 1 we have proved that the problem (0.5) has a

unique solution u(t) = Stu0 for every u0 2 D . Then in Section 2 we have extended

by continuity the semigroup St from D to Ŝt : L2 ! L2 and proved that the

semigroup thus obtained possesses the attractor A in L2. This Section studies the

following three problems which naturally arise after proving the above results:

1. In what sense the 'solution' u(t) = Ŝtu0 satis�es the equation (0.5) if u0 only

belongs to L2 (but not from D ).

2. Whether the attractor A belongs to the space D .

8



3. Under what assumptions on f the semigroup Ŝt possesses the following

smoothing property:

(3.1) Ŝt : L
2
! D for every t > 0 :

Note also that these problems occur to be closely connected with the problem of

the �nite dimension of the attractor A which will be considered in the next Section.

We start here with the most simple case where the nonlinear term f satis�es the

following growth restriction:

(3.2) jf(u)j � C(1 + jujp) where p � pmax � 1 +
4

n� 4
;

if n > 4 and p is arbitrary if n = 4 (for n � 3 we need not any growth restriction!).

In this case one can easily verify (using Sobolev embedding theorem) that f(v) 2 L2

if v 2 H2. Thus,

(3.3) D = H2(
) \ fv
��
@


= 0g

and therefore the nonlinearity f(u) is subordinated to the linear term �xu.

Theorem 3.1. Let the assumption (3.2) holds. Then the semigroup Ŝt possesses

the smoothing property in the form of (3.1) and consequently for every u0 2 L2

u(t) = Ŝtu0 satis�es (0.5) in the sense of distributions. Moreover,

(3.4) ku(1)k2
D
� Q(ku0k

2
L2 + kgk2

L2)

for a certain monotonous function Q depending on f and therefore

(3.5) A � D :

Proof. Indeed, according to (2.6) u 2 L2([s; T ]; H2) for every s > 0. Hence due

to Fubini's theorem u(t) 2 H2 for almost all t 2 R+ . Then, according to (3.3),

u(t) 2 D for almost all t 2 R+ . But Theorem 1.1 implies that Ŝt : D ! D , therefore

u(t) 2 D for every t > 0. Let us prove now the estimate (3.4).

Indeed, according to (2.6),

Z 1

1=2

ku(t)k2
H2dt � C(ku(0)k2

L2 + 1 + kgk2
L2) :

The latter means that there exists a point t0 2 [1=2; 1], such that

(3.6) ku(t0)k
2
H2 � 2C(ku(0)k2

L2 + 1 + kgk2
L2)

and hence, according to (3.2) and the embedding theorem

(3.7) ku(t0)k
2
D � ku(t0)k

2
H2 + kf(u(t0))k

2
L2 � Q(ku(t0)k

2
H2)

for a certain monotonous function Q. The estimate (3.4) follows now from the

inequality (2.2) with u0 = u(t0) applied in the point t = 1 � t0 and from the

estimates (3.6) and (3.7).
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Thus it remains to prove the embedding (3.5). But this fact is an immediate

corollary of the estimates (2.5) and (3.4). Theorem 3.1 is proved.

Remark 3.1. Let n � 3. Then Theorem 3.1 and the embedding theorem imply

that under the assumptions of Section 2

(3.8) Ŝt : L
2(
)! C(
) for t > 0 and A � C(
) :

Assume now that n � 4, (3.2) holds with p < p0 and the right-hand side g 2 Lr(
)

for a some r > n

2
. Then using the Lq-regularity theory for the heat equations

(see [10]) one can derive that the assertions (3.8) remain valid in this case as well.

Moreover the space C in (3.8) can be replaced by H2;r �� C.

Note also that the growth condition (3.2) is essentially less restrictive than (0.4).

Let us consider now the case when the nonlinearity f is not subordinated to the

linear part �xu.

Theorem 3.2. Let the assumptions of Theorem 2.2 holds and let u(t) = Ŝtu0 with

u0 2 L2. Then the function f(u(t)):u(t) belongs to L1([0; T ]; L1(
)) and satis�es

the estimate

(3.9)

Z
T+1

T

kf(u(t)):u(t)kL1dt � Cku0k
2
L2e

�"T + C(1 + kgk2
L2) ;

for every T � 0.

