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Abstract. A two-type in�nite-measure-valued population in R2 is constructed

which undergoes di�usion and branching. The system is interactive in that the

branching rate of each type is proportional to the local density of the other

type. For a collision rate suÆciently small compared with the di�usion rate,

the model is constructed as a pair of in�nite-measure-valued processes which

satisfy a martingale problem involving the collision local time of the solutions.

The processes are shown to have densities at �xed times which live on disjoint

sets and explode as they approach the interface of the two populations. In the

long-term limit (in law), local extinction of one type is shown. The process

constructed is a rescaled limit of the corresponding Z2{lattice model studied

by Dawson and Perkins (1998) and resolves the large scale mass-time-space

behavior of that model under critical scaling. This part of a trilogy extends

results from the �nite-measure-valued case, whereas uniqueness questions are

again deferred to the third part.
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1. Introduction

1.1. Background and motivation. In [DF97a], a continuous super-Brownian

reactant process X% with a super-Brownian catalyst % was introduced. This pair

(%;X%) of processes serves as a model of a chemical (or biological) reaction of two

substances, called `catalyst' and `reactant'. There the catalyst is modelled by an

ordinary continuous super-Brownian motion % in Rd; whereas the reactant is a

continuous super-Brownian motion X
% whose branching rate, for `particles' sitting

at time t in the space element dx; is given by %t(dx) (random medium). This

model has further been analyzed in [DF97b, EF98, FK99, DF00b, FK00]. Actually,

the reactant process X% makes non-trivial sense only in dimensions d � 3 since a

\generic Brownian reactant particle" hits the super-Brownian catalyst only in these

dimensions (otherwise X% degenerates to the heat 
ow, [EP94, BP94]).

In a sense, (%;X%) is a model with only a `one-way interaction': the catalyst %

evolves autonomously, but it catalyzes the reactant X%
: There is a natural desire

to extend this model to the case in which each of the two substances catalyzes the

other one, so that one has a `true interaction'. This, however, leads to substantial

diÆculties since the usual log-Laplace approach to superprocesses breaks down for

such an interactive model. In particular, the analytic tool of di�usion-reaction

equations is no longer available.

Dawson and Perkins [DP98, Theorem 1.7] succeeded in constructing such a con-

tinuum mutually catalytic model in the one-dimensional case, whereas in higher di-

mensions they obtained only a discrete version in which R
d is replaced by the lattice

Z
d
; and Brownian motion is replaced by a random walk. More precisely, in the R{

case they showed that, for given (suÆciently nice) initial functions X0 =
�
X

1
0 ; X

2
0

�
;

the following system of stochastic partial di�erential equations is uniquely solvable

in a non-degenerate way:

@

@t
X

i

t
(x) =

�
2

2
�X i

t
(x) +

q

 X1

t
(x)X2

t
(x) _W i

t
(x);(1)

(t; x) 2 R+ � R; i = 1; 2: Here � is the one-dimensional Laplacian, �; 
 are

(strictly) positive constants (migration and collision rate, respectively), and _W 1
; _W 2

are independent standard time-space white noises on R+�R: The intuitive mean-

ing of X i
t
(x) is the density of mass of the ith substance at time t at site x; which

is dispersed in R according to a heat 
ow (Laplacian), but additionally branches

with rate 
X
j

t (x); j 6= i (and vice versa).

For the existence of a solution X =
�
X

1
; X

2
�
to (1) they appealed to standard

techniques as known, for instance, from [SS80], whereas uniqueness was made possi-

ble by Mytnik [Myt98] through a self-duality argument. For the existence part, their

restriction to dimension one was substantial, and they pointed out that non-trivial

existence of such a model (as measure-valued processes) in higher dimensional Rd

remained open.

Major progress was made in Dawson et al. [DEF+00] where it was shown that also

in R
2 such a mutually catalytic branching process X makes sense as a pair X =�

X
1
; X

2
�
of non-degenerate continuous �nite-measure-valued Markov processes,

provided that the collision rate 
 is not too large compared with the migration

rate �. In order to make this more precise, we write h�; fi or hf; �i to denote the

integral of a function f with respect to a measure �. Intuitively, X =
�
X

1
; X

2
�
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solves (formally) the following system of stochastic partial di�erential equations

X

i

t
; '

i
�
=


�
i
; '

i
�
+

Z
t

0

ds
D
X

i

s
;
�
2

2
�'i

E
(2)

+

Z
[0;t]�R2

W
i
�
d(s; x)

�
'
i(x)

p

 X1

s (x)X
2
s (x); t � 0;

[compare with equation (1)]. Here the �
i are suÆciently regular �nite (initial)

measures, the 'i are suitable test functions, � is the two{dimensional Laplacian,

the W
1
�
d(s; x)

�
;W

2
�
d(s; x)

�
are independent standard time-space white noises

on R+�R
2
; and X

i
s
(x) is the \generalized density" at x of the measure X i

s
(dx):

More precisely, consider the following martingale problem (MP)
�;


�
(for still

more precise formulations, see De�nition 3 below). For �xed constants �; 
 > 0;

let X =
�
X

1
; X

2
�
be a pair of continuous measure-valued processes such that

M
i

t
('i) :=



X

i

t
; '

i
�
�


�
i
; '

i
�
�
Z

t

0

ds
D
X

i

s
;
�
2

2
�'i

E
;(3)

t � 0; i = 1; 2; are orthogonal continuous square integrable (zero mean) martingales

starting from 0 at time t = 0 and with continuous square function


M

i('i)
��
t
= 


Z
[0;t]�R2

LX

�
d(s; x)

�
('i)2(x):(4)

Here LX is the collision local time of X1 and X
2
; loosely described by

LX

�
d(s; x)

�
= ds X1

s
(dx)

Z
R2

X
2
s
(dy) Æx(y)(5)

(a precise description is given in De�nition 1 below).

The main result of [DEF+00] is that, provided the collision rate 
 is not too

large compared with the migration rate �; for initial states � = (�1; �2) in the set

Mf;e of all pairs of �nite measures on R2 satisfying the energy conditionZ
R2

�
1(dx1)

Z
R2

�
2(dx2) log+

1

jx1 � x2j < 1;(6)

there is a (non-trivial) solution X to the martingale problem (MP)
�;


�
with the

property that Xt 2 Mf;e for all t > 0 with probability 1:

1.2. Sketch of main results, and approach. The main purpose of this paper is

to extend this existence result to certain in�nite measures (see Theorem 4 below),

where questions of long-term behavior can be properly studied. To this end, as in

[DEF+00], we start from the Z
2{model 1X of [DP98], scale it to "X on "Z

2
; and

seek a limit as " # 0: As in [DEF+00], to prove tightness of the rescaled processes,

we derive some uniform 4th moment estimates. But in contrast to [DEF+00], we

work with moment equations for "X instead of exploiting a moment dual process to
"X: We stress the fact that the construction of the in�nite-measure-valued process

is by no means a straightforward generalization of the �nite-measure-valued case of

[DEF+00].

The proof of uniqueness of solutions to the martingale problem (MP)
�;


�
is pro-

vided in the forthcoming paper [DFM+00] under a mild integrability condition.

This integrability condition has been veri�ed for the cases of �nite initial measures

and bounded initial densities. However it has not yet been veri�ed for the class
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of in�nite measures with sub-exponential growth at in�nity which are treated in

the present paper. Nevertheless we will be able to use the self-duality technique

and convergence of the rescaled lattice models in the �nite measures case to show

that the lattice approximations for the case of in�nite initial measures also con-

verge weakly to a canonical solution of (MP)
�;


�
(Theorem 6 below) and study this

process.

We complement the existence result by showing that the process X which we

construct has the following properties:

(i) For any �xed t > 0 and for each i = 1; 2; the state X
i
t
is

absolutely continuous,

X
i

t(dx) = X
i

t(x) dx a.s.,

and for almost all x 2 R2; the law of the vector Xt(x) of random

densities at x can explicitly be described in terms of the exit dis-

tribution of planar Brownian motion from the �rst quadrant. In

particular, the types are separated:

X
1
t
(x)X2

t
(x) = 0 a.s.,

and for both types the density blows up as one approaches the

interface. See Theorem 11 below.

(ii) Starting X with multiples of Lebesgue measure `; that is

X0 = c` = (c1`; c2`); then Xt converges in law as t " 1 to a

limit X1 which can also explicitly be described:

X1
L
= X1(0) ` =

�
X

1
1 (0)`; X

2
1 (0)`

�
with X1(0) the vector of random densities at time 1 at the origin

0 of R2 described in (i). In this case the law of X1(0) is the exit

distribution from the �rst quadrant of planar Brownian motion

starting at c. In particular, locally only one type survives in the

limit (non-coexistence of types). See Theorem 13 below for the

extension to more general initial states.

Clearly, the statements in (ii) are the continuum analogue of results in [DP98],

and the interplay between X1 and X1(0) is based on a self-similarity property of

X; starting with Lebesgue measures (see Proposition 16 (b) below).

We mention that the proofs of the aforementioned approximation theorem, of

the separation of types, and of the long-term behavior require properties of the

�nite-measure-valued case which are based on uniqueness arguments provided in

the forthcoming paper [DFM+00].

The problem of existence or non-existence of a mutually catalytic branching

model in dimensions d � 3; remains unresolved.

2. Mutually catalytic branching X in R2 (results)

The purpose of this section is to rigorously introduce the in�nite-measure-valued

mutually catalytic branching process X =
�
X

1
; X

2
�
in R

2
; and to state some of

its properties.
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2.1. Preliminaries: notation and some spaces. We use c to denote a positive

(�nite) constant which may vary from place to place. A c with some additional

mark (as c or c1) will, however, denote a speci�c constant. A constant of the form

c(#) or c# means, this constant's �rst occurrence is related to formula line (#) or

(for instance) to Lemma #; respectively.

Write j � j for the Euclidean norm in Rd; d � 1: For x =
�
x
1
; : : : ; x

n
�
in (Rd)n;

n � 1; we set

kxk := jx1j+ � � �+ jxnj:(7)

For � 2 R; introduce the reference function �� :

��(x) := e��jxj; x 2 R
d
:(8)

At some places we will need also a smoothed version ~�� of �� : For this purpose,

introduce the molli�er

�(x) := c(9) 1fjxj<1g exp
�
� 1=(1� x

2)
�
; x 2 R;(9)

with c(9) the normalizing constant such that
R
R2
dx �(x) = 1: For � 2 R; set

~�1�(x) :=

Z
R

dy ��(y) �(y � x); x 2 R;(10)

and introduce the smoothed reference function

~��(x) := ~�1
�
(x1) � � � ~�1�(xd); x = (x1; : : : ; xd) 2 R

d
:(11)

Note that to each � 2 R and n � 0 there are (positive) constants c1
�;n

and c
1
�;n

such that

c
1
�;n ��(x) �

��� dn
dxn

~�1� (x)
��� � c

1
�;n ��(x); x 2 R;(12)

(cf. [Mit85, (2.1)]). Hence, for � � 0 and n � 0;

c
�;n

�p
d�
(x) �

��� @n
@xn

i

~�� (x)
��� � c�;n ��(x);(13)

x = (x1; : : : ; xd) 2 Rd; 1 � i � d; for some constants c
�;n

and c�;n : In particular,

there exist constants c� and c� such that

c
�
�p

d�
(x) �

����~�� (x)
��� � c� ��(x); x 2 R

d
:(14)

For f : Rd ! R; put

jf j� := sup
x2Rd

jf(x)j = ��(x); � 2 R:(15)

For � 2 R; let B� = B�(Rd) denote the set of all measurable (real-valued) functions

f such that jf j� is �nite. Introduce the spaces

Btem = Btem(Rd) :=
\
�>0

B�� ; Bexp = Bexp(Rd) :=
[
�>0

B�(16)

of tempered and exponentially decreasing functions, respectively. (Roughly speak-

ing, the functions in Btem are allowed to have a subexponential growth, whereas the

ones in Bexp have to decay at least exponentially.) Of course, Bexp � B = B(Rd);
the set of all measurable functions on R

d
:

Let C� refer to the subsets of continuous functions f in B� with the additional

property that f(x)=��(x) has a �nite limit as jxj " 1: De�ne Ctem = Ctem(Rd)
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and Cexp = Cexp(Rd) analogously to (16), based on C� : Write C(m)

�
= C(m)

�
(Rd)

and C(m)
exp = C(m)

exp (R
d) if we additionally require that all partial derivatives up to

the order m � 1 belong to C� and Cexp ; respectively.
For each � � 0; the linear space C� equipped with the norm j � j

�
is a separable

Banach space. The space Ctem is topologized by the metric

dtem(f; g) :=

1X
n=1

2�n
�
jf � gj�1=n ^ 1

�
; f; g 2 Ctem ;(17)

making it a Polish space.

Ccom = Ccom(Rd) denotes the set of all f in Cexp with compact support, and

we write C1com = C1com(Rd) if, in addition, they are in�nitely di�erentiable.

If E is a topological space, by `measure on E' we mean a measure de�ned on

the �{�eld of all Borel subsets of E: If � is a measure on a countable subset E0

of a metric space E; then � is also considered as a discrete measure on E: If

� is absolutely continuous with respect to some (�xed) measure �; then we often

denote the density function (with respect to �) by the same symbol �; that is

�(dx) = �(x) �(dx); (and vice versa).

Let Mtem = Mtem(R
d) denote the set of all measures � de�ned on R

d such

that h�; ��i < 1; for all � > 0: On the other hand, let Mexp = Mexp(R
d) be

the space of all measures � on R
d satisfying h�; ���i < 1; for some � > 0

(exponentially decreasing measures). Note that Mexp �Mf =Mf(R
d); the set of

all �nite measures on R
d equipped with the topology of weak convergence.

We topologize the set Mtem of tempered measures by the metric

dtem(�; �) := d0(�; �) +

1X
n=1

2�n
�
j�� �j1=n ^ 1

�
; �; � 2 Mtem :(18)

Here d0 is a complete metric on the space of Radon measures on Rd inducing the

vague topology, and j�� �j� is an abbreviation for
��h�; ~��i � h�; ~��i��: Note that

(Mtem ; dtem) is a Polish space, and that �n ! � in Mtem if and only if

h�n ; 'i �!
n"1

h�; 'i for all ' 2 Cexp :(19)

For each m � 1; write C := C (R+ ;Mm
tem) for the set of all continuous paths

t 7! �t in Mm
tem ; where Mm

tem is de�ned as the m{fold Cartesian product of

Mtem : When equipped with the metric

dC(�� ; �
0
�) :=

1X
n=1

2�n
�

sup
0�t�n

dtem (�t ; �
0
t
) ^ 1

�
; �� ; �

0
� 2 C;(20)

C is a Polish space. Let P denote the set of all probability measures onC: Endowed

with the Prohorov metric dP; P is a Polish space ([EK86, Theorem 3.1.7]).

Let p denote the heat kernel in R
d related to �

2

2
� :

pt(x) := (2��2t)�d=2 exp
h
� jxj2

2�2t

i
; t > 0; x 2 R

d
;(21)

and fSt : t � 0g the corresponding heat 
ow semigroup. Write � = (�;�x) for the

related Brownian motion in R
d
; with �x denoting the law of � if �0 = x 2 R

d
:

Recall that ` refers to the (normalized) Lebesgue measure on Rd: We use k�k
to denote the total mass of a measure �; whereas j�j is the total variation measure

of a signed measure �:
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The upper or lower index + on a set of real-valued functions will refer to the

collection of all non-negative members of this set, similar to our notation R+ =

[0;1): The Kronecker symbol is denoted by Æk;` :

Random objects are always thought of as de�ned over a large enough stochastic

basis (
;F ;F�;P) satisfying the usual hypotheses. If Y = fYt : t � 0g is a random

process starting at Y0 = y; then as a rule the law of Y is denoted by P
Y
y
: If there

is no ambiguity which process is meant, we also often simply write Py instead of

P
Y
y : We use FY

t to denote the completion of the �{�eld
T
">0 � fYs : s � t+ "g;

t � 0:

As a rule, bold face letters refer to pairs as X =
�
X

1
; X

2
�
; c` =

�
c
1
`; c

2
`
�
; etc.

Next we introduce a version of a de�nition from [DEF+00] which is used through-

out this work.

De�nition 1 (Collision local time). Let X =
�
X

1
; X

2
�
be an M2

tem{valued

continuous process. The collision local time of X (if it exists) is a continuous

non-decreasing Mtem{valued stochastic process t 7! LX(t) = LX(t; � ) such that

L
�;Æ
X (t); '

�
�!



LX(t); '

�
as Æ # 0 in probability,(22)

for all t > 0 and ' 2 Ccom(Rd); where

L
�;Æ
X (t; dx) :=

1

Æ

Z Æ

0

dr

Z t

0

ds X1
s �pr(x)X2

s �pr(x) dx; t � 0; Æ > 0:

The collision local time LX will also be considered as a (locally �nite) measure

LX

�
d(s; x)

�
on R+�Rd: 3

We now consider the scaled lattice "Zd; for �xed 0 < " � 1: In much the

same way as in the Rd{case, we use the reference functions �� ; � 2 R; now

restricted to "Zd; to introduce jf j
�
;

"B� = "B�("Zd); "Bexp = "Bexp("Zd); and
"Btem = "Btem("Zd): Let "� denote the discrete Laplacian:

"�f (x) := "
�2

X
y : jy�xj="

�
f(y) � f(x)

�
; x 2 "Zd;(23)

(acting on functions f on "Zd): Note that "��� belongs to "B� ; for each positive
�: The spaces ( "Mtem ;

"dtem) and C(R+ ; "Mm
tem) are also de�ned analogously to

the Rd{case.

Write

"
` := "

d
X
x2"Zd

Æx(24)

for the Haar measure on "Z
d (approximating the Lebesgue measure ` in Mtem(R

d)

as " # 0): Let "p denote the transition density (with respect to "
`) of the

simple symmetric random walk ( "�;�a) on "Z
d which jumps to a randomly chosen

neighbor with rate d�2="2; that is has generator �
2

2
"�; with the related semigroup

denoted by f"St : t � 0g. In other words, "pt(x) := "
�d�0(

"
�t = x) and so

"pt(x) = "
�d 1p"�2t("

�1
x); t � 0; x 2 "Zd:(25)
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In the case d = 2 we will need some random walk kernel estimates that for

convenience we now state as a lemma. For a proof, see, for instance, [DEF+00,

Lemma 8].

Lemma 2 (Random walk kernel estimates).

(a) (Local central limit theorem): For all t > 0; with the heat kernel p

from (21),

lim
"#0

sup
x2"Z2

��"pt(x)� pt(x)
�� = 0:

(b) (Uniform bound): There exists an absolute constant crw such that

sup
t>0; x2"Z2

�
2
t
"pt(x) = crw; 0 < " � 1; � > 0:

In fact crw 2 (:15; :55) (See Remark 9 in [DEF+00, Lemma 8].)

Often we will need the constant

c2 := c2(�) := crw=�
2(26)

instead of crw:

2.2. Existence of X on R
2. First we want to introduce in detail the martingale

problem (MP)
�;


�
mentioned already in Subsection 1.1 (extended versions of the

martingale problem will be formulated in Lemma 42 and Corollary 43 below). Let

d = 2:

De�nition 3 (Martingale Problem (MP)�;

�

). Fix constants �; 
 > 0; and �

= (�1; �2) 2 M2
tem(R

2): A continuous F�{adapted and M2
tem(R

2){valued process

X = (X1
; X

2) [on a stochastic basis (
;F ;F�;P)] is said to satisfy the martingale

problem (MP)
�;


�
; if for all '1; '2 2 C(2)

exp(R
2);

M
i

t
('i) = hX i

t
; '

ii � h�i; 'ii �
Z

t

0

ds
D
X

i

s
;
�
2

2
�'i

E
; t � 0; i = 1; 2;(27)

are orthogonal continuous (zero mean) square integrable FX
� {martingales such that

M
i
0('

i) = 0 and


M

i('i)
��
t
= 




LX(t); ('i)

2
�
; t � 0; i = 1; 2;(28)

(with LX the collision local time of X): 3

The existence of the in�nite-measure-valued mutually catalytic branching process

X =
�
X

1
; X

2
�
in R2 is established in the following theorem.

Theorem 4 (Mutually catalytic branching in R2). Fix constants �; 
 > 0;

and assume that




�2
<

1

64
p
6� crw

:(29)

Let � = (�1; �2) be a pair of absolutely continuous measures on R
2
with density

functions in Btem(R2) (abbreviated to � 2 B2tem):
(a) (Existence): There exists a solution X = (X1

; X
2) to the martingale

problem (MP)�;

�
:
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(b) (Some moment formulae): For the process constructed in Theorem 6,

X = (X1
; X

2), solving the martingale problem (MP)
�;


�
the following mo-

ment formulae hold. The expectation measures are given by

P
X
� X

i

t(dx) = �
i � pt (x) dx 2 Mtem ; i = 1; 2; t � 0;

and X has covariance measures

CovX
�

�
X

i1
t1
; X

i2
t2

�
(dz) = dz Æi1;i2 


Z
t1^t2

0

ds

Z
R2

dx �1 � ps (x)�2 � ps (x)

� pt1�s(z
1 � x) pt2�s(z

2 � x) 2 M2
tem ;

t1; t2 > 0; i1; i2 2 f1; 2g; z = (z1; z2) 2 (R2)2: Moreover, for the expected

collision local times we have

P
X
�
LX(t) (dx) = dx

Z
t

0

ds �1�ps(x)�2�ps(x) 2 Mtem ; t � 0:

Remark 5 (Non-degeneration). The covariance formula in (b) shows that (for

non-zero initial measures) the constructed process X is non-trivial. Moreover, the

variance densities will explode along the diagonal, as can easily be checked in speci�c

cases. For instance, if � = c` =
�
c
1
`; c

2
`
�
with c

1
; c
2
> 0; the variance densities

VarXc`X
i

t
(z) = c

1
c
2



Z
t

0

ds p2s(z
1 � z

2); i = 1; 2;(30)

are trivially in�nite along the diagonal
�
z
1 = z

2
	
: 3

The existence claim in Theorem 4 (a) will be veri�ed via a convergence theorem

for "Z2{approximations.

Fix again 0 < " � 1: Let "
� = ("�1;"�2) 2 "M2

tem and let ("X; P"�) denote the

mutually catalytic branching process on "Z2 based on the symmetric nearest neigh-

bor random walk. This process was introduced in [DP98, Theorems 2.2 (a), (b)(iv)

and 2.4 (a)] in the special case " = 1; where it was constructed as the unique

solution of the stochastic equation

@

@t

1
X

i

t(x) =
�
2

2
1� 1

X
i

t (x) +

q

 1X1

t (x)
1X2

t (x)
_W i

t (x);(31)

(t; x) 2 R+ � Z2; i = 1; 2; where
�
W

i(x) : x 2 Z2; i = 1; 2
	

is a family of inde-

pendent standard Brownian motions in R: Of course, (31) is the Z
2{counterpart

of the stochastic equation (1). The process "X can be de�ned by scaling:

"
X

i

t(x) := 1
X

i

"�2t
("�1x); (t; x) 2 R+ � "Z

2
; i = 1; 2:(32)

Here 1X0 is de�ned in terms of our �xed "
� by setting t = 0. We can interpret�

"
X

i
t(x) : x 2 "Z2

	
as a density function with respect to "

` of the measure

"
X

i

t
(B) :=

Z
B

"
`(dx) "X i

t
(x); B � "Z

2
:(33)

On the other hand, one can also de�ne this process "X directly as the unique

(in law) "M2
tem {valued continuous solution of the following system of equations:


"
X

i

t ; '
i
�
=


"
�
i
; '

i
�
+

Z t

0

ds
D
"
X

i

s ;
�
2

2
"�'i

E
(34)

+

Z
"Z2

"
`(dx)

Z t

0

dW i

s(x)'
i (x)

p

 "X1

s (x)
"X2

s (x);
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t � 0; i = 1; 2: Here
�
W

i(x) : x 2 "Z2; i = 1; 2
	
is again a family of independent

standard Brownian motions in R; and the '
i are test functions in "Bexp . Note

that "X =
�
"
X

1
;
"
X

2
�
satis�es the following martingale problem (MP)

�;
;"

�
:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

"
M

i
t
('i) :=



"
X

i
t
; '

i
�
�


"
�
i
; '

i
�
�
Z

t

0

ds
D
"
X

i
s
;
�
2

2
"�'i

E
; t � 0;

'
i 2 "Bexp ; "

�
i 2 "Mtem ; i = 1; 2; are continuous square integrable

(zero-mean) F "X
� {martingales with continuous square function



"
M

i('i); "M j('j)
��
t
= Æi;j 




"
L "X(t); '

i
'
j
�
; where



"
L "X(t); '

�
:=

Z
t

0

ds

Z
"Z2

"
`(dy) "X1

s
(y) "X2

s
(y)'(y); t � 0; ' 2 "Bexp :

(35)

The continuous "Mtem{valued random process "
L "X is the collision local time of

"X; in analogy to De�nition 1.

The scaled process "X = ("X1
;
"
X

2) can be started with any pair "X0 =
"
� of

initial densities (with respect to "
`) such that(

for each � > 0 there is a constant c� such that

"
�
i(x) � c� e

�jxj
; x 2 "Z2; i = 1; 2:

(36)

It is also convenient for us to think of "X as continuous M2
tem(R

2){valued pro-

cesses (recall our convention concerning measures on countable subsets). Now the

existence Theorem 4 (a) will follow from the following convergence theorem.

Theorem 6 (Lattice approximation). Let 
; �; and � satisfy the conditions of

Theorem 4. For each " 2 (0; 1]; choose a pair
"X0 =

"
� = ("�1; "�2) of measures

on "Z
2
with densities (with respect to

"
`) satisfying the domination condition (36)

with the constants c� independent of " and such that
"
�! � in M2

tem(R
2): Then

the limit in law

lim
"#0

"X =: X exists in C
�
R+ ;M2

tem(R
2)
�
;(37)

satis�es the martingale problem (MP)
�;


�
, and the law of X does not depend on

the choice of the approximating family f"� : 0 < " � 1g of �:

For instance, the hypotheses on "
� will be satis�ed if

"
�
i(x) := "

�2
�
i
�
x + [0; ")2

�
; x 2 "Z2; i = 1; 2:(38)

From now on, by the mutually catalytic branching process X on R2 with initial

density X0 = � 2 B2tem we mean the unique (in law) limiting process X from the

previous theorem.

Remark 7 (Uniqueness in (MP)
�;


�
via self-duality). Uniqueness of solutions

to the martingale problem (MP)
�;


�
under an additional integrability condition will

be shown in [DFM+00] This will be done via self-duality (see also Proposition 15

below) with the �nite-measure-valued mutually catalytic branching process in R2

of [DEF+00]. However the integrability condition required for uniqueness will be
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established in [DFM+00] for the solutions constructed in Theorem 6 only when

the initial densities are uniformly bounded. 3

Remark 8 (Phase transition for higher moments). In order to establish tight-

ness of processes in Theorem 6, we will need to establish uniform bounds on the

fourth moments of the increments of these processes (see Lemma 34 below). For


=�
2 large enough, it is not hard to see that these fourth moments (in fact even

third moments) will explode as " approaches zero. The bound (29) is suÆcient to

ensure �niteness of these fourth moments for the limiting model; a somewhat more

generous bound appeared in [DEF+00]. We believe Theorems 4 and 6 should be

valid for all positive values of 
 and � as the existence of 2 + " moments should

suÆce for our tightness arguments, and for any given 
 and � these should be �nite

for suÆciently small ". For this reason we have not tried very hard to �nd the

critical value of 
=�2 for �niteness of fourth moments (but see the next remark).

Remark 9 (Bounded initial densities). (i) If the initial densities are bounded, then

Theorems 4 and 6 remain valid if


=�
2
<

1p
6crw�

:(39)

The proofs go through with minor changes, using Corollary 27 in place of Lemma

26.

(ii) An alternative construction of the process in Theorem 4(a) is also possible

if the initial densities are bounded. This is brie
y described in Remark 12(ii) of

[DEF+00]. Here the process exists and the limiting 4th moments are �nite if


=�
2
<

q
2
3
� 0:8. These improved moment bounds are obtained using a modi�ed

version of the dual process introduced in [DEF+00]. Basically one then may replace

crw with its \limiting" value, namely 1
2�

and this substitution in (39) gives the

bound stated above. 3

2.3. Properties of the states. To prepare for the next results, we need the fol-

lowing de�nition.

De�nition 10 (Brownian exit time � from (0;1)2). For a 2 R2+ ; let � =

�(a) denote the �rst time, Brownian motion � in R2 starting from a hits the

boundary of R2+ : 3

Here we state some properties of X. Recall that we identify absolutely contin-

uous measures with their density functions.

Theorem 11 (State properties). Let � = (�1; �2) denote a pair of absolutely

continuous measures on R
2
with density functions in B+tem(R2): Then the following

statements hold. Fix any t > 0:

(a) (Absolutely continuous states): If X is any solution of the martingale

problem (MP)
�;


�
; then, for i = 1; 2; with probability one, X

i
t
; is absolutely

continuous:

X
i

t
(dx) = X

i

t
(x) dx:

Now let X be the mutually catalytic branching process from Theorem 6.

(b) (Law of the densities): For `{almost all x 2 R
2
; the law of Xt(x) co-

incides with the law of the exit state ��(a) of planar Brownian motion starting
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from the point a :=
�
�
1�pt (x); �2�pt (x)

�
: In particular,

VarX� X
i

t(x) � 1; i = 1; 2;

provided that �
j 6= 0; j = 1; 2:

(c) (Segregation of types): For `{almost all x 2 R2,

X
1
t
(x)X2

t
(x) = 0; a.s.

(d) (Blow-up at the interface): De�ne a canonical and jointly measurable

density �eld X =
�
X

1
; X

2
�
of X on 
� R+ � R

2
by

X
i

s
(x) :=

(
lim
n"1

X
i
s�p2�n (x) if the limit exists,

0 otherwise,

s > 0; x 2 R2; i = 1; 2: Note that by (a) for all t > 0;

X
t
(x) = Xt(x) for `{almost all x; a.s.

If U is an open subset of R+ � R2; write

kXikU := ess sup
(s;x)2U

X
i

s(x); i = 1; 2;

where the essential supremum is taken with respect to Lebesgue measure. Then

LX(U) > 0 implies kX1kU = kX2kU = 1:

Consequently, at each �xed time point t > 0; our constructed mutually catalytic

branching process X has absolutely continuous states with density functions which

are segregated: at almost all space points there is only one type present (despite

the spread by the heat 
ow), although the randomness of the process stems from

the local branching interaction between types. On the other hand, if a density �eld

X is de�ned simultaneously for all times as in (d) (although the theorem leaves

open whether non-absolutely continuous states might exist at some random times),

then this �eld X (related to the absolutely continuous parts of the measure states)

blows up as one approaches the interface of the two types described by the support

of the collision local time LX : This local unboundedness is re
ected in simulations

by \hot spots" at the interface of types.

At �rst sight, the separation of types looks paradoxical. But since the densities

blow up as one approaches the interface of the two types, despite disjointness there

might be a contribution to the collision local time which is de�ned only via a spatial

smoothing procedure. In particular, the usual intuitive way of writing the collision

local time as LX
�
d(s; x)

�
= dsX1

s
(x)X2

s
(x) dx gives the wrong picture in this case

of locally unbounded densities.

Remark 12 (State space for X). Our construction of X (Theorem 6) was re-

stricted to absolutely continuous initial states with tempered densities. The latter

requirement is unnatural for this process because this regularity is not preserved by

the dynamics of the process, which typically produces locally unbounded densities

[recall Theorem 11 (d)].

It would be desirable to �nd a state space described by some energy condition

in the spirit of (6). Our use of tempered initial densities is also an obstacle to

establishing the Markov property for X: Both problems are solved in the �nite-

measure case, see [DEF+00] and [DFM+00]. 3
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2.4. Long-term behavior. Recall De�nition 10 of the Brownian exit state ��(a) :

The long-term behavior of X is quite similar to the one in the recurrent Z
d case

(see [DP98]):

Theorem 13 (Impossible longterm coexistence of types). Assume addition-

ally that the initial state X0 = � of our mutually catalytic branching process has

bounded densities satisfying, for some c = (c1; c2) 2 R2+ ;

�
i�pt (x) �!

t"1
c
i
; x 2 R

2
; i = 1; 2:(40)

Then the following persistent convergence in law holds:

Xt =)
t"1

��(c)`:(41)

Consequently, if the initial densities are bounded and have an overall density in

the sense of (40) [as trivially ful�lled in the case X i
0 � c

i
`], a persistent long-term

limit exists, and the limit population is described in law by the state ��(c) of planar

Brownian motion, starting from c; at the time �(c) of its exit from (0;1)2: In

particular, only one type survives locally in the limiting population (impossible

coexistence of types).

Of course, this does not necessarily mean that one type actually dies out as

t " 1: In fact, the method of [CK00] should show that as t " 1, the predominant

type in any compact set changes in�nitely often, as they proved is the case for the

lattice model. However, this would require the Markov property for our X; and so

we will not consider this question here.

Remark 14 (Random initial states). In Theorem 13 one may allow random

initial states which satisfy

sup
x

E(X i

0(x)
2) <1

and

lim
t!1

E((X i

0 � pt(x)� c
i)2) = 0 for all x; i = 1; 2:

Note �rst that the law of X is a measurable function of the initial state by the self-

duality in Proposition 15(b) below and so the process with random initial densities

may be de�ned in the obvious manner. The derivation of (41) now proceeds with

only minor changes in the proof below (see [CKP00] for the proof in the lattice

case). 3

2.5. Self-duality, scaling, and self-similarity. Recall that we identify a non-

negative ' 2 Cexp with the corresponding measure '(x) dx; also denoted by ':

One of the crucial tools for investigating the mutually catalytic branching process

is self-duality:

Proposition 15 (Self-duality). Consider the mutually catalytic branching pro-

cesses X = (X1
; X

2) and eX = ( eX1
; eX2) with initial densities X0 = � 2 B2tem(R2)

and eX0 = ' 2 C2exp(R2); respectively. Then the following two statements hold for

each �xed t � 0 :

(a) (States in M2
exp): With probability one, eXt 2M2

exp(R
2):
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(b) (Self-duality relation): The processes X and eX satisfy the self-duality

relation

P
X
�
exp

h
�


X

1
t
+X

2
t
; '

1 + '
2
�
+ i



X

1
t
�X

2
t
; '

1 � '
2
�i

= P
eX
'
exp

h
�


�
1 + �

2
; eX1

t
+ eX2

t

�
+ i



�
1 � �

2
; eX1

t
� eX2

t

�i
; t � 0;

(with i =
p�1 ):

Self-duality, for instance, makes it possible to derive the convergence Theorem 13,

in the case of uniform initial states in a simple way from the total mass convergence

of the �nite-measure-valued mutually catalytic branching process of [DEF+00] (see

Subsection 5.3 below).

Our class of mutually catalytic branching processes X on R
2 is invariant under

Brownian time-space scaling, mass scaling by a factor, and spatial shift:

Proposition 16. Let �; " > 0 and z 2 R2 be �xed. Let X and X(")
denote the

mutually catalytic branching processes with initial measures X0 = � and X
(")
0 =

�
(") = "

2
��
�
z + "

�1( � )
�
, respectively, with densities in B2tem . Then, for t � 0

�xed, the following statements hold.

(a) (Scaling formula): The following pairs of random measures in Mtem co-

incide in law:

�"
2X"�2t

�
z + "

�1( � )
� L
= X

(")
t
:

(b) (Self-similarity): In the case of uniform initial states � = c` (c 2 R
2
+);

"
2X"�2t("

�1 � ) L
= Xt :

If X0 has bounded densities, the uniqueness of the solutions to (MP)
�;


X0
estab-

lished in [DFM+00] shows that the equivalence in (a) (and hence (b)) holds in the

sense of processes in t.

Remark 17 (Invariance of densities). Together with spatial shift invariance,

the self-similarity explains in particular why, in the case of uniform initial states,

the law of the density at a point described in Theorem 11 (b) is constant in space

and time. 3

Remark 18 (Growth of blocks of di�erent types). Recall that the types are

segregated [Theorem 11 (c)], and in the long run only one type survives locally

(Theorem 13). So it is natural to ask for the growth of blocks of di�erent types.

To this end, for "; � > 0; consider the scaled process X";� de�ned by

X
i;";�

t := "
2�
X

i

"�2t
("�� � ); t � 0; i = 1; 2;(42)

and start again with X0 = c`; c 2 R2+ : Note that this scaling preserves the expec-

tations: PX
c` X

";�

t � c`: If � = 1; we are in the self-similarity case of Proposition

16 (b), that is X";1 � X: Consequently, essentially disjoint random blocks of linear

size of order "�1 form at time "
�2
t: On the other hand, for any � > 0;

X";�

t
= "

2(��1)X";1
t
("1�� � ) L

= "
2(��1)Xt("

1�� � );(43)

by self-similarity. If now � > 1; then by the L2{ergodic theorem, using the covari-

ance formula of Theorem 4 (b), from (43) it can easily be shown that in L2(PX
c` );

X
";�

t �!
"#0

c` in M2
tem ; t � 0:(44)
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That is, for � > 1; at length scales of "�� one has instead a homogeneous mixing

of types, so "
�1 is the maximal order of pure type blocks. Finally, if � < 1; then

from (43) by Theorem 11 (a),(b), we can derive the convergence in law

hX i;";�

t ; 'i �!
"#0

X
i

t
(0)'(0)

L
= ��(c)'(0); i = 1; 2; t � 0; ' 2 Ccom(R2):(45)

Consequently, in the � < 1 case, at blocks of order "�� one sees essentially only

one type.

This discussion also explains also why in our construction of X starting from

the lattice model "X, we used the critical scaling, � = 1. Indeed, if instead we

scaled with

"
2(��1) "Xt("

�� � ) "`(dx);(46)

where � 6= 1; then we would have obtained a degenerate limit when "! 0, namely,

for � > 1 a homogeneous mixing of types, whereas for � < 1 a pure type block

behavior.

Moreover, from the point of view of the lattice model, our approximation Theo-

rem 6 (under the critical scaling) together with the discussion above also leads to a

description of the growth of blocks in the lattice model. In particular, at time "�2t
essentially disjoint blocks of linear size "�1 do form for solutions of (31) and by

the above these are the largest pure blocks that form. (Recall, as in the " = 1 case

of [DP98] and as in Theorem 13, in "Xt locally only one type survives as t " 1:)

These considerations served as a motivation for us to start from the lattice model

in constructing the two-dimensional continuum model X:

Further elaboration on these ideas would involve the possibility of di�usive clus-

tering phenomena, as, for instance, in the two-dimensional voter model [CG86] or

for interacting di�usions on the hierarchical group in the strongly recurrent case

[FG94, FG96, EF96]. In fact, the possibility of di�usive clustering phenomena of
"X on "Z

2 is a topic of current study. 3

2.6. Relation to the super-Brownian reactant with a super-Brownian cat-

alyst. At the beginning of the paper we motivated the investigation of the mutually

catalytic branching process X by the model of a super-Brownian reactant X% with

a super-Brownian catalyst % ([DF97a]). We want now to mention a few similarities

in the models (%;X%) and X in dimension two.