Proof. Indeed, let u(t) = L2�limn!1 un(t) where un be the solution of (0.5) with

the initial condition un(0) 2 D . Multiply the equation (0.5) (with u replaced by

un) by un(t) and integrate over (t; x) 2 [T; T + 1]� 
. We will have after evident

transformations that

(3.10)

Z
T+1

T

(f(un(t)); un(t)) dt = 1=2
�
kun(T )k

2
L2 � kun(T + 1)k2

L2

�
+

1=2
�
(b(��x)

�1=2un(T ); (��x)
�1=2un(T )) �

� (b(��x)
�1=2un(T + 1); (��x)

�1=2un(T + 1))
�

�

Z
T+1

T

(arxun(t);rxun(t))dt+

Z
T+1

T

(g; un(t)) dt :

Inserting the estimate (2.5) into the right-hand side of (3.10) and using the fact

that f(u):u � �C we obtain

(3.11)

Z
T+1

T

kf(un(t)):un(t)kL1dt � Ckun(0)k
2
L2e

�"T + C(1 + kgk2
L2) :

Note that without loss of generality we may assume that un ! u a.e. in [T; T+1]�


and consequently jf(un):unj ! jf(u):uj a.e. Passing now to the limit n ! 1 in

(3.11), we derive the estimate (3.9). Theorem 3.2 is proved.
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Corollary 3.1. Let the assumptions of Theorem 2.2 hold and let the function f(u)

satisfy the inequality

(3.12) jf(v)j � C
�
jf(v):vj+ 1 + jvj2

�
for every v 2 R

k :

Then 1. f(u) 2 L1([0; T ]; L1), 2. @tu 2 L1([s; T ]; L1) for every s > 0 and u(t) =

Ŝtu0 satis�es (0.5) in the sense of distributions.

In general situations (where the estimate (3.12) is not assumed to be ful�lled)

the function u(t) = Ŝtu0 can be interpreted as a unique solution of a variational

inequality (see e.g. [2]) which corresponds to the system (0.5). In order to de-

rive this inequality we assume that u 2 Cw([0; T ]; D ) is a solution of (0.5) and

v 2 Cw([0; T ]; D ) \ C1
w
([0; T ]; L2) be an arbitrary test function. Multiply now the

equation (0.5) by u(t) � v(t) and intergate over [0; T ] � 
. Then, integrating by

parts and using the inequalities

(f(u)� f(v); u� v) � Kku� vk2
L2 ; �(a�xu��xv; u� v) � 0 ;

we derive the following inequality:

(3.13)

1=2
�
(1 + b(��x)

�1)u(t); u(t))� 2v(t)
� ����

t=T

t=0

+

Z
T

0

((1+b(��x)
�1)u(t); @tv(t)) dt �

�

Z
T

0

(a�xv(t)� f(v(t)) + g(t); u(t)� v(t)) dt+K

Z
T

0

ku(t)� v(t)k2
L2 dt :

Approximating now a 'solution' u(t) = Ŝtu0 by un(t) := Stu
n

0 , u
n

0 2 D , and un0 ! u0
in L2 and passing to the limit n!1 in the inequalities (3.13) for the solutions un,

we derive that u(t) 2 C([0; T ]; L2(
)) also satis�es (3.13). The following Theorem

shows that this property characterises the 'solution' u(t).

Theorem 3.3. Let the above assumptions hold and let u 2 C([0; T1]; L
2(
)) satisfy

the inequality (3.13) for every T 2 [0; T1] and every test function

v 2 Cw([0; T1]; D ) \ C
1
w
([0; T1]; L

2(
)) ;

then u(t) = Ŝtu0.

Proof. Indeed, let vn0 2 D , vn0 ! u0 := u(0) in L2(
) and vn(t) := Stv
n

0 . Then by

de�nition vn(t) ! v(t) in C([0; T1]; L
2(
)), where v(t) := Ŝtu0. Let us prove that

u(t) � v(t). Indeed, taking vn(t) as a test function in (3.13), we derive using the

equation (0.5) for vn and integration by parts that

�
(1 + b(��x)

�1)(u(t)� vn(t)); u(t)� vn(t)
� ����

t=T

t=0

� 2K

Z
T

0

ku(t)� vn(t)k
2
L2 dt :

Passing to the limit n!1 in this inequality and using that u(0) = v(0) and that

the matrix b is positive we obtain that

ku(T )� v(T )k2
L2 � 2K

Z
T

0

ku(t)� v(t)k2
L2 dt :

11



Gronwall's inequality implies now that u(t) � v(t). Theorem 3.3 is proved.

Remark 3.2. Approximating the test function v(t) in (3.13) by piecewise constant

with respect to t ones, one can establish that instead of the inequality (3.13) it is

suÆcient to require that for every v0 2 D and every 0 � � � T � T1

(3.14) 1=2
�
(1 + b(��x)

�1)u(t); u(t)� 2v0
� ����

t=T

t=�

�

�

Z
T

�

(a�xv0 � f(v0) + g; u(t)� v0) dt+K

Z
T

�

ku(t)� v0k
2
L2 dt

(which is similar to the standard variational inequalities for monotone operator

theory, see [2]).

Now we are going to study the smoothing properties of (0.5) for the case where

the main part of the nonlinearity f has a gradient structure.