Both models can be described by a martingale problem, where the collision

local time enters as an intrinsic part (see [DF00b, Corollary 4]). Also for X
%
;

one has to restrict the possible initial states for % (see [FK99, Proposition 5]).

At each �xed time t; the measures %t and X
%

t
are separated, more precisely,

the absolutely continuous reactant X
%

t lives outside the compact support of the

catalyst %t ([FK99, Theorem 1 (a)]), which however is singular. Moreover, in the

annealed case (that is, the law of X% is mixed by the law of %), the variance of

the random densities X
%

t (x) is in�nite ([FK99, 4th Remark after Theorem 1 ]), as

in our mutually catalytic model.

Under uniform initial states, both models are self-similar ([DF97b, Proposition

13 (b)]), and in the long-term behavior of X% one has persistent convergence in

law to a non-degenerate random multiple of Lebesgue measure ([FK99, Corollary

2 (b)]), whereas % locally dies.

For a recent survey on catalytic super-Brownian motions, we refer to [DF00a].
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2.7. Outline. The remainder of the paper is organized as follows. In the next

section, we start from the "Z2{model "X of mutually catalytic branching and

provide some fourth moment calculations that will lead to the uniform estimate of

the second moment of the collision measure for suÆciently small parameters, see

Corollary 30 below. Via a tightness argument (Proposition 37), this then leads, in

Section 4, to the proof of the approximation Theorem 6, hence to the construction

of a solution X satisfying the martingale problem (MP)
�;


�
. In the last section,

the claimed properties of X are veri�ed. Finally, in the appendix, some auxiliary

facts about random walks that we shall need are gathered together, a lengthy proof

of a basic estimate related to our fourth moment calculations is provided, and a

simple Feynman integral estimate is derived.

3. Mutually catalytic branching on lattice spaces

In this section we �rst recall the Green function representation of the "Z2{version

of the mutually catalytic branching process "X: Then, in the case " = 1 we will

derive a 4th moment formula, and in Subsection 3.5 a 4th moment estimate. We will

use this estimate in Proposition 29 to bound the second moment of the collision

measure. After rescaling with "; this then �nally gives a uniform estimate for

second moments of collision measures (Corollary 30).

3.1. Green function representation of "X. An obvious adaptation of Theorem

2.2 (b) (ii) in [DP98] for the present simple random walk case (bearing in mind

our Lemmas A1 and A2) gives that "X also satis�es the following Green function

representation of the martingale problem (MP)
�;
;"

�
:

For 'i 2 "Bexp and �
i 2 "Mtem ;


"
X

i

t ; '
i
�
�


�
i
;
"
St'

i
�
=

Z
[0;t]�"Z2

"
M

i
�
d(s; x)

�
"
St�s'

i (x);(47)

t � 0; i = 1; 2; where "
M

1
;
"
M

2 are (zero mean) F "X
� {martingale

measures with predictable square function��Z
[0; � ]�"Z2

"
M

i
�
d(s; x)

�
f
i(s; x);

Z
[0; � ]�"Z2

"
M

j
�
d(s; x)

�
f
j(s; x)

��
t

= Æi;j 


Z
[0;t]�"Z2

"
L "X

�
d(s; x)

�
f
i(s; x) f j(s; x);(48)

i; j 2 f1; 2g (see Chapter 2 of [Wal86] for information about mar-

tingale measures). Here f
1
; f

2 belongs to the set of predictable

functions  de�ned on 
� R+ � "Z2 such that

P�

Z
[0;t]�"Z2

"
L "X

�
d(s; x)

�
 
2(s; x) < 1; t � 0:(49)

Hence, the expectation of the Markov process "X =
�
"
X

1
;
"
X

2
�
is given by

P�
"
X

i

t
(dx) = �

i � "pt (x) "`(dx):(50)

In particular,

Pc "̀
"
X

i

t (x) � c
i and P�



"X i

t



 � 

�i

 :(51)
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On the other hand, by the Markov property, (50), and orthogonality, the `mixed'

second moment measure equals

P�
"
X

1
t1
(dx1) "X2

t2
(dx2) = "

`(dx1) "`(dx2) �1 � "pt1 (x1) �2 � "pt2 (x2)(52)

(bilinearity). Thus, we get the following formula for the expected collision local

time:

P�
"
L "X

�
d(s; x)

�
= ds "

`(dx) �1 � "ps (x) �2 � "ps (x):(53)

Moreover, again by the Markov property, (50), (47), (48), and (53), the second

moment measure of "
X

i is given by

P�
"
X

i

t1
(dz1) "X i

t2
(dz2) = "

`(dz1) "`(dz2) �i � "pt1 (z1) �i � "pt2 (z2)(54)

+ "
`(dz1) "`(dz2) 


Z t1^t2

0

ds

Z
"Z2

"
`(dx) �1 � "ps (x) �2 � "ps (x)
"pt1�s(z

1 � x) "pt2�s(z
2 � x);

t1; t2 > 0: Combined with (50) and (52), we get the following covariance densities

with respect to "
`� "

` :

Cov�
�
"
X

i1
t1
;
"
X

i2
t2

�
(z) = Æi1;i2 


Z t1^t2

0

ds

Z
"Z2

"
`(dx)(55)

�
1 � "ps (x) �2 � "ps (x) "pt1�s(z1 � x) "pt2�s(z

2 � x);

i1; i2 2 f1; 2g; z = (z1; z2) 2 ("Z2)2: In particular,

Covc "̀
�
"
X

i1
t1
;
"
X

i2
t2

�
(z) = Æi1;i2 c

1
c
2



Z t1^t2

0

ds "pt1+t2�2s(z
1 � z

2)(56)

and

Cov�
�
k"X i1

t1
k; k"X i2

t2
k
�
= Æi1;i2 


Z
"Z2

�
1(da1)

Z
"Z2

�
2(da2)

Z t1^t2

0

ds "p2s(a
1 � a

2);

where by (53) the triple integral coincides with the expected collision local time

P�
"
L "X

�
t1 ^ t2 ; "Z2

�
:

3.2. Finite higher moments on Z2. As announced, we need some higher moment

bounds, uniformly in ": But �rst we proceed with " = 1; and in Subsection 3.8 we

will go back to general " by scaling.

Using di�erential notation, we can rewrite (31) as

d 1
X

i

t(x) =
�
2

2
1� 1

X
i

t (x) dt +

q

 1X1

t (x)
1X2

t (x) dW
i

t (x);(57)

(t; x) 2 R+ � Z2; i = 1; 2.

Fix for now � 2 1M2
tem . For n � 1; i = (i1; : : : ; in) 2 f1; 2gn; x =�

x
1
; : : : ; x

n
�
2 (Z2)n; and t � 0; we introduce the following higher moment density

notation:

1
m
i
t(x) := P�

nY
j=1

1
X

ij

t (x
j):(58)

Note that these moment density expressions are invariant with respect to simulta-

neous reordering of i and x: For instance,

P�
1
X

1
t (x

1) 1X2
t (x

2) = P�
1
X

2
t (x

2) 1X1
t (x

1):(59)
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First we check that the fourth moments are �nite:

Lemma 19 (Finite fourth moments). Let � 2 1M2
tem(Z

2) and � > 0: Then

sup
0�t�T

P�

X
i=1;2

X
x2Z2

�
1
X

i

t
(x)
�4
e��jxj < 1; T > 0:(60)

Proof. Itô's formula gives for t � 0;X
i=1;2

X
x2Z2

�
1
X

i
t(x)

�4
e��jxj =

X
i=1;2

X
x2Z2

�
�
i(x)

�4
e��jxj

+ 2�2
X
i=1;2

X
x2Z2

Z t

0

ds
�
1
X

i
s(x)

�3 1�1
X

i
s(x) e

��jxj

+ 4
X
i=1;2

X
x2Z2

Z
t

0

dW i
s
(x)

p

 1X1

s
(x) 1X2

s
(x)

�
1
X

i

s
(x)
�3

e��jxj

+ 6

X
i=1;2

X
x2Z2

Z
t

0

ds 1
X

1
s
(x) 1X2

s
(x)

�
1
X

i
s
(x)
�2

e��jxj:

(61)

Note that the convergence of each of the series and continuity in t follows from

the fact that the 1
X

i are 1Mtem{valued processes (use the convergence of the

predictable square function to handle the local martingale term). The continuity

allows us to introduce a sequence of stopping times Tn " 1 as n " 1; in such a way

that each term in (61) is bounded if t is replaced by t ^ Tn : Then, by H�older's

inequality,

P�

X
i=1;2



(1X i

t^Tn)
4
; ��

�
�

X
i=1;2



(�i)4; ��

�
+ c
;� P�

Z t^Tn

0

ds
X
i=1;2



(1X i

s)
4
; ��

�(62)

for some constant c
;� : But the latter expectation expression can further be boun-

ded from above by Z
t

0

ds P�
X
i=1;2



(1X i

s^Tn)
4
; ��

�
:(63)

A simple application of the Gronwall and Fatou Lemmas now gives the claim.

Remark 20 (Re�nement). By a re�nement of the previous proof, the supremum

could be moved under the expectation sign. Clearly, also the fourth moment could

be replaced by a moment of any higher order, but fourth moments are enough for

our purpose. 3

3.3. Moment equations. From (57), by Itô's formula,

d

4Y
j=1

1
X

ij

t
(xj) =

�
2

2

4X
k=1

1�xk

4Y
j=1

1
X

ij

t
(xj) dt + d (martingale)

+ 


X
1�j<k�4

Æ(ij ;xj);(ik;xk)
1
X

i
^

t
(x^) 1X i

_

t
(x_) 1X1

t
(xj) 1X2

t
(xk) dt;
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where 1�xk indicates that 1� is applied to the variable x
k 2 Z2; and the local

martingale term is a martingale by Lemma 19. Moreover, the upper index ^ stands

for the number min(f1; : : : ; 4gnfj; kg) whereas _ refers to max(f1; : : : ; 4gnfj; kg).
Taking expectations and using Lemma 19 to see that 1

m
i
t
(x) < 1 for i 2 f1; 2g4,

we immediately get the following result:

Lemma 21 (4th moment equations). Let � 2 M2
tem(Z

2) and � > 0: Then

the 4th moment density functions are �nite and satisfy the following closed linear

system of equations:

@

@t

1
m
i
t
(x) =

�
2

2

4X
k=1

1�xk
1
m
i
t
(x)

+ 


X
1�j<k�4

Æ(ij ;xj);(ik;xk)
1
m
(i^;i_;1;2)
t

�
x
^
; x

_
; x

j
; x

k
�
;

(64)

i = (i1; : : : ; i4) 2 f1; 2g4; x =
�
x
1
; : : : ; x

4
�
2 (Z2)4; and t > 0:

Let ic arise from i by interchanging the types 1 and 2. Pass in (64) from i to

ic: Note that concerning the new Kronecker symbol expression, ic
j
= i

c
k
holds if

and only if ij = ik is true. Thus we can add up the new system with the original

one, and we get a system in terms of functions which are invariant according to

the transition i 7! ic: This justi�es the following convention.

Convention 22 (Type symmetrization). For our later purpose of establishing

upper moment estimates, by an abuse of notation we assume that the moment den-

sity functions 1
m
i
; i 2 f1; 2g4; are invariant with respect to the type interchange

i 7! ic. In short, we will now be writing 1
m
i for 1

m
i + 1

m
ic without changing

our notation. Also, for simpli�cation of notation, in calculations we often drop the

upper index 1 in front of m; p, and S; and we delete some commas in writing

m
1122 instead of m1;1;2;2

; for instance. 3

Actually, our aim is to derive a formula for m1122
s0

(x10; x
2
0; x

1
0; x

3
0); with s0 > 0

and x0 = (x10; x
2
0; x

3
0) 2 (Z2)3: For this purpose, set

1
fs0(x0) := 1Ss0m

1122
0 (x10; x

2
0; x

1
0; x

3
0) + 


Z s0

0

ds1
X

x12(Z2)3
(65)

h
1ps0�s1(x

2
0 � x

3
1)

1ps0�s1(x
3
0 � x

1
1) +

1ps0�s1(x
3
0 � x

3
1)

1ps0�s1(x
2
0 � x

1
1)
i

1ps0�s1(x
1
0 � x

2
1)

1ps0�s1(x
1
0 � x

3
1)

1Ss1m
1112
0 (x11; x

2
1; x

3
1; x

3
1);

where 1S denotes the semigroup of four independent random walks each with

generator �
2

2
1�: Moreover, for s0 > � � � > s2n > 0; and x` 2 (Z2)3; 1 � ` � 2n;
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write �n(s2n;x0; : : : ;x2n) for the n{fold product

nY
j=1

(�
1ps2j�2�s2j�1 (x

2
2j�2�x32j�1) 1ps2j�2�s2j�1(x32j�2�x12j�1)

+ 1ps2j�2�s2j�1(x
3
2j�2�x32j�1) 1ps2j�2�s2j�1 (x22j�2�x12j�1)

�
1ps2j�2�s2j�1 (x

1
2j�2�x22j�1) 1ps2j�2�s2j�1 (x12j�2�x32j�1) 1ps2j�1�s2j (x32j�1�x32j)�

1ps2j�1�s2j (x
1
2j�1�x12j) 1ps2j�1�s2j (x22j�1�x12j) 1ps2j�1�s2j (x32j�1�x22j)

+ 1ps2j�1�s2j (x
1
2j�1�x12j) 1ps2j�1�s2j (x22j�1�x22j) 1ps2j�1�s2j (x32j�1�x12j)

+ 1ps2j�1�s2j (x
1
2j�1�x22j) 1ps2j�1�s2j (x22j�1�x12j) 1ps2j�1�s2j (x32j�1�x12j)

�)
:

3.4. A 4th moment density formula on Z
2. Here now is the desired formula:

Lemma 23 (A fourth moment density formula). Under Convention 22, for

s0 > 0 and x0 = (x10; x
2
0; x

3
0) in (Z2)3;

1
m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) = 1

fs0(x0) +

1X
n=1



2n

Z s0

0

ds1 � � �
Z s2n�1

0

ds2nX
x`2(Z2)3 for 1�`�2n

1
fs2n(x2n)�n(s2n;x0; : : : ;x2n):

Proof. Take i1 = i2 = 1 and i3 = i4 = 2 in (64) and using simultaneous (in

both ij and xj) reordering as well as our Convention 22, we obtain for t > 0 and

x0 2 (Z2)4;

@

@t
m
1122
t (x0) =

�
2

2

4X
k=1

1�xk0
m
1122
t (x0) + 
 Æx10x

2
0
m
1112
t (x0) + 
 Æx30x

4
0
m
1112
t (x0);

where x0 := (x40; : : : ; x
1
0). By integration,

m
1122
t

(x0) = 1Stm
1122
0 (x0)(66)

+ 


Z
t

0

ds
X

x12(Z2)4

4Y
i=1

pt�s(x
i

0 � x
i

1)
�
Æx11x

2
1
m
1112
s

(x1) + Æx31x
4
1
m
1112
s

(x1)
�
:

Specializing the x0{vector as well as using simultaneous reordering and renaming

of the summation variables, we get, for x0 = (x10; x
2
0; x

1
0; x

3
0) 2 (Z2)4 and s0 > 0;

m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) = 1Ss0m

1122
0 (x10; x

2
0; x

1
0; x

3
0) + 


Z s0

0

ds1
X

x12(Z2)3
(67)

h
ps0�s1(x

2
0 � x

3
1) ps0�s1(x

3
0 � x

1
1) + ps0�s1(x

3
0 � x

3
1) ps0�s1(x

2
0 � x

1
1)
i

ps0�s1(x
1
0 � x

2
1) ps0�s1(x

1
0 � x

3
1)m

1112
s1

(x11; x
2
1; x

3
1; x

3
1):
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On the other hand, from (64) combined with our Convention 22, we have for

x1 2 (Z2)4;

@

@t
m
1112
t (x1) =

�
2

2

4X
k=1

1�xk m
1112
t (x1) + 
 Æx1x2 m

1122
t (x11; x

3
1; x

2
1; x

4
1)(68)

+ 
 Æx11x
3
1
m
1122
t (x1) + 
 Æx21x

3
1
m
1122
t (x1):

A similar derivation to that of equation (67) above yields, for x1 2 (Z2)3,

m
1112
s1

(x11; x
2
1; x

3
1; x

3
1) = 1Ss1m

1112
0 (x11; x

2
1; x

3
1; x

3
1)(69)

+ 


Z
s1

0

ds2
X

x22(Z2)3

�
ps1�s2(x

1
1 � x

1
2) ps1�s2(x

2
1 � x

1
2) ps1�s2(x

3
1 � x

2
2)

+ ps1�s2(x
1
1 � x

1
2) ps1�s2(x

2
1 � x

2
2) ps1�s2(x

3
1 � x

1
2)

+ ps1�s2(x
1
1 � x

2
2) ps1�s2(x

2
1 � x

1
2) ps1�s2(x

3
1 � x

1
2)
�

ps1�s2(x
3
1 � x

3
2)m

1122
s2

(x12; x
2
2; x

1
2; x

3
2):

Substituting (69) into (67) gives the following \closed" equation for the moment

density m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) :

m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) = 1

fs0(x0) + 

2

Z
s0

0

ds1

Z
s1

0

ds2
X

x1;x22(Z2)3
(70)

h
ps0�s1(x

2
0 � x

3
1) ps0�s1(x

3
0 � x

1
1) + ps0�s1(x

3
0 � x

3
1) ps0�s1(x

2
0 � x

1
1)
i

ps0�s1(x
1
0 � x

2
1) ps0�s1(x

1
0 � x

3
1) ps1�s2(x

3
1 � x

3
2)�

ps1�s2(x
1
1 � x

1
2) ps1�s2(x

2
1 � x

1
2) ps1�s2(x

3
1 � x

2
2)

+ ps1�s2(x
1
1 � x

1
2) ps1�s2(x

2
1 � x

2
2) ps1�s2(x

3
1 � x

1
2)

+ ps1�s2(x
1
1 � x

2
2) ps1�s2(x

2
1 � x

1
2) ps1�s2(x

3
1 � x

1
2)
�
m
1122
s2

(x12; x
2
2; x

1
2; x

3
2);

where 1
fs0(x0) was de�ned in (65).

Denote by S1 the right-hand side of the claimed identity in Lemma 23 (series ex-

pansion). Recall the notation �n(s2n;x0; : : : ;x2n) introduced immediately before

the lemma, and set

Tn(s2n;x0; : : : ;x2n) :=
X

x`2(Z2)3 for 1�`�2n�1
�n(s2n;x0; : : : ;x2n):(71)

Iteration of the closed equation (70) implies that

m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) = S1 + lim

n"1


2n

Z
s0

0

ds1 � � �
Z

s2n�1

0

ds2nX
x2n2(Z2)3

Tn(s2n;x0; : : : ;x2n)m
1122
s2n

(x2n);(72)

where the series S1 and the latter limit must converge by the monotonicity of the

partial sums and the �niteness of the left-hand side (by Lemma 19). To �nish the

proof, we have to show that the limit expression in (72) will disappear.
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If � > 0, then Lemma 19 implies that

m
1122
s2n

(x2n) � c(73) exp
�
�kx2nk

�
(73)

(recall that s2n � s0) for some constant c(73) = c(73)(�; s0): In Lemma 24 (see

Remark 25) we will show thatX
x2n2(Z2)3

Tn(s2n;x0; : : : ;x2n) exp
�
� kx2nk

�
� c(74) exp

�
2� kx0k

�
6n(74)

for some constant c(74) = c(74)(s0; �; �) [note that the left hand side of (74) is

Ln(1)]. Use (73) and (74) to see that the limit in (72) is bounded by

lim
n"1

c(73)c(74) (6

2)n

s
2n
0

(2n)!
exp

�
2�kx0k

�
= 0:(75)

Thus, the limit expression in (72) vanishes, and the proof is �nished.