Theorem 3.4. Let the assumptions of Theorem 2.2 be valid and let the function

f have the structure

(3.15) f(v) = f1(v) + f2(v) ;

where the function f1 also satis�es (0.3) and f1(v) = rvF (v), and the function f2
be subordinated to f1 in the following sense

(3.16) jf2(v)j
2
� C1F (v) + C2

�
1 + jvj2

�
:

Then the semigroup Ŝt, de�ned by (2.3), maps L2 to D for every t > 0. Moreover,

(3.17) ku(t)k2
D
� C

1 + t2

t2

�
ku(0)k2

L2e
�"t + 1 + kgk2

L2

�

and therefore A � D .

The proof of this theorem is based on a number of lemmata.

Lemma 3.1. Under the assumptions of Theorem 3.3 the following estimate is

valid:

(3.18) �C (1 + ln(jvj+ 1)) � F (v) � C
�
jf(v):vj+ 1 + jvj2

�
for every v 2 R

k

and consequently

(3.19)

Z
T+1

T

kf2(u(t))k
2
L2 + kF (u(t))kL1 dt � Cku(0)k2

L2e
�"t + C(1 + kgk2

L2) :

The proof of this lemma is given in [18].

Lemma 3.2. Let the assumptions of Theorem 3.3 hold. Then for T > 0

(3.20)

Z
T+1

T

k@tu(t)k
2
L2 dt � C

T + 1

T

�
ku(0)k2

L2e
�"t + 1 + kgk2

L2

�
:
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Proof. Let us multiply the equation (0.5) by t@tu(t) and integrate over t 2 [0; 2]:

(3.21)

Z 2

0

t
�
k@tu(t)k

2
L2 + (b(��x)

�1=2u(t); (��x)
�1=2u(t))

�
dt =

=

Z 2

0

(a�xu(t); t@tu(t)) dt� 2F (u(2))+

+

Z 2

0

F (u(t)) dt�

Z 2

0

t(f2(u(t)); @tu(t)) dt+

Z 2

0

t(g; @tu) dt :

Applying the H�older inequality together with (2.5) and (3.19) to the right-hand

side of (3.21), we deduce that

Z 2

0

tk@tu(t)k
2
L2 dt � C

�Z 2

0

tk�xu(t)k
2
L2 dt+ 1 + kgk2

L2 + ku0k
2
L2

�
:

Arguing as in the proof of estimate (2.6) one can easily derive that

(3.22)

Z 2

0

tk�xu(t)k
2
L2 dt � C

�
ku0k

2
L2 + 1 + kgk2

L2

�

and therefore

(3.23)

Z 2

0

tk@tu(t)k
2
L2 dt � C1

�
1 + kgk2

L2 + ku0k
2
L2

�
:

Note that the estimate (3.23) implies (3.20). Indeed, for T � 1 we derive from

(3.23) that

T

Z
T+1

T

k@tu(t)k
2
L2 dt � C1

�
1 + kgk2

L2 + ku0k
2
L2

�
:

And if T � 1, then according to (3.23) and (2.5)

Z
T+1

T

k@tu(t)k
2
L2 dt � C(ku(T�1)k2

L2+1+kgk
2
L2) � C1

�
ku(0)k2

L2e
�"t + 1 + kgk2

L2

�

Lemma 3.2 is proved.

Lemma 3.3. Let the assumptions of Theorem 3.3 hold. Then for t > 0

(3.24) k@tu(t)k
2
L2 � C

1 + t2

t2

�
ku(0)k2

L2e
�"t + 1+ kgk2

L2

�
:

Proof. Let us di�erentiate the equation (0.5) with respect to t and denote �(t) =

@tu(t). We will obtain the equation

(3.25) @t
�
1 + b(��x)

�1
�
�(t) = a�x�(t)� f 0(u(t))�(t) :

Multiplying the equation (3.25) by t2@t� and using the monotonicity assumption

on f , we derive that

(3.26) @t

�
t2k�(t)k2

L2 + t2(b(��x)
�1=2�(t); (��x)

�1=2�(t))
�
� 2tk�(t)k2

L2 �

� �t2((a+ a�)@t�; @t�) + 2t(b(��x)
�1=2�(t); (��x)

�1=2�(t)) + 2Kt2k�(t)k2
L2
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and therefore

(3.27) @t

�
t2k�(t)k2

L2 + (b(��x)
�1=2�(t); (��x)

�1=2�(t))
�
+

+ "
�
t2k�(t)k2

L2

�
� Ct(t+ 1)k@tu(t)k

2
L2 :

Applying Gronwall's inequality to the estimate (3.27) and using the estimate (3.23)

for @tu(t) in the right-hand side of (3.27), we obtain the assertion of the lemma.