3.5. A 4th moment density estimate on Z2. Now we temporarily �x a � � 0;

and assume that the initial state 1X0 =
1
� 2 1M2

tem is deterministic with density

function (also denoted by 1X0 =
1
�) satisfying

1
�
i(x) � c� e

�jxj
; x 2 Z

2
; i = 1; 2;(76)

for some constant c� : (In other words, 1
�
i 2 B�� :) For 1

fs0(x0); de�ned in (65),

with 0 < s0 � T and x0 = (x10; x
2
0; x

3
0) 2 (Z2)3; by Lemma A2 in the appendix we

obtain

1
fs0(x0) � c

4
�
c
4
A2 exp

�
2�jx10j+ �jx20j+ �jx30j

�
+ 


Z
s0

0

ds1
X

x12(Z2)3h
ps0�s1(x

2
0 � x

3
1) ps0�s1(x

3
0 � x

1
1) + ps0�s1(x

3
0 � x

3
1) ps0�s1(x

2
0 � x

1
1)
i

ps0�s1(x
1
0 � x

2
1) ps0�s1(x

1
0 � x

3
1) c

4
�
c
4
A2 exp

�
�
�
jx11j+ jx21j

��
exp

�
2�jx31j

�
;

with cA2 = cA2(T; �; �) � 1 (de�ned in that lemma). For the integral term on the

right hand side, we again use Lemma A2 (to eliminate the summation variables x11
and x

2
1 ;) to obtain the upper estimate


 c
4
� c

6
A2

Z s0

0

ds1
X
x312Z2

�
ps0�s1(x

2
0 � x

3
1) exp

�
�
�
jx10j+ jx30j

��
+ ps0�s1(x

3
0 � x

3
1) exp

�
�
�
jx10j+ jx20j

���
ps0�s1(x

1
0 � x

3
1) exp

�
2�jx31j

�
:

Then, by Lemma A6, altogether we obtain

1
fs0(x0) � c

4
�
c
4
A2 exp

�
2�jx10j+ �jx20j+ �jx30j

�
+ 
 c

4
� c

6
A2 cA6 exp

�
2�jx10j+ �jx20j+ �jx30j

� Z s0

0

ds1

3X
k=2

p
2e20�

2
(s0�s1)(x

1
0 � x

k

0)

with cA6 = cA6(T; 2�; �) � 1:

To apply this estimate to 1
fs2n(x2n) occurring in the 4

th moment density formula

of Lemma 23, it is convenient to introduce two quantities Ln(a) and M
k
n(a; b):

To describe them, we set a :=
�
a
1
; a

2
; a

3
�
with numbers a

i 2 [0; 2] satisfying
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a
1 + a

2 + a
3 = 4; and write A for the set of all these a: Moreover, with a slight

abuse of notation, we set

kaxk := a
1jx1j+ a

2jx2j+ a
3jx3j if x =

�
x
1
; x

2
; x

3
�
2 (Z2)3:(77)

Here now is the de�nition of Ln(a); n � 1 :

Ln(a) = Ln(a; �; s2n;x0)

:=
X

x`2(Z2)3 for 1�`�2n
exp

�
� kax2nk

�
�n(s2n;x0; : : : ;x2n);

(78)

with �n(s2n;x0; : : : ;x2n) as introduced in the end of Subsection 3.3. On the other

hand, Mk
n(a; b) = M

k
n(a; b; �; s2n+1;x0); with k = 2; 3 and b � 1; is de�ned as

Ln(a) but with the additional factor p2b (s2n�s2n+1)(x
1
2n � xk2n) under the summa-

tion symbol. With these de�nitions, the moment density function of Lemma 23

becomes

m
1122
s0

(x10; x
2
0; x

1
0; x

3
0) � c

4
� c

4
A2

(
exp

�
� kax0k

�
(79)

+ 
 c
2
A2 cA6 exp

�
� kax0k

� Z s0

0

ds1

3X
k=2

p2b (s0�s1)(x
1
0 � x

k

0)

+

1X
n=1



2n

Z s0

0

ds1 � � �
Z s2n�1

0

ds2n Ln(a; �; s2n;x0)

+ c
2
A2cA6

1X
n=1



2n+1

Z s0

0

ds1 � � �
Z s2n

0

ds2n+1

3X
k=2

M
k

n(a; b; �; s2n+1;x0)

)

where a := (2; 1; 1) ; b = e20�
2

; cA2 = cA2(T; �; �) and cA6 = cA6(T; 2�; �):

Now we need estimates for Ln(a) and M
k
n
(a; b): Recall the de�nition (7) of the

norm k � k:
Lemma 24 (Basic estimates). For � � 0; n � 1; T � s0 > � � � > sn+1 > 0;

x0 2 (Z2)3; a 2 A; b � 1; and k = 2; 3;

Ln(a) �
c
2
A2 c

2n�1
24

2nQ
j=2

(sj�2 � sj)

e2�kx0k
X

1� i� 6n=2
k=2;3

1p2bi;k (s0�s1)(x
1
0�xk0);(80)

M
k

n
(a; b) � c

2n
24

2n+1Q
j=2

(sj�2 � sj)

e2�kx0k
X

1� �{� 6n=2
�k=2;3

1p2b�{;�k (s0�s1)(x
1
0�x

�k
0);(81)

where the bi;k � 1 might depend on a; �; s2n�1 ; and the b�{;�k � 1 even on

a; b; k; �; s2n+1 : Moreover, cA2 = cA2(T; 2�; �) � 1 and

c24 = c24(T; �; �) := ~c24 �
�2 exp

h
6�2T

�
e80�

2 � 1
�i
;(82)

with the absolute constant ~c24 := 64 ~c2 :

The proof of this lemma will be postponed to the appendix (Subsection A.2).
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Remark 25 (Simpli�ed bound). The proof of (80) will also show that

Ln(a) � c
2
A2 6

n e2�kx0k:(83)

To see this, instead of using Lemma 2 (b) to bound ps(x), use the trivial bound

of 1 throughout the proof and the factors of c24

s2j�2�s2j e�ectively disappear. This

bound was already exploited in (74) but will not be of further use because it does

not scale properly. 3

Inserting these bounds into (79) gives the following result.

Lemma 26 (4th moment density estimate). Suppose the initial state
1X0 =

1
� has density functions satisfying (76) for some � � 0: Then, for 0 < s0 � T

and x 2 (Z2)3;

1
m
1122
s0

(x1; x2; x1; x3)

� c
4
� c

4
A2 e

2�kxk

(
1 + 
 c

2
A2 cA6

Z s0

0

ds1

3X
k=2

1p2b (s0�s1)(x
1 � x

k)

+ c
2
A2

1X
n=1



2n
c
2n�1
24

Z
s0

0

ds1 � � �
Z

s2n�1

0

ds2n

1
2nQ
j=2

(sj�2 � sj)

X
1� i� 6n=2

k=2;3

1p2bi;k (s0�s1)(x
1�xk)

+ c
2
A2cA6

1X
n=1



2n+1

c
2n
24

Z s0

0

ds1 � � �
Z s2n

0

ds2n+1

1
2n+1Q
j=2

(sj�2 � sj)

X
1� �{� 6n

�k=2;3

1p2b�{;�k (s0�s1)(x
1�x�k)

)

where b = e20�
2

; whereas bi;k � 1 and b�{;�k � 1 might depend on �; s2n�1 and

b; �; s2n+1 ; respectively. Moreover, cA2 = cA2(T; 2�; �) � 1; cA6 = cA6(T; 2�; �) �
1; and c24 = c24(T; �; �):

3.6. A 4th moment estimate on Z2 under bounded initial densities. For

the forthcoming paper [DFM+00] we will need the following more handy version of

the previous estimate concerning the special case � = 0:

Corollary 27 (Bounded initial densities). Let 0 < p < 1: Assume




�2
<

sin
�
� (1� p)

�
p
6 crw �

;(84)

and that the initial state
1X0 = 1

� has bounded density functions,


1X i

0




1 � a,

say, i = 1; 2: Then for s0 > 0; and x = (x1; x2; x3; x4) 2 (Z2)4;

1
m
1122
s0

(x) � a
4

�
1 + c27 s

p

0

Z
s0

0

ds1 s
�p
1

�
1p2s1(x

1 � x
2) + 1p2s1(x

3 � x
4)
��

and

1
m
1112
s0

(x1; x2; x3; x3) � a
4

�
1 + c27 s

p

0

Z
s0

0

ds1 s
�p
1

X
1�j<k�3

1p2s1(x
j � x

k)

�
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for some constant c27 = c27(p; 
; �):

Proof. Step 1Æ: First we restrict our attention to x = (x1; x2; x3) in (Z2)3: Ac-

cording to Remark A7, in the � = 0 case, cA2 = 1 = cA6 ; hence, by (A40), we can

chose c24 = c2 = crw �
�2
: Moreover, under � = 0; the b in (79) equals one, there-

fore all the b's in Lemma 24 and its proof are one. Putting these simpli�cations in

the inequality in Lemma 26 yields (with a instead of c�)

m
1122
s0

(x1; x2; x1; x3) � a
4

(
1 + 


Z
s0

0

ds1 gs0�s1(x)

+

1X
n=1



2n
c
2n�1
2

Z
s0

0

ds1 � � �
Z

s2n�1

0

ds2n
1Q2n

j=2 (sj�2 � sj)

6n

2
gs0�s1(x)

+

1X
n=1



2n+1

c
2n
2

Z
s0

0

ds1 � � �
Z

s2n

0

ds2n+1
1Q2n+1

j=2 (sj�2 � sj)
6n gs0�s1(x)

)
;

where for x = (x1; x2; x3) 2 (Z2)3 we put

gs(x) :=

3X
k=2

p2s(x
1 � x

k); s > 0:(85)

Applying the Feynman integral estimate of Lemma A8 with n replaced by 2n and

2n+ 1; respectively, we obtain

m
1122
s0

(x1; x2; x1; x3) � a
4

(
1 + 


Z
s0

0

ds1 gs0�s1(x)(86)

+
1

p

1X
n=1

6n

2


2n
c
2n�1
2

Z
s0

0

ds1 c
2n�2
A8

�
s0

s0 � s1

�p

gs0�s1(x)

+
1

p

1X
n=1

6n 
2n+1c2n2

Z
s0

0

ds1 c
2n�1
A8

�
s0

s0 � s1

�p

gs0�s1(x)

)
:

Changing variable in the integration (to interchange s0� s1 and s1), and recalling

that with (84) we assumed that
p
6 
 c2 cA8 < 1; we may sum the series (adding

the initial term in the second case) to obtain the estimate

m
1122
s0

(x1; x2; x1; x3) � a
4

(
1 + 


Z s0

0

ds1 gs1(x)(87)

+
1

p

 [3 
 c2 + c

�1
A8 ]

1

1� 6 
2 c22 c
2
A8

Z s0

0

ds1 (s0=s1)
p
gs1(x)

)
:

Hence,

m
1122
s0

(x1; x2; x1; x3) � a
4

�
1 + c(88)

Z
s0

0

ds1 (s0=s1)
p
gs1(x)

�
(88)

for some constant c(88) = c(88)(p; 
; �):

Step 2Æ: Next we want to substitute this estimate into (69) to derive the second of

the claimed inequalities. For this purpose, for x = (x1; x2; x3) and y = (y1; y2; y3)



MUTUALLY CATALYTIC BRANCHING IN R
2 27

in (Z2)3 and r > 0; set8>>>><>>>>:
Ir(x;y) :=

h
pr(x

1 � y
1) pr(x

2 � y
1) pr(x

3 � y
2)

+ pr(x
1 � y

1) pr(x
2 � y

2) pr(x
3 � y

1)

+ pr(x
1 � y

2) pr(x
2 � y

1) pr(x
3 � y

1)
i
pr(x

3 � y
3);

(89)

to obtain from (69) and (88),

m
1112
s0

(x1; x2; x3; x3) � a
4 + 


Z
s0

0

ds1
X

y2(Z2)3
Is0�s1(x;y)

a
4
n
1 + c(88)

Z
s1

0

ds2 (s1=s2)
p
gs2(y)

o
:

(90)

First we calculate two sums over y: Trivially,X
y2(Z2)3

Ir(x;y) =
X

1�j<k�3
p2r(x

j � x
k) =: hr(x);(91)

whereas X
y2(Z2)3

Ir(x;y) p2s2(y
1 � y

2)(92)

=
X
y12Z2

h
pr(x

1 � y
1) pr(x

2 � y
1) pr+2s2(x

3 � y
1)

+ pr(x
1 � y

1) pr+2s2(x
2 � y

1) pr(x
3 � y

1)

+ pr+2s2(x
1 � y

1) pr(x
2 � y

1) pr(x
3 � y

1)
i

� c2 (r + 2s2)
�1
hr(x);

and a similar calculation givesX
y2(Z2)3

Ir(x;y) p2s2(y
1 � y

3) � c2
hr(x)

r + 2s2
:(93)

Recalling the de�nition (85) of gs2(y); put these three bounds into (90) to conclude

m
1112
s0

(x1; x2; x3; x3) � a
4 + a

4



Z
s0

0

ds1 hs0�s1(x)

+ a
4
c(94)

Z s0

0

ds1

Z s1

0

ds2 (s1=s2)
p

hs0�s1(x)

s0 � s1 + 2s2

(94)

for some constant c(94) = c(94)(p; 
; �): The substitution r :=
�

2s2
s0�s1

�1�p
givesZ

s1

0

ds2
s
p

1

s
p

2 (s0 � s1 + 2s2)
�
� 2s0

s0 � s1

�p Z 1

0

dr
1

1 + r
1

1�p

(95)

= c(95) s
p

0 (s0 � s1)
�p
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with a constant c(95) = c(95)(p): Consequently,

m
1112
s0

(x1; x2; x3; x3)

� a
4 + a

4



Z
s0

0

ds1 hs1(x) + a
4
c(94) s

p

0

Z
s0

0

ds1 c(95) (s0 � s1)
�p
hs0�s1(x)

� a
4

�
1 + c(96) s

p

0

Z
s0

0

ds1 s
�p
1 hs1(x)

�
(96)

with a constant c(96) = c(96)(p; 
; �): This gives the second estimate claimed in the

corollary [recall the de�nition (91) of hs1(x)]:

Step 3Æ. It remains to prove the �rst estimate claimed in Corollary 27. According

to (66), for x = (x1; x2; x3; x4) 2 (Z2)4;

m
1122
s0

(x) = Ss0m
1122
0 (x) + 


Z
s0

0

ds1
X

y2(Z2)3h
ps0�s1(x

1 � y
3) ps0�s1(x

2 � y
3) ps0�s1(x

3 � y
2) ps0�s1(x

4 � y
1)

+ ps0�s1(x
1 � y

1) ps0�s1(x
2 � y

2) ps0�s1(x
3 � y

3) ps0�s1(x
4 � y

3)
i

m
1112
s1

(y1; y2; y3; y3):

(97)

Substituting (96) and using the de�nition (91) of hs2(y) gives

m
1122
s0

(x) � a
4 + 


Z
s0

0

ds1
X

y2(Z2)3h
ps0�s1(x

1 � y
3) ps0�s1(x

2 � y
3) ps0�s1(x

3 � y
2) ps0�s1(x

4 � y
1)

+ ps0�s1(x
1 � y

1) ps0�s1(x
2 � y

2) ps0�s1(x
3 � y

3) ps0�s1(x
4 � y

3)
i

a
4

�
1 + c(96) s

p

1

Z
s1

0

ds2 s
�p
2�

p2s2(y
1 � y

2) + p2s2(y
1 � y

3) + p2s2(y
2 � y

3)
��
:

(98)

By Chapman-Kolmogorov we haveX
y2(Z2)3

pr(x
1 � y

3) pr(x
2 � y

3) pr(x
3 � y

2) pr(x
4 � y

1)(99)

�
p2s2(y

1 � y
2) + p2s2(y

1 � y
3) + p2s2(y

2 � y
3)
�

=
X
y32Z2

pr(x
1 � y

3) pr(x
2 � y

3)

�
p2r+2s2(x

3 � x
4) + pr+2s2(x

4 � y
3) + pr+2s2(x

3 � y
3)
�
:

According to Lemma 2 (b),

p2r+2s2(x
3 � x

4) � c2
1

2r + 2s2
;(100)



MUTUALLY CATALYTIC BRANCHING IN R
2 29

whereas for the second and third term in the �nal bracket of (99) one gets twice

this estimate. Thus, again by Chapman-Kolmogorov, (99) can be bounded by

5 c2
1

2r + 2s2
p2r(x

1 � x
2):(101)

Use this estimate, a symmetrical counterpart, and the fact that (99) without the

square bracket expressions equals p2r(x
1 � x

2); to conclude from (98) that

m
1122
s0

(x) � a
4 + 


Z s0

0

ds1
�
p2(s0�s1)(x

1 � x
2) + p2(s0�s1)(x

3 � x
4)
�

a
4

�
1 + c(96) 5 c2 s

p

1

Z
s1

0

ds2
1

s
p

2 (2(s0 � s1) + 2s2)

�
� a

4 + 


Z s0

0

ds1
�
p2(s0�s1)(x

1 � x
2) + p2(s0�s1)(x

3 � x
4)
�

a
4
�
1 + c(96) 5 c2 s

p

1 c(95)

�
2(s0 � s1)

��p�
;

where in the last step we used (95). Consequently,

m
1122
s0

(x) � a
4
�
1 + c(102) s

p

0

Z s0

0

ds1 s
�p
1

�
p2s1(x

1 � x
2) + p2s1(x

3 � x
4)
��
;(102)

�nishing the proof.

3.7. An estimate for the 2nd moment of the collision measure on Z2. For

the desired tightness properties, we will restrict our consideration to a �nite time

interval [0; T ]: So let us �x now a T > 0:

Later we will need estimates for certain moments in the case of tempered initial

density functions and we will provide them for 
=�2 not too large. More precisely,

we will impose the following hypothesis.

Hypothesis 28 (Small collision rate). Assume that

0 < 
 <
�
2

p
6� ~c24

=: 
� ;(103)

with the absolute constant ~c24 = 64 crw from Lemma 24. 3

Later we will consider initial density functions 1
X

i
0 =

1
�
i belonging to 1Btem �

1B�� ; � > 0: Actually, under Hypothesis 28, we will restrict ourselves to those

� 2 [0; 1] satisfying


 exp
h
6�2T

�
e80�

2 � 1
�i

< 
� :(104)

We will use Lemma 26 to derive the following statement. Recall that we �xed

T > 0.

Proposition 29 (2nd moment of collision measure). Assume that both 
 > 0

and � 2 [0; 1] are small as in Hypothesis 28 and condition (104), respectively.

Suppose that
1X0 = 1

� has density functions satisfying (76) (for the present �):

Then, for 0 < t � T and non-negative test functions ';

P 1�

� X
x2Z2

1
X

1
t
(x) 1X2

t
(x)'(x)

�2
� c

0
29

"� X
x2Z2

'(x) e4�jxj
�2

+ c29 t

X
x2Z2

'
2(x) e8�jxj

#
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where c
0
29 = c

0
29(T; �; �) := 2 c4

�
c
6
A2(T; 2�; �) cA6(T; 4�; �) and

0 < c29 = c29(T; �; �; 
) := 
 + 24 
2 c24
(1 + 2� 
 c24)

1� 6�2 
2 c224
< 1(105)

with c24 = c24(T; �; �) from (82).