Now we are in a position to complete the proof of the Theorem. Indeed, the

estimate (3.24) inserted in (1.10) gives us that

ku(t)k2
H2 � C

1 + t2

t2

�
ku(0)k2

L2e
�"t + 1 + kgk2

L2

�
:

Inserting this estimate into (1.12) we derive the analogous estimate for the norm

of f(u(t)). Theorem 3.4 is proved.

Remark 3.3. The model example of the nonlinearity f(u) for which the assump-

tions of previous Theorem hold is the following:

(3.28) f1(u) = (a1u1ju1j
p1 ; � � � ; akukjukj

pk) ; f2(u) = Lu ;

where ai > 0, pi > 0 and L is and arbitrary linear operator (L 2 L(Rk ;Rk )).

x4 The dimension of the attractor

In this Section we prove that under some additional assumptions on the nonlinear

term f(u) the attractor A of the equation (0.5) has a �nite fractal dimension. Note

that the usual way of estimating the fractal dimension of invariant sets involving

the Liapunov exponents and k-contraction maps (see for instance [16]) requires the

semigroup to be quasidi�erentiable with respect to the initial data on the attractor.

But in our case where f(u) is not subordinated to the linear part �xu (in the

sense of (3.3)) we were able to prove only that A � D (under the assumptions of

previous Section) which is not suÆcient to obtain the di�erentiability. To avoid this

diÆculty we use below a another scheme of estimating the dimension of invariant

sets introduced in [18] which works without the di�erentiability assumptions.

First of all we remind here the de�nition and the simplest properties of the fractal

dimension (see [16] for further details).

De�nition 4.1. Let X be a metric space and let M be a precompact set in X.

Then, according to Hausdor�'s criterium the set M can be covered by a �nite

number of "-balls in X for every " > 0. Denote by N"(M;X) the minimal number

of "-balls in X which cover M . Then the Kolmogorov entropy of the set M in X is

de�ned to be the following number

(4.1) H"(M;X) � log2N"(M;X)

and the fractal (entropy, box-counting) dimension of M can be de�ned in the fol-

lowing way

(4.2) dF (M) = dF (M;X) = lim sup
"!0

H"(M;X)

log2
1
"

:

The following properties of the fractal dimension can be easily deduced from it's

de�nition:

14



Proposition 4.1. 1. Let M be a compact k dimensional Lipschitz manifold in X.

Then dF (M;X) = k.

2. Let X and Y be metric spaces M � X and L : X ! Y . Assume that the map

L is globally Lipschitz continuous on M . Then

(4.3) dF (L(M); Y ) � dF (M;X) :

Particularly, the fractal dimension preserves under Lipschitz continuous homeo-

morphisms.

The following Theorem is of fundamental signi�cance in our study the dimension

of attractors.

Theorem 4.1. Let H1 and H be Banach spaces, H1 be compactly embedded into H

and let K �� H. Assume that there exists a map L : K ! K, such that L(K) = K

and the following 'smoothing' property is valid

(4.4) kL(k1)� L(k2)kH1
� Ckk1 � k2kH

for every k1; k2 2 K. Then the fractal dimension of K in H is �nite and can be

estimated in the following way:

(4.5) dF (K;H) � H1=4C(B(1; 0; H1); H) ;

where C is the same as in (4.4) and B(1; 0; H1) means the unit ball in the space

H1.

The proof of this Theorem is given in [18].

Now we are ready to formulate the main result of this Section.

Theorem 4.2. Let the assumptions of Theorem 2.2 hold and let A be the attractor

of the equation (0.5). Assume that for a suÆciently small Æ > 0 the following

regularity assumption is valid

(4.6) kf 0(�u0 + (1� �)u1)kL2�Æ(
) � C

uniformly with respect to u0; u1 2 A and � 2 [0; 1]. Then the fractal dimension of

the attractor A is �nite.

(4.7) dF (A; L
2(
)) <1 :

We are going to apply Theorem 4.1. In order to do so we need some estimates

for the di�erence v(t) = u1(t) � u2(t) between two solutions u1 and u2 belonging

to the attractor.

Lemma 4.1. Let the assumptions of the theorem hold and let " > 0 and Æ > 0

satis�es the condition

0 < k("; Æ) �
4"+ Æ � "Æ

1� ("+ Æ)
�

4

n� 2
:

Then the following estimate is valid:

(4.8) k@tvkL1+"([1;2];L1+"(
)) + kvkL2([1;2];H1(
)) � Ckv(0)kL2 :
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Proof. Recall, that the function v(t) satis�es the equation

(4.9) @t
�
1 + b(��x)

�1
�
v(t) = a�xv � l(t)v ; v

��
@


= 0

with l(t) =
R 1
0
f 0(su1(t) + (1� s)u2(t)) ds. Since u1(t); u2(t) 2 A, the assumption

(4.6) implies that

(4.10) kl(t)kL2�Æ � C1 :

Let us estimate the L1+"-norm of the function hv(t) = l(t)v(t) using H�older inequal-

ity, the estimate (4.10), and Sobolev's embedding theorem H1 � Lp if p � 2+ 4
n�2

:

(4.11) khv(t)kL1+" � kl(t)kL2�Ækv(t)kL2+k(";Æ) � C2kv(t)kH1 :

It follows from the estimates (2.4) and (4.14) that

(4.12) khvkL1+"([0;2];L1+") � C3kv(0)kL2 :

Let us rewrite (4.9) as a linear non-homogeneous problem in 


(4.13) @t
�
1 + b(��x)

�1
�
v = a�xv � hv(t) :

Then according to the L1+"-regularity theorem for the linear equation (4.16) (this

theorem for b > 0 can be easily deduced from the one for a standard parabolic

equation using the compact perturbations arguments) and using the smoothing

property for the corresponding homogeneous problem (see for instance [10]), we

derive that

(4.14) k@tvkL1+"([1;2];L1+") + k�xvkL1+"([1;2];L1+") �

� C
�
kv(0)kL1+" + khvkL1+"([0;2];L1+")

�
� C4kv(0)kL2 :

The estimate (4.14) together with (2.4) completes the proof of Lemma 4.1.

Lemma 4.2. Let the assumptions of the previous lemma hold. Then

(4.15) kv(1)k2
L2 � C

Z 1

0

kv(t)k2
L2 dt :

Proof. Indeed, multiplying the equation (4.12) by tv(t) and integrating over x 2 
,

we obtain using the fact that l(t) � �K

(4.16) @t

�
tkv(t)k2

L2 + t(b(��x)
�1=2v(t); (��x)

�1=2v(t))
�
�

� 2K
�
tkv(t)k2

L2

�
� Ckv(t)k2

L2 :

Applying Gronwall's inequality to the estimate (4.16), we obtain the assertion of

the lemma.

Thus, combining the results of Lemmata 4.1 and 4.2, we derive that

(4.17) k@tvkL1+"([2;3];L1+"(
)) + kvkL2([2;3];H1(
)) � CkvkL2([0;1];L2) :
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Now we are in the position to complete the proof of the theorem. To this end we

introduce the space

(4.18) W = fu 2 L2([0; 1]; H1) : @tu 2 L1+"([0; 1]; L1+")g :

It is known (see [13]) that the space W is compactly embedded into L2([0; 1]; L2).

Let us consider the restriction K
��
[0;1]

of the kernel K, de�ned by (2.14) and the

map

(4.19) L : K
��
[0;1]

! K
��
[0;1]

; (Lu)(t) = Ŝ2u(t) :

Since the attractor is strictly invariant with respect to Ŝt, we have

L
�
K
��
[0;1]

�
= K

��
[0;1]

and due to (4.17),

kL(u1)� L(u2)kW � Cku1 � u2kL2([0;1];L2) :

Consequently, according to Theorem 4.1,

(4.20) dF

�
K
��
[0;1]

; L2([0; 1]; L2(
))
�
<1 :

The �nite dimensionality of A in L2(
) is an immediate corollary of (4.20), (4.15)

and the second assertion of Proposition 4.1. Theorem 4.2 is proved.

Thus, we have proved that the attractor is �nite dimensional under the regularity

assumption (4.6). But it is still not clear how to verify this condition in applications.

The following corollary gives an answer on this question.

Corollary 4.1. Let the attractor A be bounded in D (for instance let the assump-

tions of Theorem 3.3 be valid). Let us assume also that there exists a convex

function 	 : Rk ! R+ , such that

(4.21) K2	(v)� C2 � kf 0(v)k
L(Rk;Rk) � K1	(v) + C1 ; 8v 2 R

k ;

where Ki > 0. Moreover, it is assumed that the derivative f 0 satis�es the estimate

(4.22) kf 0(v)k
L(Rk;Rk) � C(jf(v)j1+� + 1)

for a suÆciently small � > 0 and every v 2 R
k . Then the assumption (4.6) is

satis�ed and consequently the attractor A has a �nite fractal dimension.

Indeed, since the function 	 is convex, we have

(4.23) kf 0(�v1 � (1� �)v2)kL(Rk;Rk) � K1�	(v1) +K1(1� �)	(v2) + C2 �

�
K1

K2

�
�kf 0(v1)kL(Rk;Rk) + (1� �)kf 0(v2)kL(Rk;Rk) + C

�

for every v1; v2 2 R
k and � 2 [0; 1]. Thus, (4.6) is ful�lled if

(4.24) kf 0(u0)kL2�Æ(
) � C for every u0 2 A :

In order to verify the assumption (4.24) we use the estimate (4.22). Indeed, ac-

cording to (4.22) and due to the fact that A is bounded in D

kf 0(u0)k
2�Æ
L2�Æ � C(kf(v)k2

L2 + 1) � C(kuk2
D
+ 1) � C1

for Æ = 2� 2
1+�

. Corollary 4.1 is proved.