Proof. The left hand moment expression in the claim (with t = s0) equalsX
x1;x2 2Z2

'(x1)'(x2)m1122
s0

(x1; x2; x1; x2):(106)

By Lemma 26 with x
2 = x

3
; we bound the latter sum by

c
0
29

X
x=(x1;x2)2 (Z2)2

'(x1)'(x2) e4�kxk

(
1 + 


Z
s0

0

ds1 p2b (s0�s1)(x
1 � x

2)

+

1X
n=1



2n
c
2n�1
24

Z
s0

0

ds1 � � �
Z

s2n�1

0

ds2n

1
2nQ
j=2

(sj�2 � sj)

X
1� i� 6n=2

k=2;3

1p2bi;k (s0�s1)(x
1�x2)

+

1X
n=1



2n+1

c
2n
24

Z s0

0

ds1 � � �
Z s2n

0

ds2n+1

1
2n+1Q
j=2

(sj�2 � sj)

X
1� �{� 6n

�k=2;3

1p2b�{;�k (s0�s1)(x
1�x2)

)

(note that we passed from x 2(Z2)3 to x 2(Z2)2): We write the right hand side as

c
0
29 (S1 + � � �+ S4) in the obvious correspondence. Trivially,

S1 =

� X
x2Z2

'(x) e4�jxj
�2

(107)

(recall (7) which now reads as kxk = jx1j+ jx2j) giving the �rst term in the claim.

By Chapman-Kolmogorov and a change of variable,

S2 = 


Z s0

0

ds1
X
y2Z2

X
x1;x2 2Z2

'(x1)'(x2) e4�kxk pbs1(x
1 � y) pbs1(x

2 � y)

= 


Z s0

0

ds1
X
y2Z2

� X
x2Z2

'(x) e4�jxj pbs1(x � y)

�2
:

By Jensen and L1{invariance, we may bound the latter expression by




Z s0

0

ds1
X
y2Z2

X
x2Z2

'
2(x) e8�jxj pbs1(x � y) = 
 s0

X
x2Z2

'
2(x) e8�jxj(108)

which gives rise to the second term in the required upper bound. Treating S3 this

way, but without performing the integral in s1, we get

S3 �
1X
n=1



2n
c
2n�1
24

Z
s0

0

ds1 � � �
Z

s2n�1

0

ds2n
1Q2n

j=2 (sj�2 � sj)
6n
X
x2Z2

'
2(x) e8�jxj:
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By the Feynman integral Lemma A8 with 2n instead of n and with p = 1=2; this

in turn is

� 2
X
x2Z2

'
2(x) e8�jxj

1X
n=1



2n
c
2n�1
24 6n �2n�2

Z s0

0

ds1

r
s0

s0 � s1
:(109)

But
R
t

0
ds
p
t=s = 2t; and

1X
n=1



2n
c
2n�1
24 6n �2n�2 =

6 
2 c24

1� 6�2 
2 c224
(110)

since 6�2 
2 c224 < 1 by Hypothesis 28 and assumption (104) on 
 and �; respec-

tively. So

S3 � 24 s0 

2
c24

1� 6�2 
2 c224

X
x2Z2

'
2(x) e8�jxj:(111)

Finally,

S4 �
1X
n=1



2n+1

c
2n
24

Z s0

0

ds1 ���
Z s2n

0

ds2n+1
1Q2n+1

j=2 (sj�2 � sj)
2�6n

X
x2Z2

'
2(x) e8�jxj:

Lemma A8 applied to K2n+1(s0; s1) and p = 1=2 gives that this is

� 4
X
x2Z2

'
2(x) e8�jxj

1X
n=1



2n+1

c
2n
24 6

n
�
2n�1

Z
s0

0

ds1

r
s0

s0 � s1

� 48 s0 � 

3
c
2
24

1� 6�2 
2 c224

X
x2Z2

'
2(x) e8�jxj:(112)

Combining the estimates (111) and (112) for S3 and S4 ; respectively, gives rise to

the second term of c29 ; and we are done.

3.8. Uniform bound for second moment of collisionmeasure on "Z2. Recall

that the mutually catalytic branching processes "X =
�
"
X

1
;
"
X

2
�
in "Z

2
; 0 < " �

1; introduced before Theorem 6, can be de�ned through 1X via their densities

with respect to "
` [de�ned in (24)]:

"
X

i

t(x) = 1
X

i

"�2t
("�1x); t � 0; x 2 "Z2; i = 1; 2:(113)

That is, the "M2
tem{valued process "X satis�es the martingale problem (MP)

�;
;"
"�

in (35) if and only if the 1M2
tem{valued

1X satis�es (MP)
�;
;1
1�

, where (113) also

determines the relationship between "
� and 1

�.

Let

"
m
i
t(x) :=P"�

24 nY
j=1

"
X

ij

t (xj)

35
be the corresponding moment densities.

Recall that we �xed T > 0. Instead of imposing (104) we will consider now

� 2 [0; 1] satisfying


 exp
�
480�2 T �2 e80

�
< 
�(114)

(with 
� from Hypothesis 28). The following statement is crucial for our develop-

ment.
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Corollary 30 (Scaled 2nd moment of collision measure). Assume that 
 >

0 and � 2 [0; 1] are small as in Hypothesis 28 and assumption (114), respectively.

Suppose that the (deterministic) initial densities
"X0 = "

� satisfy(
"
�
i(x) � c� e

�jxj
; x 2 "Z2; i = 1; 2; " 2 (0; 1];

for some constant c� (independent of "):
(115)

Then there is a constant c30 = c30(T; �; �; 
) independent of "; such that for

0 < t � T and non-negative test functions ' on "Z
2
;

P "�

� Z
"Z2

"
`(dy) "X1

t (y)
"
X

2
t (y)'(y)

�2
� c30

Z
"Z2

"
`(dy) '2(y) e10�jyj:(116)

Proof. By de�nition, the left hand side of (116) can be written as

P 1�

� X
x2Z2

1
X

1
"�2t

(x) 1X2
"�2t

(x) "2'("x)

�2
;(117)

where 1
�
i(x) = "

�
i("x) � c� e

"�jxj
; by (115). Now we want to apply Proposition

29 with T; �; and ' replaced by "
�2
T; "� and "

2
'(" � ); respectively. This is

actually possible, since

ec" � 1 � c " ec; 0 < " � 1; c > 0;(118)

hence, by (114) and since � � 1;


 exp
h
6�2 "�2T

�
e80 "

2
�
2 � 1

�i
� 
 exp

�
480�2 T �2e80

�
< 
� :(119)

Thus, Proposition 29 gives the following upper bound for (117):

c
0
29

"� X
x2Z2

"
2
'("x) e4"�jxj

�2
+ c29 "

�2
T

X
x2Z2

"
4
'
2("x) e8"�jxj

#
;(120)

with c
0
29 = c

0
29

�
"
�2
T; "�; �

�
and c29 = c29

�
"
�2
T; "�; �; 


�
: Concerning their "{

dependence, these constants depend only on terms of the form

c
1 exp

h
c
2
"
�2
T
�
ec

3
"
2
�
2 � 1

�i
(121)

with constants c1; c2; c3 independent of ": Using again the trivial estimate (118),

the latter expression can be bounded from above by

c
1 exp

h
c
2
T c

3
�
2 ec

3
�
2
i

(122)

which is independent of ": Moreover, the second term in (120) is of the form of the

integral on the right hand side of (116) [except the enlargement of the constant 8

to 10]. Finally, using Cauchy-Schwarz, the squared sum in (120) can be bounded

from above by X
x2Z2

"
4
'
2("x) e10 "�jxj

X
x2Z2

e�2 "�jxj;(123)

where the second sum equals c ("�)�2: Combining the arguments above gives (116),

completing the proof.

The following bounds on the scaled fourth moment densities will be used in

[DFM+00] and follow directly from Corollary 27.
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Corollary 31 (Scaled moment density bounds). Let 0 < p < 1. Assume




�2
<

sin
�
� (1� p)

�
p
6 crw �

;(124)

and that the initial state
"X0 = "

� has bounded density functions,


"X i

0




1 � a,

say, i = 1; 2: Then for " > 0; s0 � 0; and x = (x1; x2; x3; x4) 2 ("Z2)4;

"
m
1122
s0

(x) � a
4

�
1 + c27 s

p

0

Z
s0

0

ds1 s
�p
1

�
"p2s1(x

1 � x
2) + "p2s1(x

3 � x
4)
��

and

"
m
1112
s0

(x1; x2; x3; x3) � a
4

�
1 + c27 s

p

0

Z
s0

0

ds1 s
�p
1

X
1�j<k�3

"p2s1(x
j � x

k)

�
for the constant c27 = c27(p; 
; �):

4. Construction of X

In this section, the approximation Theorem 6, hence Theorem 4 (a) will be proved

which states the existence of a mutually catalytic branching process X on R
2
;

satisfying the martingale problem (MP)
�;


�
:

4.1. Tightness on path space. The purpose of this subsection is to derive some

uniform moment estimates, which imply the tightness on path space (Proposition

37 below).

It is convenient to introduce the following hypothesis.

Hypothesis 32 (Uniformly tempered initial densities). Assume that the ini-

tial densities "X0 = "
� satisfy the uniform domination condition (115) for all

� > 0: 3

Recall that measures on "Z
2 will also be considered as (discrete) measures on

R2:

Lemma 33 (Uniform �rst absolute moments). Under Hypothesis 32, for each

T > 0 and ' 2 Cexp(R2);
sup

0<"�1
P "� sup

0�t�T

��h"X i

t
; 'i

�� < 1; i = 1; 2:(125)

Proof. Fix T > 0 and i = 1; 2: We may assume that ' 2 Cp2�(R2); � > 0: Since

j'j � j'jp2� �p2� [recall notation (15)], and using the �rst inequality in (13) in

the case n = 0, it suÆces to verify the claim (125) with ' replaced by ~�� : By the

martingale problem (MP)
�;
;"

�
in (35),

P "� sup
0�t�T

h"X i
t
; ~��i � c P "� sup

0�t�T

�� "M i
t
(~��)

�� + c h"�i; ~��i

+ c

Z T

0

ds
D
"
Ss

"
�
i
;
�
2

2

�� "�~��
��E;(126)

where in the last term we have used the expectation formula (50). Write c (S1 +

S2 + S3) for the right hand side (in the obvious correspondence). For S2 we use

(115) with � replaced by a �
0 2 (0; �); and the upper estimate of (13) in the case

n = 0 to get a �nite bound, independent of ":
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Next, using the mean value theorem (twice), and then the second part of (13) in

the case n = 2; there is a constant c� independent of " such that�� "�~��(x)
�� � c� e

��jxj
; x 2 "Z2:(127)

On the other hand, due to (115) with � replaced by �
0 2 (0; �);

"
� � c�0 ���0 ;(128)

whereas by Corollary A3

"
Ss���0 � cA3 ���0(129)

with cA3 = cA3(T; �
0
; �): Together these give

"
Ss

"
�
i � c ���0 ; 0 < �

0
< �;(130)

with a constant c depending on �
0
: Combining these estimates, S3 also behaves

nicely.

Finally, to S1 we apply Burkholder's inequality to get the upper bound

c P "�

q




"L "X(T ); ~�

2
�

�
� c

q
P "� 




"L "X(T ); ~�

2
�

�
(131)

where we have also used Jensen's inequality. By the expectation formula (53) and

the second part of (13) in the case n = 0; for the expectation under the root we

get the upper bound

c 


Z
T

0

ds

Z
"Z2

"
`(dx) "�1 � "ps (x) "�2 � "ps (x) e�2�jxj:(132)

Applying (130) twice, we are done.

From now on we assume in this subsection that the collision rate 
 > 0 is

small as in Hypothesis 28, and that the initial densities "X0 = "
� are uniformly

tempered as in Hypothesis 32.

Lemma 34 (Uniform 4th moments of increments). Fix a ' � 0 belonging to

C(2)exp(R
2): Then there is a constant c34 = c34(T; 
; �; ') such that

sup
0<"�1

P "�



"
X

i

t0 � "
X

i

t ; '
�4 � c34 jt0 � tj2; 0 � t < t

0 � T; i = 1; 2:

Proof. Fix T; 
; �; i as in the lemma, and take ' 2 C(2)
�

(R2); � > 0: By the Green

function representation of the martingale problem (MP)
�;
;"
"�

in Subsection 3.1,

"
X

i

t0
� "

X
i

t
; '
�4 � c



"
�
i
;
"
St0'� "

St'
�4

(133)

+ c

���� Z
[0;t]�"Z2

"
M

i
�
d(s; x)

� �
"
St0�s'(x) �"

St�s'(x)
� ����4

+ c

���� Z
[t;t0]�"Z2

"
M

i
�
d(s; x)

�
"
St0�s'(x)

����4:
Write the right hand side as c (S1 + S2 + S3) (in the obvious correspondence). We

will use the fact that

"
St0'� "

St' =

Z t
0

t

ds
�
2

2
"
Ss

"�':(134)
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By the mean value theorem, and since by assumption �' belongs to C�(R2); we
conclude that

j"�'j (x) � c e��jxj; x 2 "Z2:(135)

Then by (130), the term S1 has the required property.

By Burkholder's inequality, (48), and the de�nition of "
L "X ;

P "� S3 � c P "�

�



Z t
0

t

ds

Z
"Z2

"
`(dx) "X1

s (x)
"
X

2
s (x)

�
"
St0�s'(x)

�2�2
(136)

� c 

2 jt0 � tj

Z
t
0

t

ds P "�

�Z
"Z2

"
`(dx) "X1

s
(x) "X2

s
(x) "St0�s'

2 (x)

�2

;

where we have also used the Cauchy-Schwarz and Jensen's inequalities. By Corol-

lary 30 with ' replaced by "
St0�s'2; and � by a �

0 satisfying additionally

�
0 2 (0; 2�=5); the latter second moment expression can be bounded from above

by

c30

Z
"Z2

"
`(dy)

�
"
St0�s'

2
�2

(y) e10�
0jyj
:(137)

But by Corollary A3 (a),

"
St0�s'

2 � c �2�(138)

with a constant c depending on T and �: Hence, by our assumption on �
0
;

the integral in formula line (137) is bounded by a constant, uniformly in "; s; t
0
:

Altogether, S3 behaves as we want it to.

Similarly, S2 can be handled by using (134), �nishing the proof.

Since each ' 2 C�(R2); � > 0; satis�es j'j � j'j� �� � j'j� ~�
�=
p
2 ; and

~�
�=
p
2

belongs to C(2)
�=
p
2
(R2); the previous lemma immediately implies the following result.

Corollary 35 (Uniform fourth moments). Let ' 2 Cexp(R2): Then
sup

0<"�1; 0�t�T
P "�



"
X

i

t
; '
�4

< 1; i = 1; 2:(139)

We also need the following lemma.

Lemma 36 (2nd moment of collision local time increments). Fix a ' � 0

in Cexp(R2): Then there is a constant c36 = c36(T; 
; �; ') such that

sup
0<"�1

P "�

D
"
L "X(t)� "

L "X(t
0); '

E2
� c36 jt0 � tj2; 0 � t < t

0 � T:(140)

Proof. The proof requires us to estimate

P "�

�



Z t
0

t

ds

Z
"Z2

"
`(dx) "X1

s (x)
"
X

2
s (x)'(x)

�2

;(141)

and this can be done in the same way as in the proof of Lemma 34 [recall (136)].

Here is the essential result of this subsection.

Proposition 37 (Tightness). Under Hypotheses 28 and 32, the family of random

processes
�
( "X; "L "X) : " 2 (0; 1]

	
is tight (in law) in C

�
R+ ;M3

tem(R
2)
�
:
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Proof. Fix a T > 0: We want to exploit [EK86, Theorem 3.9.1]. For this purpose,

we use the relatively compact subsets

K = K
�
(cn)n�1

�
:=

n
� 2 Mtem : h�; ~�1=ni � cn ; n � 1

o
(142)

of Mtem ; where (cn)n�1 is a sequence of positive numbers. For 0 < " � 1; using

Lemma 33, we can �nd a sequence (cn)n�1 such that for i = 1; 2;

P "�

�
sup

0�t�T

���
"X i

t
; ~�1=n

���� � cn

�
� "=2n:(143)

Then

P "�

�
"
X

i

t 2 K
�
(cn)n�1

�
for all t 2 [0; T ]

�
� 1� ":(144)

By the Lemmas 34 and 36 we obtain that, for every non-negative ' 2 C(2)exp ; the

families �
h "X i

; 'i : 0 < " � 1
	
; i = 1; 2; and

�
h "L "X; 'i : 0 < " � 1

	
(145)

of random processes, restricted to [0; T ]; are tight (in law) in C
�
[0; T ];R

�
: Then

by [EK86, Theorem 3.9.1] the claim follows. (In fact, since our processes are all

continuous, tightness in the Skorohod space then yields the tightness in our C{
space.)

4.2. Limiting martingale problem (proof of Theorem 4). As the main task,

here we want to verify the following proposition which implies Theorem 4 (a).

Proposition 38 (Limiting martingale problem). Fix 
; �; � as in Theorem

4, hence as in Theorem 6, and, for 0 < " � 1; choose
"X0 =

"
� 2 "B2tem("Z2) as

in Theorem 6, that is, satisfying the domination condition (36) with constants c�

independent of "; and converging in M2
tem(R

2) to � as " # 0: Then, based on

Proposition 37, for each (in law) limit point (X;�) of
�
( "X; "L "X) : " 2 (0; 1]

	
in C

�
R+ ;M3

tem(R
2)
�
we have � = LX ; and X satis�es the martingale problem

(MP)
�;


�
.

The proof will be divided into a series of lemmas. For this purpose, in this

subsection we �x 
; �; and "
�! � as " # 0; as well as (X;�) as in the proposition.

Note that then the Hypotheses 28 and 32 hold. Take a sequence ("nX; "nL) with

0 < "n # 0 as n " 1 such that

("nX; "nL) �!
n"1

(X;�) in C
�
R+ ;M3

tem(R
2)
�

(146)

in law. By Skorohod's theorem, we may (and shall) assume that this convergence

is almost sure on the stochastic basis (
;F ;F� ;P):
Since each "nX is a time-homogeneous Markov process, from the expected colli-

sion local time formula (53) we immediately get the following statement: for �xed

"n ; 0 � s � t; and ' 2 Cexp(R2);

P
nD

"nL "nX(t)� "nL "nX(s); '
E ���Fso

=

Z t

s

dr

Z
"nZ

2

"n`(dx) "nX1
s � "npr�s (x) "nX2

s � "npr�s (x)'(x)
(147)

P{a.s. (conditional expected approximated collision local time).
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Lemma 39 (Uniform integrability). For any �xed t > 0 and ' 2 Cexp(R2);
the random variables


"nX
1
t ; '

�2
;


"nX

2
t ; '

�2
;


"nL "X(t); '

�
; n � 1;(148)

are uniformly integrable with respect to P :
Proof. Fix t and ' as in the lemma. By Corollaries 35 and 30 the fourth moment

of


"nX

i
t ; '

�
and the second moment of the collision measure, respectively, are

bounded, uniformly in n. The conclusion of the lemma is then immediate.

From the previous lemma it easily follows that the limit point (X;�) satis�es

the martingale problem (MP)
�;


�
of De�nition 3, but with LX replaced by �: In

order to complete the proof of Proposition 38, the only point which remains to be

checked is that � is in fact the collision local time LX : This we will achieve by

some L1{arguments based on the additional smoothing imposed in De�nition 1 on

the collision local time. The �rst technical result in this direction is the following

lemma.