Remark 4.1. Since the solutions of the equation y0 = y1+� blow up in �nite time,

(4.22) is not a growth restriction but only some kind of regularity assumption.
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x5 The case of Newmann boundary conditions.

In this Section we brie
y consider the 4-order parabolic system of the Cahn-

Hilliard type with Neumann boundary conditions:

(5.1)

8><
>:

b@tu = ��x (a�xu� @tu� f(u) + ~g) ;

@nu
��
@


= @n�xu
��
@


= 0 ;

u
��
t=0

= u0 :

It is assumed as before that u = (u1; � � � ; uk) is a vector-valued unknown function,

b = b� > 0 and a, a + a� > 0 are given. As in the case of Dirichlet boundary

conditions the solution u of the equation (5.1) is de�ned to be a function u 2

Cw([0; T ]; D(A))[ C1
w
([0; T ]; L2(
)), where

D(A) := fu 2W 2;2(
) : @nu
��
@


= 0; f(u) 2 L2(
)g

and the equality (5.1) should be understood in the variational sence (see e.g. [16]).

The main di�erence to the case of Dirichlet boundary conditions considered

before is the fact that the Laplacian �x with Newmann boundary conditions has

zero eigenvalue, moreover, the multiplicity of zero eigenvalue is equal to k in the

case of systems. This leads to appearing of k concervation laws for the initial system

(5.1) and to some additional conditions to the external force ~g. Indeed, integrating

the equation (5.1) over x 2 
 we obtain after the standard integration by parts

that

(5.2) b@t

Z
x2


u(t) dx =

Z
@


@n~g dS :

The equality (5.2) shows that one can expect the bounedness of solution u(t) (even

in L1(
)-norm) only if the right-hand side of (5.2) equals to zero, i.e. we should

impose the following restrictions on ~g:

(5.3)

Z
@


@n~g
i(x) dS = 0; i = 1; � � � ; k (~g = (~g1; � � � ; ~gk)) :

It will be assumed everywhere below that the condition (5.3) is satis�ed. Therefore,

the relation (5.2) gives us k conservation laws (b is invertible!):

(5.4)


ui(t)

�
=


ui(0)

�
:= mi; i = 1; � � � ; k; hfi :=

1

j
j

Z
x2


f(x) dx :

Thus, it seems resonable to consider the restrictions of the dynamical system, gen-

erated by (5.1) to invariant surfaces

(5.5) Tm := fu 2 D(A) :


ui
�
= mi; i = 1; � � � ; kg; m := (m1; � � � ;mk)

and to study the dynamics on these surfaces.

Our task now is to rewrite the equation (5.1) in the form of (0.5) (as we have

done for the case of Dirichlet boundary condtions). Note however that the Laplace

operator with Neumann boundary conditions is not invertible and a priori it is not

clear how to do so.
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De�ne now the inverse operator L := (��x)
�1 by the following formula: w = Lv

is a unique solution of the following equation

(5.6) �xw = v; @nw
��
@


= 0; hwi = 0 ;

which is de�ned on L2(
) \ fhvi = 0g (it is well known that this de�nition is

correct). Let us apply the operator L to both sides of the equation (5.1) (it is

possible to do because hb@tui = 0 due to the conservation laws). Then we derive

after the standard computations that the solution u should satisfy the following

equation:

(5.7)

�
(1 + bL)@tu = a�xu� f(u) + hf(u)i+ g;

@nu
��
@


= 0; u
��
t=0

= u0 ;

where the function g = ~g � h~gi � G and G is a solution of the following non-

homogeneous Neumann boundary problem

(5.8) �xG = 0; @nG
��
@


= @n~g
��
@

; hGi = 0 ;

which is uniquely solvable due to (5.3).

The obtained equation (5.7) is a compact perturbation (by the term bL@tu) of

the mass-preserving Allen{Cahn equation. Thus, in contrast to the case of Dirichlet

boundary conditions we will have now the additional non-local term hf(u)i in the

right-hand side of (5.7). Note however that this term is also compact (and even one

dimensional) perturbation and the methods applied above to the case of Dirichlet

boundary conditions should work (after minor changing) in this situation as well.

The main aim of this Section is to verify that it is really so.

It is assumed that the non-linear term f(u) satis�ed the assumptions (0.3) (as

before) and also the following additional condition: for every � > 0 there is a

constant C�, such that

(5.9) jf(u)j � �jf(u):uj+ C�; 8u 2 R
k :

Note, that the assumption (5.9) is always true in the scalar case (k = 1) and looks

not very restrictive even in the case of systems (k � 2). We need this additional

assumptions in order to obtain the appropriate estimates for the non-local term

hf(u)i.