Lemma 40 (Convergence of expected collision local times). For every

0 � s < t and ' 2 C+exp(R2);Z
t

s

dr[

Z
"nZ

2

"n`(dx) "nX1
s
� "npr�s (x) "nX2

s
� "npr�s (x)'(x)]

�!
n"1

Z t

s

dr

Z
R2

`(dx) X1
s �pr�s (x)X2

s �pr�s (x)'(x)
(149)

in L
1(P):

Proof. Consider s; t; ' as in the lemma. By the expectation formula (50), the

expectation of the integrand in square brackets in (149) equalsZ
"nZ

2

"n`(dx) "n�1 � "npr (x) "n�2 � "npr (x)'(x):(150)

Since the "n� satisfy (115) for all � > 0; and t is �xed, by Corollary A3 (a),

"n�
i � "npr � c� cA3 ��� ; n � 1; i = 1; 2; r � t:(151)

On the other hand, ' � c�0 ��0 and choosing �
0
> 2�; the integral in (150)

is bounded from above by c h"n`; ��0�2�i � c; uniformly in r and "n : Similarly,

the expectation of the corresponding integrand on the right hand side of (149) is

uniformly bounded. Thus, by bounded convergence, it is enough to show that for

�xed r > s � 0 and ';

P
����Z

"nZ
2

"n`(dx) "nX1
s
� "npr�s (x) "nX2

s
� "npr�s (x)'(x)

�
Z
R2

`(dx) X1
s �pr�s (x)X2

s �pr�s (x)'(x)
���� �!

n"1
0:(152)

Next we bring in the additional terms

�
Z
"nZ

2

"n`(dx) "nX1
s � pr�s (x) "nX2

s � pr�s (x)'(x):(153)
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This time we want to apply dominated convergence. Besides domination estimates,

the key is the following variance estimate: by the covariance formula (55), for

i = 1; 2;

Var "nX i

s
�
�
"npr�s (x)� pr�s (x)

�
(154)

= 


Z s

0

du

Z
"nZ

2

"n`(dy) "n�1 � "npu (y) "n�2 � "npu (y)hZ
"nZ

2

"n`(dz)
�
"npr�s (z � x)� pr�s (z � x)

�
"nps�u (z � y)

i2
:

For �xed � > 0; by (151), and using Jensen's inequality, we may bound this

expression from above by

� c

Z s

0

du

Z
"nZ

2

"n`(dy)��2�(y)(155) Z
"nZ

2

"n`(dz)
�
"npr�s (z � x)� pr�s (z � x)

�2 "nps�u (z � y):

Interchanging the order of integration, and exploiting Corollary A3 (a), we get the

bound

� c

Z
"nZ

2

"n`(dz)
�
"npr�s (z � x)� pr�s (z � x)

�2
��2�(z):(156)

But ��2�(z) � ��2�(x)��2�(z�x); and, since r� s > 0 is �xed, by Lemma 2 (a),

given Æ > 0 we may choose N = N(Æ) such that for all n > N;��"npr�s (z � x) � pr�s (z � x)
�� � Æ:(157)

Therefore, we may bound the expression (156) by

� c Æ ��2�(x)

Z
"nZ

2

"n`(dz) "npr�s (z)��2�(z)(158)

+ c Æ ��2�(x)

Z
"nZ

2

"n`(dz) pr�s (z)��2�(z); n > N:

By Corollary A3, the integrals are bounded in "n : Therefore, the variance expres-

sions in (154) tend to 0 as n " 1: It is easy to derive bounds in the x variable which

allow us to apply Dominated Convergence by using the fact that ' � c�0 ��0 and

choosing �
0
> 2�:

Summarizing, it is enough to show that for our �xed r > s � 0 and ';

P
����Z
"nZ

2

"n`(dx) "nX1
s � pr�s (x) "nX2

s � pr�s (x)'(x)

�
Z
R2

`(dx) X1
s
�pr�s (x)X2

s
�pr�s (x)'(x)

���� �!
n"1

0:(159)

But this follows from the assumed a.s. convergence "nX! X in C
�
R+ ;Mtem(R

2)
�

by domination arguments using the uniform �niteness of fourth moments of Corol-

lary 35.
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By the assumed a.s. convergence in (146), Lemma 39, the identity (147) and

Lemma 40, we have, for each ' 2 Cexp(R2); the following convergence in L
1(P) :8>>>>>>>>><>>>>>>>>>:

P
n

�(t)� �(s); '

� ���Fso = lim
n"1

P
�D

"nL "nX(t)� "nL "nX(s); '
E ����Fs�

= lim
n"1

Z t

s

dr

Z
"nZ

2

"n`(dx) "nX1
s � "npr�s (x) "nX

2
s � "npr�s (x)'(x)

=

Z
t

s

dr

Z
R2

`(dx) X1
s
�pr�s (x)X2

s
�pr�s (x)'(x):

(160)

Recalling De�nition 1 of collision local time, we now prove the following result.

Lemma 41 (Identifying the collision local time). For all ' 2 Cexp(R2) and

t � 0; we have the following convergence in L
1(P) :


L
�;Æ
X (t); '

�
�!



LX(t); '

�
as Æ # 0;(161)

and � = LX :

Proof. For ' 2 Cexp(R2); by (160) we have



L
�;Æ
X (t); '

�
=

Z t

0

ds
1

Æ
P
n


�(s+ Æ)� �(s); '
� ��� Fso; P{a.s.(162)

Theorem 37 of [Mey66, p.126] and the continuity of t 7! �(t) in Mtem yield

that the latter integral term converges to


�(t); '

�
in L

1(P) as Æ # 0; for each

t � 0 and ' 2 Cexp(R2): Since � is a continuous non-decreasing Mtem{valued

process, the identity (162) and De�nition 1 tell us that the collision local time LX
exists, coincides with �; and we have the convergence claimed in the lemma. This

�nishes the proof.

Note that we have now proved Proposition 38 and hence Theorem 4 (a).

Proof of Theorem 4 (b). The claimed moment formula for the collision local time

easily follows from the corresponding formula (53) for the approximating processes
"X; the limiting martingale Proposition 38, and Lemmas 40 (deterministic case

s = 0) and 39. Argue similarly for the remaining two moment formulae.

4.3. Extended martingale problem and Green function representation.

In this subsection, for convenience, we present two immediate consequences of the

martingale problem (MP)
�;


�
of De�nition 3.

For � > 0; denote by C(1;2)
T;�

the set of all real-valued functions  de�ned on

[0; T ]�R
2 such that t 7!  (t; � ), t 7! @

@t
 (t; � ); and t 7! � (t; � ) are continuous

C�{valued functions. Set C(1;2)
T;exp :=

S
�>0 C

(1;2)

T;�
:

Lemma 42 (Extension of the martingale problem (MP)
�;


�
). Let X be any

solution of the martingale problem (MP)
�;


�
of De�nition 3. Then, for  

1
;  

2
in
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C(1;2)
T;exp ; 


X
i
t ;  

i(t)
�
=


�
i
;  

i(0)
�
+

Z t

0

ds
D
X

i
s ;
�
2

2
� i(s) +

@

@s
 
i (s)

E
+

Z
[0;t]�R2

M
i
�
d(s; x)

�
 
i(s; x); 0 � t � T; i = 1; 2;

(163)

where M
i
�
d(s; x)

�
are the (zero-mean) martingale measures such that��Z

[0; � ]�R2
M

i
�
d(s; x)

�
f
i(s; x);

Z
[0; � ]�R2

M
j
�
d(s; x)

�
f
j(s; x)

��
t

= Æi;j 


Z
[0;t]�R2

LX

�
d(s; x)

�
f
i(s; x) f j(s; x); 0 � t � T; i; j = 1; 2:

(164)

Here f
1
; f

2
belong to the set of predictable functions f de�ned on 
 � R+ � R2

such that

P
X
�

Z
[0;t]�R2

LX

�
d(s; x)

�
f
2(s; x) < 1; t � 0:(165)

Proof. We will only outline the proof which is standard. We may �x a � > 0 and

note that S is a strongly continuous semigroup acting on the separable Banach

space C� ; and that each St maps C(2)
�

into itself. We then use Proposition 1.3.3

of [EK86] to bootstrap up to the domain of the generator of time-space Brownian

motion on C0

�
[0; T ]� R

2
�
(the space of continuous functions [0; T ]�R

2 vanishing

at in�nity), and this domain contains C(1;2)
T;exp : Approximate  2 C(1;2)

T;exp by an

appropriate sequence of step functions in the time variable, and then proceed as in

the proof of Proposition II.5.7 of [Per00].

Corollary 43 (Green function representation of (MP)
�;


�
). Let X be as in

Lemma 42 above. Then, for ' in C2exp ; i = 1; 2; and t � 0;

X

i

t ; '
i
�
=


�
i
; St'

i
�
+

Z
[0;t]�R2

M
i
�
d(s; x)

�
St�s'

i(x)(166)

with the martingale measures M
i
satisfying (164). Further, if � 2 C2exp ; then

equation (166) holds for ' 2 C2tem :
Proof. The �rst part is standard. Now assume � 2 C2exp ; hence � 2 C2

�
for some

� > 0; and consider ' 2 C2tem : Take 'n 2 C2exp with 'n " ' 2 C2tem as n " 1:

Note that 

X

i

t ; '
i

n

�
=


�
i
; St'

i

n

�
+

Z
[0;t]�R2

M
i
�
d(s; x)

�
St�s'

i

n(x);(167)

by (166). By monotone convergence,

X

i

t
; '

i

n

�
"


X

i

t
; '

i
�

and


�
i
; St'

i

n

�
"


�
i
; St'

i
�

as n " 1:(168)

On the other hand,

P
X
�

h Z
[0;t]�R2

M
i
�
d(s; x)

� �
St�s'

i

n
(x) � St�s'

i(x)
� i2

=

Z t

0

ds

Z
R2

dx
�
St�s

�
'
i

n � '
i
�
(x)
�2
Ss�

1(x)Ss�
2(x):(169)
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But the integrand in (169) is bounded by

c�;�0 (St�s���)
2
(x) (Ss��0 )

2
(x) � c �2(�0��) (x)(170)

for any �
0
> 0: Take �0 > �, and dominated convergence implies that (169) tends

to 0 as n " 1: Therefore (166) is satis�ed also for � 2 C2exp and ' 2 C2tem :
4.4. Convergence of dual processes. The main purpose of this subsection is to

de�ne a process eX which later will be shown to be dual to X:

For convenience, we introduce now the following notation. For

(�; e�) =
�
(�1; �2); (~�1; ~�2)

�
2 M2

tem(R
2)�B2+(R2) or B2+(R2)�M2

f (R
2)

set

E(�; e�) := exp
h
�


�
1 + �

2
; ~�1 + ~�2

�
+ i



�
1 � �

2
; ~�1 � ~�2

�i
;(171)

where the right hand side of (171) is de�ned to be 0 if


�
1 + �

2
; ~�1 + ~�2

�
= 1;

and where here i =
p�1: We may apply this de�nition of E(�; e�) also if R2 is

replaced by "Z2; 0 < " � 1; everywhere. In particular, we may apply it in the

situation of the following lemma.

Theorem 2.4 (b) in [DP98], rescaling as in (32) and (33), and using our iden-

ti�cation convention for density functions and corresponding measures gives the

following self-duality relation for the discrete space processes as introduced at the

beginning of Subsection 3.1. [DP98] deals with a smaller space of initial measures

than Bexp (calledMrap there) but the proof carries over without signi�cant change.

Lemma 44 (Self-duality: lattice case). Fix 0 < " � 1: Let
"X = ("X1

;
"
X

2)

and
" eX = ("eX1

;
"eX2) denote independent mutually catalytic branching processes

in "Z2 with initial states
"X0 = "

� = ("�1; "�2) 2 "M2
tem and

" eX0 = "
' =

("'1; "'2) 2 "B2exp ; respectively. Then with probability one,
" eXt 2 "B2exp for all

t � 0; and the following duality relation holds:

P "�E(
"Xt ;

"
') = P "'E(

"
�;

" eXt); t � 0:(172)

Fix again 
; �; and

"
� �!

"#0
�; as well as ("nX; "nL) �!

n"1
(X; LX) almost surely(173)

as in Proposition 38, respectively in its proof. The "
� continue to satisfy the

uniform domination Hypothesis 32. Fix also

0 � ' = ('1; '2) 2 C2exp(R2):(174)

For each 0 < " � 1; let

"
' = ("'1; "'2) 2 "B2exp("Z2) denote the restriction of ' to "Z

2
;(175)

and consider the mutually catalytic branching process

" eX in "Z
2 starting from " eX0 = "

':(176)

Then for each n � 1; we may apply the duality relation (172) of Lemma 44 to

("nX;"neX) [with "n from (173)]. Later we want to pass to the limit as n " 1
in the duality relation (172). For this we need, in particular, the convergence of
"neX to some limit process. To make this more precise, we introduce the following

de�nition.
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De�nition 45 (Strong integrability condition (SIntC)). For Æ > 0; set

HÆ(�) :=

Z
R2

dx

Z
R2

dy
h
1 +

1

jx� yj
i
SÆ�

1(x)SÆ�
2(x)SÆ�

1(y)SÆ�
2(y);(177)

where � = (�1; �2) is a pair of measures in Mf(R
2): A continuous M2

f {valued

process Y is said to satisfy the strong integrability condition (SIntC); if

lim
Æ#0

P
Z

T

0

ds HÆ(Ys) < 1;(178)

for all T > 0: 3

Proposition 46 (Exponentially decreasing initial densities). Fix ' � 0 in

C2exp(R2):
(a) (Uniqueness): There exists a unique solution eX of the martingale prob-

lem (MP)
�;


'
of De�nition 3 which satis�es the strong integrability condition

(SIntC) of De�nition 45.

(b) (Convergence): For
�
"eX : 0< "� 1

	
as in (175) { (176) and eX of (a),

the convergence in law

lim
"#0

" eX = eX holds in C
�
R+ ;M2

f (R
2)
�
:

(c) (Exponentially decreasing states): For �xed t � 0;eXt 2 M2
exp(R

2); almost surely.

Proof. Fix ' as in (174). In order to apply a result stated in [DEF+00], we �rst

recall the notation Mf;se from there. Mf;se is the set of all pairs � = (�1; �2) in

M2
f satisfying the following strong energy condition: for any p 2 (0; 1); there is a

constant c(179) = c(179)(�; p) such that

max
1� i;j� 2

Z
R2

�
i(dx)

Z
R2

�
j(dy) pr(x� y) � c(179) r

�p
; 0 < r < 1:(179)

(a) Clearly, ' 2 Mf;se and so by [DEF+00, Theorem 11 (a,b)] there is a unique

solution eX of the martingale problem (MP)
�;


'
there, satisfying (SIntC). Certainly,

this eX solves also our martingale problem (MP)
�;


'
of De�nition 3 since the ' in

C2exp(R2) own the needed boundedness properties.

Let 0 eX be another solution to our martingale problem (MP)
�;


'
and  = ( 1;  2)

be a pair of non-negative test functions as in the martingale problem (MP)
�;


'

of [DEF+00] (that is, twice continuously di�erentiable with bounded derivatives).

Choose non-negative  n 2 C2exp(R2) such that  n "  as n " 1: By monotone

convergence, 
0 eX i

t ;  
i

n

�
%
n"1


0 eX i

t ;  
i
�
; i = 1; 2; t � 0:(180)

Hence, by simple moment calculations, 0 eX satis�es the martingale problem (MP)
�;


'

of [DEF+00]. But by the uniqueness there, 0 eX = eX; and the proof of (a) is

complete.

(b) Statement (b) is a variant of [DEF+00, Theorem 11 (c)]. In fact, by [DEF+00,

Remark 12 (i)] we need only check that the Lemmas 35 and 45 (a) there are satis�ed
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by our sequence of initial measures "
'; and this is trivial to verify. This gives the

convergence statement in (b).

(c) We may assume that ' belongs to C2
�
for some � > 0: From the expectation

formula in Theorem 4 (b) [or from the Green function representation of (MP)
�;


'

in Corollary 43],

P
eX
'


 eXj

t ; ���0
�
=


'
j
; St���0

�
< 1; j = 1; 2; 0 < �

0
< �:(181)

Claim (c) follows, �nishing the proof.

4.5. A regularization procedure for dual processes. We also need the follow-

ing two regularization lemmas.

Lemma 47 (Regularization for " eX). Fix r � 0; t > 0; 0 � ' 2 C2exp(R2); and
initial densities

"
�; 0 < " � 1; satisfying the uniform domination Hypothesis 32.

For each " 2 (0; 1]; consider the independent mutually catalytic branching processes

"X and
" eX on "Z2 with initial states

"X0 = "
� and

" eX0 = "
'; the restriction

of ' to "Z2; respectively. Then there is a constant c47 such that for all bounded

measurable complex-valued functions f on C
�
R+ ;M2

tem(R
2)
�
; and all Æ 2 (0; t);

sup
0<"�1

����P "� f(
"X)P "'

h
E
�
"Xr ;

" eXt

�
� E

�
"Xr ;

"
SÆ

" eXt�Æ
�i���� � c47 Æ kfk1 :(182)

Proof. For the moment, �x ": From the Green function representation of the mar-

tingale problem (MP)
�;
;"
"'

[see (47) { (49)], conditioning on F"
eX

t�Æ ; and Itô's formula

(applied to the process " eX); the expectation expression on the left hand side of

estimate (182) equals

4
P "�f(
"X)P "'

Z
[t�Æ;t]�"Z2

"
L " eX

�
d(s; x)

�
E
�
"
St�s

"Xr;
" eXs

�
"
St�s

"
X

1
r (x)

"
St�s

"
X

2
r (x):

Hence, the absolute value expression in (182) can be bounded from above by

4
kfk1 P "� P "'

Z
[t�Æ;t]�"Z2

"
L " eX

�
d(s; x)

�
"
St�s

"
X

1
r
(x) "St�s

"
X

2
r
(x)

= 4
kfk1P "�P "'

Z t

t�Æ
ds

Z
"Z2

"
`(dx) "Ss�r

"eX1
r (x)

"
St�s

"eX2
r (x)

"
St�s

"
X

1
r (x)

"
St�s

"
X

2
r (x)

= 4
kfk1
Z t

t�Æ
ds

Z
"Z2

"
`(dx) "Ss

"
'
1(x) "Ss

"
'
2(x) "St�s+r

"
�
1(x) "St�s�r

"
�
2(x);

where we �rst used the expectation formula (53) for the collision local time, and

then the mixed second moment formula (52). Now take 0 < � < ~� and exploit the

fact that, by assumption, "
�
j � c� ��� and "

'
j � c~� �~� for some constants c�

and c~� ; j = 1; 2: Then the claim follows from Corollary A3 (a).