We assume also that the external force g 2 L2(
) and has a zero mean value

hgi = 0 (which is necessary in order to obtain the conservation laws (5.4)).

The analogue of Theorem 1.1 for this case is the following one.

Theorem 5.1. Let the above assumptions hold. Then for every m 2 R
k and every

u0 2 Tm the problem (5.7) possesses a unique solution which satis�es the following

estimate:

(5.10) ku(t)kD(A) � Cmku(0)k
2
D(A)e

2Kt + Cm(1 + kgk20;2) ;

where the constant Cm depends only on m and is independent of g and u0. More-

over, if u0 2 Tm, then u(t) 2 Tm for every t � 0.

Proof. Indeed, in order to verify the invariance of Tm it is suÆcient to integrate the

equation (5.7) over x 2 
 and to take into account the assumption hgi = 0 and the

fact that, by de�nition of the operator L, hL@tui = 0.
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The proof of the estimate (5.10) is completely analogous to the proof of Theorem

1.1 because h�xui = 0 and h@tui = 0. Consequently the non-local term hf(u)i will

disappear in the relations (1.3), (1.7) and (1.10) and therefore repeating word by

word the proofs of Lemmata 1.1{1.3 we derive the estimates (1.2), (1.5) and (1.8)

for the case of equation (5.7).

The only problem is to obtain the estimate for the non-local term hf(u)i which

is necessary in order to obtain the estimate kf(u)k0;2 expressing f(u) from the

equation (5.7) (as in (1.12)). Thus, we restrict ourselves to give only the proof of

such estimate.

Lemma 5.1. Let the above assumptions hold. Then

(5.11) j hf(u(t))i j � Cmku(0)k
2
D(A)e

2Kt + Cm(kgk
2
0;2 + 1) ;

where � > 0 is an appropriate positive constant.

Proof. Indeed, taking the inner product in Rk of the equation (5.7) with the function

u(t), integrating over x 2 
 and taking into account that hu(t)i = m, we derive the

relation

(5.12) ((1 + bL)@tu(t); u(t)) = �(arxu(t);rxu(t))�

� (f(u(t)); u(t)) + (g; u(t)) +m: hf(u(t))i :

Using the estimates (1.2) and (1.8) one can easily derive from (5.12) that

(5.13)

Z



jf(u(t)):u(t)j dx � jmj � j
j

Z



jf(u(t))j dx+

+ Cmku0k
2
D(A)e

2Kt + Cm(1 + kgk20;2) :

Applying the assumption (5.9) in order to estimate the �rst term in the right-hand

side of (5.13) and taking � < 1=(2jmj � j
j), we derive that

(5.14)

Z



jf(u(t):u(t)j dx � C 0
m
ku0k

2
D(A)e

2Kt + C 0
m
(1 + kgk20;2) :

The estimate (5.14) together with the assumption (5.9) imply the estimate (5.11).

Lemma 5.1 is proved.

Having the estimate (5.11) together with (1.5) and (1.8), we may express the

value of f(u) and obtain as before the estimate for kf(u)k0;2:

(5.15) kf(u(t))k0;2 � Cmku0k
2
D(A)e

2Kt + Cm(1 + kgk20;2) :

The estimates (1.8) and (5.15) imply (5.10). The existence of a solution can be easily

proved basing on the estimate (5.10) by the Galerkin method. The uniqueness of

a solution follows from Lemma 1.4, which can be reproved word by word for the

case of Neumann boundary conditions (since hu1 � u2i = 0 the non-local term will

disappear again). Theorem 5.1 is proved.

Thus, the semi-group S
(m)
t

: Tm ! Tm, generated by the equation (5.7)

(5.16) u(t) := S
(m)
t

u0; u0 2 Tm
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is well de�ned for every m 2 R
k .

As in the case of Dirichlet boundary conditions we may extend in a unique way

the semi-group S
(m)
t

: Tm ! Tm to the semi-group Ŝ
(m)
t

: T̂m ! T̂m (by the

formulae (2.3)), where

(5.17) T̂m := [Tm]L2(
) = L2(
) \ fhu0i = mg :

(As in the case of Dirichlet boundary conditions the weak solutions û(t) := Ŝ
(m)
t

u0
of (5.7) for u0 2 T̂m can be characterized in terms of the appropriate variational

inequality (see (3.13) and (3.14)).

The analogues of Theorem 2.1 and 2.2 for the case of Neumann boundary con-

ditions will be the following one.