Here is a continuum analogue of the previous lemma:

Lemma 48 (Regularization for eX). Fix r � 0; t > 0; 0 � ' 2 C2exp(R2); and

� 2 B2tem(R2): Consider the independent solutions X and eX to the martingale

problem (MP)
�;


�
and (MP)

�;


'
occurring in Proposition 38 and Proposition 46,
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respectively. Then there is a constant c48 such that for all bounded measurable

complex-valued functions f on C
�
R+ ;M2

tem(R
2)
�
; and all Æ 2 (0; t);

lim
�#0

����PX
� f(X)P

eX
'

h
E
�
S�Xr ;

eXt

�
� E

�
Xr ; SÆ

eXt�Æ
�i���� � c48 Æ kfk1 :(183)

Remark 49 (Case r = 0). Note that in the case r = 0; one can immediately pass

to the limit as � # 0 on the left hand side of (183), that is, the additional smoothing

with S� can be dropped. 3

Proof of Lemma 48. We need only slightly modify the proof of Lemma 47. From

the Green function representation of the martingale problem (MP)
�;


'
of Corollary

43, conditioning on F eX
t�Æ ; and Itô's formula, the expectation on the left hand side

of (183) equals

4
PX
�
f(X)P

eX
'

Z
[t�Æ;t]�R2

L
eX

�
d(s; x)

�
E
�
S�+t�sXr ;

eXs

�
S�+t�sX

1
r
(x)S�+t�sX

2
r
(x)

+ P
X
� f(X)P

eX
' E

�
S�+ÆXr ;

eXt�Æ
�
� P

X
� f(X)P

eX
' E

�
Xr ; SÆ

eXt�Æ
�
:

Hence, using the moment formulae in Theorem 4, the absolute value expression in

formula line (183) can be bounded from above by

4
kfk1
Z

t

t�Æ
ds

Z
R2

dx Ss'
1(x)Ss'

2(x)S�+t�s+r�
1(x)S�+t�s+r�

2(x)(184)

+ kfk1 P
X
�

����P eX
'

h
E
�
S�+ÆXr ;

eXt�Æ
�
� E

�
SÆXr ;

eXt�Æ
�i����:(185)

Now from Corollary A3 (b), the term in (184) gives the desired bound in (183),

uniformly in � 2 (0; 1]: Letting � # 0; the expression in (185) will disappear by

bounded convergence, �nishing the proof.

4.6. Convergence of one-dimensional distributions. As a �rst step to the

approximation Theorem 6 we show convergence of one-dimensional (in time) margi-

nals. For this we need a technical lemma.

Lemma 50 (Continuous convergence). For 0 < " � 1; let
"
� 2 M2

tem("Z
2):

Suppose
"
� ! � in M2

tem(R
2): Moreover, let ' 2 B2exp(R2); and "

' the restriction

of ' to "Z
2
; 0 < " � 1: Consider the related processes

" eX) eX (as " # 0) as in

Proposition 46. Then, for �xed j; k = 1; 2 and s; t > 0;

"
�
j
;
"
Ss

" eXk

t

�
=)
"#0



�
j
; Ss

eXk

t

�
:(186)

Proof. We may assume that even " eX ! eX a.s. as " # 0: For R � 1; choose a

continuous function fR : R2 ! R+ such that 1B(R) � fR � 1B(R+1); where B(R)

is the centered open ball in R
2 with radius R: Then���
"�j ; "Ss " eXk

t

�
�


�
j
; Ss

eXk

t

���� � ���
"�j ; "Ss " eXk

t

�
�


"
�
j
; fR

"
Ss

" eXk

t

����(187)

+
���
"�j ; fR "

Ss
" eXk

t

�
�


�
j
; fRSs

eXk

t

����+ ���
�j ; fRSs eXk

t

�
�


�
j
; Ss

eXk

t

����:
Since ' belongs to C2

�
for some � > 0; by (50) the expectation of the �rst term

on the right hand side of (187) equals

"
�
j
; (1� fR)

"
Ss+t

"
'
k
�
�


"
�
j
; (1� fR) c�

"
Ss+t��

�
� c



"
�
j
; (1� fR)��

�
;
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where for the second estimate we used Corollary A3. Now take any Æ > 0: Then

the latter expression can be made smaller than Æ; uniformly in " by choosing R

suÆciently large. Similarly, enlarging R if necessary, the expectation of the last

term on the right hand side of (187) is smaller than Æ:

Concerning the remaining middle term on the right hand side of (187), �rst of

all we have, as " # 0; the (a.s.) convergence of �nite measures " eXk
t ! eXk

t and

the continuous convergence "ps(
"
y) ! ps(y) whenever "

y ! y [by Lemma 2 (a)].

This certainly implies "
Ss

" eXk
t
("x) ! Ss

eXk
t
(x) whenever "

x ! x: But we have

also the following convergence of �nite measures: "
�
j(dx) fR(x) ! �

j(dx) fR(x):

Therefore, the remaining term tends to 0 a.s. as " # 0: Altogether, we have proved
convergence in probability instead of (186), and the claim follows.

Restricting our attention to a �xed time t � 0; we know so far only that the

random measures "Xt are tight in law as " # 0: Now we will basically show their

convergence in law.

Lemma 51 (Convergence of one-dimensional distributions). Let X denote

any limit point of f"X : "X0 =
"
�; 0 < " � 1g occurring in Proposition 38 above

(where "
�! �): Then, for each non-negative ' 2 C2exp(R2) and the related processeX from Proposition 46,���P "�E

�
"Xt ; '

�
� P

eX
'
E
�
�; eXt

���� �!
"#0

0; t � 0:(188)

Proof. We may assume that t > 0: Let "
' denote the restriction of ' to "Z2;

0 < " � 1: By the self-duality relation (172), the absolute value expression in (188)

equals ���P "'E
�
"
�;

" eXt

�
� P

eX
'
E
�
�; eXt

����:(189)

Take 0 < Æ < t; then (189) can be bounded from above by���P "'E
�
"
�;

" eXt

�
�P "'E

�
"
�;

"
SÆ

" eXt�Æ
����+ ���P "'E

�
"
�;

"
SÆ

" eXt�Æ
�
�P eX

'
E
�
�; SÆ

eXt�Æ
����

+
���P eX

'
E
�
�; SÆ

eXt�Æ
�
� P

eX
'
E
�
�; eXt

����:
By the Lemmas 47 and 48 with r = 0 and f = 1; and Remark 49, the �rst and

last terms are bounded from above by c47 Æ and c48 Æ; uniformly in ": Since Æ can

be made arbitrarily small, it remains to show that���P "'E
�
"
�;

"
SÆ

" eXt�Æ
�
� P

eX
' E

�
�; SÆ

eXt�Æ
���� �!

"#0
0;(190)

for �xed Æ: But this follows from the continuous convergence Lemma 50 applied to
"
� � "

�:

4.7. Convergence of �nite-dimensional distributions. The purpose of this

subsection is to complete the proof of the approximation Theorem 6. This will be

achieved by the following lemma.

Lemma 52 (Convergence of �nite-dimensional distributions). Let X deno-

te any limit point of f"X : "X0 =
"
�; 0 < " � 1g occurring in Proposition 38 above

(where "
�! �): Moreover, let

�
"
�̂ 2 "B2tem("Z2) : 0 < " � 1

	
be any family (pos-

sibly di�erent from f"� : 0 < " � 1g) also satisfying the domination condition (36)

and converging in M2
tem(R

2) to the same � as " # 0: Finally, for each " 2 (0; 1];
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let
"X̂ be the solution to the martingale problem (MP)

�;
;"
"�̂

(introduced in Sub-

section 3.1). Then, for each �nite sequence 0 � t1 � � � � � tm ; the following

convergence in law holds:

("X̂t1 ; : : : ;
"X̂tm) =)

"#0
(Xt1 ; : : : ;Xtm):(191)

Note that (191) yields the desired uniqueness of limit points as well as the in-

dependence of the choice of the approaching "
�; thus completing the proof of the

lattice approximation Theorem 6.

Proof of Lemma 52. We will proceed by induction. First assume that m = 1: We

will apply Lemma 51 with f"� : 0 < " � 1g replaced by f"�̂ : 0 < " � 1g: Since
there the pair 0 � ' 2 C2exp(R2) of test functions is arbitrary, this lemma implies

that "X̂t1 has a limit in law as " # 0; which is independent of the choice of the

family f"�̂ : 0 < " � 1g and so must coincide in law with Xt1 : This implies (191)

in the present m = 1 case.

Suppose now that (191) holds for some m � 1; and we want to check it for

m + 1: For this we may assume that tm < tm+1 ; and that for this m we have

almost sure convergence in (191). Take 0 � 'j 2 C2exp(R2); 1 � j � m + 1: We

only need to show that

P "�̂

m+1Y
j=1

E
�
"X̂tj ; 'j

�
(192)

has a limit as " # 0; which is independent of the choice of f"�̂ : 0 < " � 1g:
Trivially, the expectation expression (192) equals

P "�̂

mY
j=1

E
�
"X̂tj ; 'j

�
P "�̂

n
E
�
"X̂tm+1

; 'm+1

� ��� F"X̂
tm

o
:(193)

By time-homogeneity, with probability one the latter conditional expectation can

be written as

P "X̂tm
E
�
"X̂tm+1�tm ; 'm+1

�
= P

"
eX

"'m+1
E
�
"X̂tm ;

" eXtm+1�tm
�
;(194)

where "
'm+1 is the restriction of 'm+1 to "Z2; 0 < " � 1; and in the last step

we exploited the self-duality relation (172). Now we want to proceed in a similar

way to the proof of the convergence statement (188). It suÆces to show that

P "�̂

m+1Y
j=1

E
�
"X̂tj ; 'j

�
� lim

�#0
P
X
�

mY
j=1

E
�
Xtj ; 'j

�
P
eX
'm+1

E
�
S�Xtm ;

eXtm+1�tm
�

(195)
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converges to 0 as " # 0: In fact, using (192) { (194), and taking 0 < Æ < tm+1� tm ;
the absolute value of the expressions in (195) can be bounded from above by����P "

X̂
"�̂

mY
j=1

E
�
"X̂tj ; 'j

�
P

"
eX

"'m+1

h
E
�
"X̂tm ;

" eXtm+1�tm
�
� E

�
"X̂tm ;

"
SÆ

" eXtm+1�tm�Æ
�i����

+

����P "X̂
"�̂

mY
j=1

E
�
"X̂tj ; 'j

�
P

"
eX

"'m+1
E
�
"X̂tm ;

"
SÆ

" eXtm+1�tm�Æ
�

� P
X
�

mY
j=1

E
�
Xtj ; 'j

�
P
eX
'm+1

E
�
Xtm ; SÆ

eXtm+1�tm�Æ
�����

+ lim
�#0

����PX
�

mY
j=1

E
�
Xtj ; 'j

�
P
eX
'm+1

h
E
�
Xtm ; SÆ

eXtm+1�tm�Æ
�
� E

�
S�Xtm ;

eXtm+1�tm
�i����:

By the induction hypothesis and Skorohod's representation we may assume that

the convergence statement (191) holds in Mm
tem almost surely. Lemma 47 with "X

replaced by "X̂; r = tm and t = tm+1 � tm shows that the �rst absolute value in

the above display is bounded by c47 Æ; uniformly in ": Similarly, by Lemma 48, the

lim{term is bounded by c48 Æ: Finally, by the continuous convergence of Lemma

50 applied to "
� � "X̂tm ; our induction hypothesis and bounded convergence, the

middle term converges to 0 as " # 0. Thus, (195) converges to 0; �nishing the proof.

5. Properties of X

Here we will verify the claimed properties of our mutually catalytic branching

process X in R2:

5.1. Self-duality, scaling and self-similarity.

Completion of the proof of the self-duality Proposition 15. By (188), the left hand

side in the duality relation (172) converges to the right hand side of the self-duality

claim in Proposition 15 (b) (recall (176)). But trivially, by (191), it converges also

to P
X
�
E(Xt ; '); that is, part (b) is proved. But from Proposition 46 (c) we also

get claim (a), completing the proof.

Proof of the scaling Proposition 16. We only have to prove (a), since (b) is a special

case of (a) in which � = 1 and z = 0: Fix �; "; t; z;X;X(") as in the proposition.

Set X̂
(")
t

:= �"
2X"�2t

�
z + "

�1( � )
�
2 M2

tem : By the self-duality of Proposition 15,

applied to X(") instead of X; for the process eX with initial density eX0 = ' 2 C2exp
we have

P
X
(")

�(")
E
�
X
(")
t ; '

�
= P

eX
' E

�
�
(")
; eXt

�
= P

eX
' E

�
�; "

2
� eXt

�
� "z + "( � )

��
:(196)

But by scaling of the �nite-measure-valued mutually catalytic branching processeX (see [DEF+00, Theorem 11 (d)]), the chain (196) of equations can be continued

with

= P
eX

�"2'(�"z+"( � ))
E
�
�; eX"�2t

�
= P

X
�
E

�
X"�2t ; �"

2
'
�
� "z + "( � )

��
= P

X
� E

�
X̂
(")
t ; '

�
;

(197)
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where we have once again used the self-duality of Proposition 15. Since ' is

arbitrary, the claim follows.

5.2. Absolute continuity, law of densities, and segregation. Now we are

ready to show that our X has absolutely continuous states and to determine the

law of densities at a point.

Proof of Theorem 11 (a). This is a direct application of a more general absolute

continuity result in [DEF+00]. We now check the hypotheses required to apply

this result. Let �;X; t as in Theorem 11 (a) and ' 2 C1com(R2): Use the fact that
the function  := fST�t' : 0 � t � Tg belongs to each C(1;2)

T;�
; � > 0; (introduced

at the beginning of Subsection 4.3). Thus, we can apply the extended martingale

problem of Lemma 42 to  to see that the hypotheses of the general absolute

continuity Theorem 57 of [DEF+00] are satis�ed with d = 2; Q = S; and � =

LX : The result then follows from the fact that Brownian motion has absolutely

continuous laws for positive times.

Proof of Theorem 11 (b) and (c). Actually this requires only some minor modi�ca-

tions to the proofs in the �nite measure case of [DEF+00]. In fact, in some respects

the proof is even easier since the key ingredient is the self-duality of Proposition

15, whereas in the general �nite measure case only a limiting duality was available.

Take X with X0 = � 2 B2tem(R2) as in the theorem, and eX with eX0 = ' in

C2exp(R2) as in the self-duality Proposition 15. Set

U := X
1 +X

2
; V := X

1 �X
2
:(198)

Moreover, for a
1
; a

2 � 0; put a := a
1 + a

2 and b := a
1 � a

2
: Recall that for

t > 0 �xed, Xt is a pair of absolutely continuous measures, by Theorem 11 (a).

Writing pÆ;x := pÆ( � � x); by standard di�erentiation theory, for �xed t > 0 and

Lebesgue-almost all x 2 R
2
;

P
X
�
exp

�
� aUt(x) + ibVt(x)

�
= lim

Æ#0
P
X
�
exp

�
� a hUt ; pÆ;xi+ ib hVt ; pÆ;xi

�
:

By the self-duality of Proposition 15, we conclude that for Lebesgue-almost all

x 2 R2;

P
X
�
exp

�
� aUt(x) + ibVt(x)

�
= lim

Æ#0
P
eXÆ;x

'
exp

h
�


U0 ;

eUÆ;x

t

�
+


iV0 ;

eV Æ;x

t

�i
(199)

with '
i := a

ipÆ;x ; i = 1; 2; eXÆ;x = ( eX1;Æ;x
; eX2;Æ;x) andeUÆ;x := eX1;Æ;x + eX2;Æ;x

; eV Æ;x := eX1;Æ;x � eX2;Æ;x
:(200)

Fix x such that (199) holds, and take Æ 2 (0; 1]: By the formula
 eX i

s ; f
�
:=

D eX i;Æ;x

Æs
; f
�
( � � x)=

p
Æ
�E
; s � 0; i = 1; 2; f 2 C+com(R2);(201)

we introduce a process eX = ( eX1
; eX2): According to the scaling Proposition 16, eX

is our mutually catalytic branching process in R
2 starting from eXÆ;x

0 = a�; where

a = (a1; a2) and � is the normal law on R
2 with density function p1 : Now the

de�nition (201) of eX turns (199) into

P
X
�
exp

�
� aUt(x) + ibVt(x)

�
(202)

= lim
Æ#0

P
eX
a� exp

h
�

eUt=Æ ; U0( � pÆ + x)

�
+ i

eVt=Æ ; V0( � pÆ + x)

�i
;
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where eU and eV are de�ned in an analogous way to (200). Applying the Green

function representation in Corollary 43 with X; t replaced by eX; t=Æ; respectively,
and with

' := �( �
p
Æ + x)� St� (x);(203)

but the indices interchanged, we get

h eXj

t=Æ
; '

ii = aj



�; St=Æ '

i
�
+

Z
[0; t=Æ ]�R2

M
j
�
d[r; y]

�
St=Æ�r'

i (y) a.s.(204)

For r < t=Æ; by scaling of the heat kernel, we have

St=Æ�r'
i (y) =

Z
R2

dz �i(z)

�
p1

�
z � x� y

p
Æp

t� Æ=r

�
� p1

�
z � xp

t

��
:(205)

Clearly, the integrand converges to 0 as Æ # 0: Also,

p1

�
z � x� y

p
Æp

t� Æ=r

�
� p1

�
z � x� y

p
Æp

t

�
� p1

�
z � xp

t

�
exp

h jz � xj jyj
p
Æ

�2t

i
� p1

�
z � xp

t

�
exp

h jz � xj jyj
�2t

i
=: gx;y;t(z);

since 0 < Æ � 1: But for �xed x; y; t; the dominating function gx;y;t is integrable

with respect to �
i(z) dz: Thus it follows from dominated convergence that

St=Æ�r'
i (y)! 0 as Æ # 0:(206)

But, again by scaling,

St=Æ�r'
i(y) = St�Ær'

i( � =
p
Æ) (y

p
Æ); y 2 R

2
;(207)

and, for �xed � > 0;

�
i � c� ��� :(208)

This gives

j'ij � c�;x;t ���
p
Æ
:(209)

Thus, by Lemma A2, there is a constant c(210) = c(210)(t; �; �; x) such that for

r < t=Æ; ��St=Æ�r'i(y)�� � c(210) ���
p
Æ
;(210)

which is �{integrable. Then from (206), the �rst term on the right hand side of

equation (204) approaches 0 as Æ # 0; by dominated convergence.

Writing

N
Æ

s
:=

Z
[0;s]�R2

M
j
�
d[r; y]

�
St=Æ�r'

i (y); s � t=Æ;(211)

then from (164)


N

Æ
��
t=Æ

= 


Z
R+�R2

L
eX

�
d[r; y]

�
1[0;t=Æ](r)

�
St=Æ�r'

i (y)
�2
:(212)

For K > 0; write I
K for this integral, if the integrand is additionally restricted

to jyj � K=
p
Æ; and J

K in the opposite case. The integrand of IK approaches 0
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as Æ # 0 by (206), and is bounded by c e2�K by (210). But L
eX
is �nite P

eX
a�{a.s.

This shows that

lim
Æ#0

I
K = 0; P

eX
a�{a.s. for each K > 0:(213)

Now use (210) and then the expectation formula for the collision local time [Theo-

rem 4 (b)] to see that

P
eX
a�J

K � c a1a2

Z t=Æ

0

dr

Z
jyj>K=

p
Æ

dy ��2�
p
Æ
(y) p21+r(y):(214)

By scaling, the right hand side equals

c

Z t

0

dr

Z
jyj>K

dy ��2�(y) p
2
Æ+r(y) � c

Z t

0

dr

Z
jyj>K

dy
1

Æ + r
pÆ+r(y)(215)

where we have used the trivial estimate

��2�(y) pÆ+r(y) � c
1

Æ + r
; r � t:(216)

Therefore, (214) and (215) give

P
eX
a�J

K � c

Z t+1

0

dr

Z
jyj>K

dy
1

r
pr(y) �!