Theorem 5.2. Let the above assumptions hold. Then for every u0 2 T̂m a weak

solution û(t) of the equation (5.7) belongs to C([0; T ]; L2(
))\Cw([�; T ];W
1;2(
))

for every � > 0 and the estimates (2.5) and (2.6) hold with constants C;C1; C2

depending on m. Moreover, for every m 2 R
k the semi-group Ŝ

(m)
t

: T̂m ! T̂m

possesses a global attractor A(m) 2 T̂m \W 1;2(
).

Proof. The result of this theorem can be obtained analogously to Theorem 2.1 and

2.2. That is why we restrict ourselves to derive only the dissipative estimate (2.5).

Let u(t) = v(t) + m. Then hv(t)i = 0 and the left-hand side of (5.12) can be

rewritten in the following way:

(5.18) ((1 + bL)@tu(t); u(t)) = ((1 + bL)@tv(t); v(t) +m) =

= ((1 + bL)@tv(t); v(t)) = 1=2@t[kv(t)k
2
0;2 + (bL1=2v(t); L1=2v(t))] :

Using the facts that a + a� > 0, hvi = 0 and the operator L is bounded, we can

estimate the �rst term in the right-hand side of (5.12) in the following way:

(5.19) (arxu;rxu) = (arxv;rxv) � 2�krxvk
2
0;2 � �krxvk

2
0;2 + �kvk20;2 �

� �krxvk
2
0;2 + �0

�
kvk20;2 + (bL1=2v; L1=2v)

�

for some positive constants �; �; �0 > 0.

The non-linear terms in the right-hand side of (5.12) can be estimated in a

standard way using the second assumption of (0.3) and the assumption (5.9) (see

also the proof of Lemma 5.1)

(5.20) �(f(u(t)):u(t)) +m: hf(u(t))i � �C 0
m
:

Inserting the estimates (5.18){(5.20) in the relation (5.12), we derive that

(5.21) @t

�
kv(t)k20;2 + (bL1=2v(t); L1=2v(t))

�
+

+ �0
�
kv(t)k20;2 + (bL1=2v(t); L1=2v(t))

�
+ �krxv(t)k

2
0;2 � Cm(1 + kgk20;2) :

Applying Gronwall's inequality to the relation (5.21) and taking into account the

facts that b = b� > 0 and L = L� > 0, we derive the estimate (2.5). The smoothing

property (2.6) can be established completely analogous. Having the estimates (2.5)

and (2.6) and repeating word by word the proof of Theorem 2.2, we obtain the

existence of the attractors A(m). Theorem 5.2 is proved.

It is not diÆcult to see that the regularity results of Section 3 remains true for

the case of Newmann boundary conditions as well.
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Theorem 5.3. Let the assumptions of Theorem 5.1 hold and let in addition the

condition (3.2) be satis�ed. Then for every t > 0 the semigroup Ŝ
(m)
t

: T̂m ! D(A)

and the estimate (3.4) is valid. Consequently, for every m 2 R
k the attractor A(m)

belongs to D(A) and is bounded in it.

The proof of this theorem is analogous to Theorem 3.1 and so we omit it here.

In the case where the non-linearity is not subbordinated to the linear terms we

have the analogue of Theorem 3.4.

Theorem 5.4. Let the assumptions of Theorem 5.1 hold and let in addition the

non-linear term satisfy the conditions (3.15) and (3.16). Then

(5.22) kû(t)kD(A) � Cm
1 + t2

t2

�
ku0k

2
0;2e

��t + 1 + kgk20;2
�
;

and consequently the attractor A(m) belongs to D(A) and is bounded in it.

The proof of this Theorem is the same as in the case of Dirichlet boundary

conditions.

In conclusion of this Section we give the analogue of Theorem 4.2 for the case

of Neumann boundary conditions which gives us the �nite dimensionality of the

attractors A(m).

Theorem 5.5. Let the assumptions of Theorem 5.1 hold and let in addition (4.6)

be true (for instanse let the conditions of Corollary 4.1 be satis�ed). Then the

attractors A(m) have �nite fractal dimension in L2(
):

(5.23) dimF (A
(m); L2(
)) � Cm <1 :

The assertion of this Theorem can be veri�ed in the same way as in the case of

Dirichlet boundary conditions (see Theorem 4.2).

Example 5.1. Let us consider the scalar case k = 1 and the polynomial non-

linearity

(5.24) f(u) = u2l+1 +

2lX
i=1

aiu
i; ai 2 R ;

where l 2 N is a certain integer number. Then all assumptions of Theorem 5.5 are

evidently satis�ed and consequently for every l 2 N and for every dimension n the

equation (5.1) possesses the attractors A(m), m 2 R, and their dimension in L2(
)

is �nite. Moreover, it is worth to emphasize that in the case n = 3 due to (3.8)

the solution u(t) 2 C(
) for t > 0. If this fact is established one can easily derive

by standard arguments the global existence of classical solutions for the equation

(5.1) if the initial data u0 and the external force g are smooth enough.
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