K"1
0:(217)

The statements (213) and (217) easily show that



N

Æ
��
t=Æ

! 0 in P
eX
a�{probability

as Æ # 0: By a standard martingale inequality, the second term on the right hand

side of (204) (that is NÆ

t=Æ
) also converges to 0 in P

eX
a�{probability as Æ # 0:

Summarizing, we have proved

h eXj

t=Æ
; '

ii �!
Æ#0

0 in P
eX
a�{probability,(218)

and so (202) now gives

P
X
�
exp

�
� aUt(x) + ibVt(x)

�
= lim

Æ#0
P
eX
a� exp

h
�

eUt=Æ ; 1�StU0(x) + i


eVt=Æ ; 1�StV0(x)i:(219)

According to the convergence Theorem 20 in [DEF+00], the total masses

 eXj

T
; 1
�
;

j = 1; 2; of the pair eXT of �nite measures has a limit in law as T " 1 which can

be described by the exit state �� of planar Brownian motion started at a (recall

De�nition 10). Therefore, the limit in (219) can be computed and equals

�a exp
h
� StU0(x)(�

1
�
+ �

2
�
) + iStV0(x)(�

1
�
� �

2
�
)
i

(220)

= �(St�1(x); St�2(x)) exp
�
�a(�1

�
+ �

2
�
) + ib(�1

�
� �

2
�
)
�
:

In fact, the last equality is an easy exercise in harmonic analysis which may be found

in the proof of [DP98, Theorem 1.5]. An easy application of the Stone-Weierstrass

Theorem, as in the proof of [DP98, Lemma 2.3(b)], shows that the latter joint

Laplace-Fourier transform for a 2 R2+ uniquely determines the law of Xt(x) to be

that claimed in Theorem 11 (b).

Both, the variance formula and the segregation follow from simple properties of

planar Brownian motion, completing the proof of Theorem 11 (b) and (c).
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Proof of Theorem 11(d) The detailed proof of the blow-up property, is omitted,

since it is similar to the one of Corollary 19 in [DEF+00], which gives the result

in the context of �nite measures. In fact, one must simply replace X
i
s
(R2) with


X
i
s
; ��

�
for � > 0 in some places (notably in the inequality prior to the estimate

(206) in [DEF+00]) to accommodate our Mtem{setting.

5.3. Long-term behavior (proof of Theorem 13). First we additionally as-

sume that � = c` = (c1`; c2`); with c = (c1; c2) 2 R
2
+ : Take a non-negative

' 2 C2com ; and consider the mutually catalytic branching process eX but starting

from ': By the self-duality Proposition 15 [recall the notation E from (171)],

P
X
c` E

�
Xt ; '

�
= P

eX
'
E
�
c`; eXt

�
; t � 0:(221)

But again according to Theorem 20 of [DEF+00], the right hand side of (221)

converges to

�(h'1;1i; h'2;1i) exp
h
� (c1 + c

2)(�1� + �
2
� ) + i (c1 � c

2)(�1� � �
2
� )
i

(222)

= �c exp
h
�
�
�
1
� + �

2
�

� 

`; '

1 + '
2
�
+ i

�
�
1
� � �

2
�

� 

`; '

1 � '
2
�i

as t " 1; where the last identity is again a simple exercise in harmonic analysis

(see [DP98, proof of Theorem 1.5]). This gives the required convergence for a

determining class of functionals in M2
tem (see [DP98, Lemma 6.7]). Moreover, the

required tightness follows from

P
X
c`



X

1
t +X

2
t ; ��

�
= (c1 + c

2) h`; St��i � (c1 + c
2) h`; ��i < 1(223)

[by the expectation formula in Theorem 4 (b)]. More precisely, [DP98, Lemma 6.7]

(trivially extended to R2) gives the required result in the case � = c`:

Using the method of [CKP00], we remove now the additional assumption � = c`:

In fact, let the initial densities X0 = � be bounded and satisfy (40). Consider eX
with eX0 = ' 2 C2exp from the self-duality Proposition 15. Then this proposition

gives, for t � 0;���PX
c` E

�
Xt ; '

�
� P

X
�
E
�
Xt ; '

���� � P
eX
'

���E�c`; eXt

�
� E

�
�; eXt

����:(224)

To show this approaches 0 as t " 1; it suÆces to show that

�
j � c

j
; eXk

t

�
�!
t"1

0 in probability, j; k = 1; 2:(225)

It suÆces to show this for j = k = 1: Put  := �
1 � c

1 2 Ctem : Then by the

martingale problem in the Green function representation of Corollary 43,
 eX1
t ;  

�
=

 eX1

0 ; St 
�
+

Z
[0;t]�R2

fM i
�
d(s; x)

�
St�s (x):(226)

Now Z
[0;t]�R2

L
eX

�
d(s; x)

� �
St�s (x)

�2 �!
t"1

0 a.s.(227)

by dominated convergence, the assumption (40), and since L
eX
(R+�R2) is �nite a.s.

Moreover, limt"1

 eX1

0 ; St 
�
= 0 by the same reasoning. Consequently,


 eX1
t ;  

�
!

0 in probability and we have reduced the general case to the special case already

proved.
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Appendix: auxiliary facts and remaining proofs

A.1. Some random walk estimates. Recall that 1
S denotes the semigroup of

the simple symmetric random walk in Z
d with jump rate �

2

2
; and that ���(x) =

e�jxj:

Lemma A1 (Preservation of tempered functions). For � � 0;�� 1������ � cA1 ��� ;(A1)

where cA1 = cA1(�) :=
d

2

�
e� � 1

�
:

Proof. Take the de�nition (23) of 1� (case " = 1) and use e�jyj � e�jxj e�jy�xj:

Lemma A2 (Preservation of tempered functions). For t > 0 and � 2 R;

1
St�� � cA2 ��(A2)

with cA2 = cA2(t; �; �) := 2d exp
h
d�

2
t (e�

2 � 1)
i
:

Proof. First we assume that d = 1: Let f�n : n � 0g denote the discrete time

simple symmetric random walk in Z starting from 0: Then, for � 2 R;X
k2Z

1pt(k) e
�jkj = e��

2
t

1X
n=0

(�2t)n

n!
Pe�j�nj:(A3)

But

e�jaj � e�a + e��a; a 2 R;(A4)

and by symmetry we get

Pe�j�nj � 2Pe��n = 2
�
Pe��1

�n
;(A5)

where we additionally used that �n has i.i.d. increments. But

Pe��1 =
1

2

�
e� + e��

�
� e�

2

:(A6)

(To see the latter inequality, multiply by e�; di�erentiate, multiply by e�2�; and
di�erentiate again.) Inserting (A6) into (A5) and (A3) givesX

k2Z

1pt(k) e
�jkj � 2 e��

2
t

1X
n=0

�
�
2
t e�

2�n
n!

= 2 exp
h
�
2
t (e�

2 � 1)
i
:(A7)

Turning back to d � 1 dimensions, we note �rst that the d{dimensional con-

tinuous time simple symmetric random walk can be considered as d independent

one-dimensional random walks each with generator �
2

2d
1�: Hence, using the ele-

mentary inequality

jk1j � jkj � jk1j+ � � �+ jkdj; k =
�
k
1
; : : : ; k

d
�
2 Z

d
;(A8)

from (A7) we getX
k2Zd

1pt(k) e
�jkj � 2d exp

h
d�

2
t (e�

2 � 1)
i
=: cA2 :(A9)

Thus, for x 2 Zd;X
y2Zd

1pt(x � y) e�jyj =
X
y2Zd

1pt(y) e
�jx+yj � cA2 e

�jxj
;(A10)
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since jxj+ jyj � jx+ yj � jxj � jyj; giving the required estimate.

Combining Lemma A2 with the scaling formula (25) and the trivial estimate

(118) we get (a) of the following result. Part (b) is standard (see, for example,

Lemma 6.2(ii) of [Shi94]). Recall the de�nition (8) of �� :

Corollary A3 (Uniform preservation of tempered functions).

(a) For 0 < " � 1 and t > 0; as well as � 2 R;

"
St�� � cA3 ��

with cA3 = cA3(t; �; �) := 2d exp
�
d�

2
t�

2 e�
2�

independent of ":

(b) For each T > 0 and � 2 R there is a ~cA3 = ~cA3(T; �; �) such that

sup
t�T

St��� � ~cA3 ��� :

Next we need the following estimate.

Lemma A4 (Binomial estimate). For N � 0 and � � 0;

NX
m=0

�
N

m

�
p
m(1� p)N�m e�jm�Npj � 2 e�

2
N
; 0 � p � 1:(A11)

Proof. Let �N be distributed according to the binomial distribution B(N; p); and

set �N := N � �N ; which has the law B(N; 1� p). Then the left hand side of the

claim (A11) equals P exp
�
�j�N �Npj

�
: Using the elementary inequality (A4), we

see that the left hand side of (A11) is

� e��NpPe��N + e��N(1�p)Pe��N :(A12)

But

Pe��N =
�
Pe��1

�N
(A13)

and

Pe��1 = pe� + (1� p);(A14)

hence

e��pPe��1 = pe�(1�p) + (1� p)e��p � e�
2

; 0 � p � 1:(A15)

(To see the latter inequality, multiply by e�p; di�erentiate with respect to �; multi-

ply by e��; and di�erentiate again.) Putting together (A15) and (A13) gives

e��NpPe��N � e�
2
N
:(A16)

Replacing p by (1 � p); the second term in (A12) has the same bound. This

completes the proof.

Lemma A5 (Hypergeometric estimate). For 0 � m; ` � N; let �` be dis-

tributed according to the hypergeometric distribution HG(m;N �m; `); that is

P (�` = k) =

�
Np

k

��
N(1� p)

`� k

�
�
N

`

� ; 0 � k � `;(A17)

where p := m

N
(taken to be 1 in the case N = m = 0): Then, for all � � 0;

P exp
�
�j�` � `pj

�
� 2 e�

2
`
:(A18)
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Proof. Set �` = ` � �` : Note that �` has the law HG(N � m;m; `): As in the

previous proof,

P exp
�
�j�` � `pj

�
� e��`p Pe��` + e��`(1�p) Pe��` :(A19)

By \symmetry", it suÆces to show that

e��`p Pe��` � e�
2
`
; � � 0:(A20)

This trivially holds for ` = 0: Assume that (A20) is true for some 0 � ` � N � 1:

Then

Pe��`+1 = Pe��`
h
qe� + (1� q)

i
= Pe��`

h
qe�(1�q) + (1� q)e��q

i
e�q ;(A21)

where q := m��`
N�` : By (A15), this is

� Pe��` e�2 e�q :(A22)

Hence

e��(`+1)p Pe��`+1 � e�
2Pe��`e��(`+1)p+�q = e�

2

e�
e�`p Pee��`(A23)

with 0 � e� := �
N�`�1
N�` � �. By the induction hypothesis, for this we get the

bound

e�
2

e
e�
2
` � e�

2(`+1)
;(A24)

and we are done.

Lemma A6 (A collision estimate). For � 2 R; 0 < s; t � T and x; y in Z
d
;X

z2Zd

1ps(x� z) 1pt(y � z) e�jzj � cA6
1p

e5�
2
(s+t)

(x� y) exp

�
j�j jtx+ syj

s+ t

�
;

where

cA6 = cA6(T; �; �) := 4d exp
h
2d�2T

�
e5�

2 � 1
�i
:(A25)

Remark A7 (Case � = 0). In the � = 0 case, the constants in Lemmas A2 and

A6 can be improved to cA2 = 1 = cA6 ; that is the inequalities are not sharp. This

is trivial for Lemma A6 and for cA2 is immediate from the proof of Lemma A2. 3

Proof of Lemma A6. The left hand side of the claimed inequality can be bounded

from above by

exp

�
�
jtx+ syj
s+ t

� X
z2Zd

1ps(x � z) 1pt(y � z) exp

�
j�j
���z � tx+ sy

s+ t

����:(A26)

Switching from x� z to z; for the series this givesX
z2Zd

1ps(z)
1pt(x� y � z) exp

�
j�j
���z � s(x� y)

s+ t

����:(A27)

Assume for the moment that d = 1: Setting p := s=(s + t) and a := x � y; the

latter formula line can be written as

e��
2(s+t)

1X
m;n=0

(�2s)m

m!

(�2t)n

n!
(A28)

X
z2Z

P
�
�m = z; �

0
n
= a� z

�
exp

h
j�j
��z � pa

��i;
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where � and �
0 are independent discrete time simple symmetric random walks

in Z; starting from 0: The latter series coincides with the following restricted

expectation:

P
n
exp

h
j�j
���m � pa

��i ; �m+n = a

o
:(A29)

Substituting m+ n =: N; we rewrite (A28) as

e��
2(s+t)

1X
N=0

�
�
2(s+ t)

�N
N !

P (�N = a)(A30)

NX
m=0

�
N

m

�
p
m(1� p)N�mP

n
exp

h
j�j
���m � pa

��i ��� �N = a

o
:

Setting e�n = (�n + n)=2; which has the binomial law B(n; 1
2
); n � 0; the latter

conditional expectation can be written as

P
�
exp

h
j�j
���e�m �m� pa

���i ��� e�N =
a+N

2

�
:(A31)

Now, e�m conditioned on e�N = a+N
2

=: ` is hypergeometric HG(m;N � m; `);

denoted by �` : Thus, (A31) coincides with

P exp
h
j�j
��2�` �m� pa

��i � exp

�
j�j
���2`�N

N
(m�Np)

����P exp

�
2j�j

����` � m`

N

����:
By Lemma A5, this is

� exp

�
j�j
���2`�N

N
(m�Np)

���� 2 e4�2N � 2 ej�j jm�Npj e4�
2
N
:(A32)

Thus, for (A31) we obtain the upper bound

2 ej�j jm�Npj e4�
2
N
:(A33)

Hence, for (A30) we get the upper estimate

2 e��
2(s+t)

1X
N=0

�
�
2(s+ t)

�N
N !

e4�
2
N P (�N = a)

NX
m=0

�
N

m

�
p
m(1� p)N�m e2j�j jm�Npj

:(A34)

Apply Lemma A4 to bound this by

� 4 e��
2(s+t)

1X
N=0

�
�
2(s+ t)

�N
N !

e5�
2
N P (�N = a)

� 4 exp
h
2�2T

�
e5�

2 � 1
�i

1p
e5�

2
(s+t)

(a):(A35)

Turning back to d dimensions, we need only note that the series (A27) can be

bounded from above by a d{fold product of corresponding one-dimensional expres-

sions. This �nishes the proof.
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A.2. Proof of Lemma 24. Our strategy is as follows. We will �rst bound Ln(a)

in terms of some M
k
n�1 [see (A37) below]. After this we will exploit some of the

used techniques to derive an iteration inequality for the M
k
n

[see (A41) below].

Then the claim will follow.

In the de�nition (78) of Ln(a), consider the summands for ` = 2n � 1 and

` = 2n; as well as the factor for j = n within the product abbreviated by

�n(s2n;x0; : : : ;x2n) [introduced in the end of Subsection 3.3]:X
x2n�1;x2n 2 (Z2)3

exp
�
� kax2nk

�
h
ps2n�2�s2n�1(x

2
2n�2�x32n�1)ps2n�2�s2n�1(x32n�2�x12n�1)

+ ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x22n�2�x12n�1)

i
ps2n�2�s2n�1(x

1
2n�2�x22n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�

ps2n�1�s2n(x
1
2n�1�x12n)ps2n�1�s2n(x22n�1�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�1�s2n(x
1
2n�1�x12n)ps2n�1�s2n(x22n�1�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�1�s2n(x
1
2n�1�x22n)ps2n�1�s2n(x22n�1�x12n)ps2n�1�s2n(x32n�1�x12n)

�
[which is the \abundance" of Ln(a) over Ln�1(a)]: By Chapman-Kolmogorov,

summing over x22n�1 and x
1
2n�1 givesX

x32n�12Z2; x2n2(Z2)3
exp

�
� kax2nk

�
ps2n�2�s2n�1(x

2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�

ps2n�2�s2n(x
3
2n�2�x12n)ps2n�2�s2n(x12n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
3
2n�2�x12n)ps2n�2�s2n(x12n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
3
2n�2�x22n)ps2n�2�s2n(x12n�2�x12n)ps2n�1�s2n(x32n�1�x12n)

�
+

X
x32n�12Z2; x2n2(Z2)3

exp
�
� kax2nk

�
ps2n�2�s2n�1(x

3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�

ps2n�2�s2n(x
2
2n�2�x12n)ps2n�2�s2n(x12n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
2
2n�2�x12n)ps2n�2�s2n(x12n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
2
2n�2�x22n)ps2n�2�s2n(x12n�2�x12n)ps2n�1�s2n(x32n�1�x12n)

�
:

Using Lemma 2 (b) six times we get the bound

c2

s2n�2 � s2n

X
x32n�12Z2; x2n2(Z2)3

exp
�
� kax2nk

�
ps2n�2�s2n�1(x

2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)
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ps2n�2�s2n(x
1
2n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
1
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
3
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

�
+

c2

s2n�2 � s2n

X
x32n�12Z2; x2n2(Z2)3

exp
�
� kax2nk

�
ps2n�2�s2n�1(x

3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�
ps2n�2�s2n(x

1
2n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
1
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
2
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

�
:

Exploit now Lemma A2 in the summation over x2n to obtain

c
3
A2c2

s2n�2�s2n
X

x32n�12Z2
ps2n�2�s2n�1(x

2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)

�
exp

h
�a

1jx12n�2j+ �(a2+a3)jx32n�1j
i
+ exp

h
�a

2jx12n�2j+ �(a1+a3)jx32n�1j
i

+ exp
h
�a

2jx32n�2j+ �(a1+a3)jx32n�1j
i�

+
c
3
A2c2

s2n�2�s2n
X

x
3
2n�12Z2

ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)

�
exp

h
�a

1jx12n�2j+ �(a2+a3)jx32n�1j
i
+ exp

h
�a

2jx12n�2j+ �(a1+a3)jx32n�1j
i

+ exp
h
�a

2jx22n�2j+ �(a1+a3)jx32n�1j
i�
;

where cA2 = cA2(T; 2�; �): Next we apply Lemma A6 to x
3
2n�1 to arrive at

c
3
A2 cA6 c2

s2n�2�s2n

�
exp

�
�a

1jx12n�2j+
�

2
(a2+a3)jx12n�2j+

�

2
(a2+a3)jx22n�2j

�
p
2e5�

2(a2+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x22n�2)

+ exp

�
�a

2jx12n�2j+
�

2
(a1+a3)jx12n�2j+

�

2
(a1+a3)jx22n�2j

�
p
2e5�

2(a1+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x22n�2)

+ exp

�
�a

2jx32n�2j+
�

2
(a1+a3)jx12n�2j+

�

2
(a1+a3)jx22n�2j

�
p
2e5�

2(a1+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x22n�2)

�
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+
c
3
A2 cA6 c2

s2n�2�s2n

�
exp

�
�a

1jx12n�2j+
�

2
(a2+a3)jx12n�2j+

�

2
(a2+a3)jx22n�2j

�
p
2e5�

2(a2+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x32n�2)

+ exp

�
�a

2jx12n�2j+
�

2
(a1+a3)jx12n�2j+

�

2
(a1+a3)jx22n�2j

�
p
2e5�

2(a1+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x32n�2)

+ exp

�
�a

2jx22n�2j+
�

2
(a1+a3)jx12n�2j+

�

2
(a1+a3)jx22n�2j

�
p
2e5�

2(a1+a3)2 (s2n�2�s2n�1)(x
1
2n�2�x32n�2)

�

with cA6 = cA6(T; 4�; �): This is our estimate for that part of Ln(a) [abundance

over Ln�1(a)]: It can be written as

c
3
A2 cA6 c2

s2n�2�s2n

3X
i=1

exp
�
� kaix2n�2k

� 3X
k=2

p2bi (s2n�2�s2n�1)(x
1
2n�2�xk2n�2);(A36)

with some ai 2 A and bi � 1; where the ai depend on a; however the bi on a

and �: But by our de�nition of Mk
n
(a; b) [introduced after (77)], this means

Ln(a) �
c
3
A2 cA6 c2

s2n�2�s2n

3X
i=1

3X
k=2

M
k

n�1(ai; bi); n � 2:(A37)

In the de�nition of Mk
n
(a; b); we restrict our attention to the summands for

` = 2n� 1 and ` = 2n; and again to the factor concerning j = n (also some type

of abundance):

X
x2n�1;x2n2(Z2)3

exp
�
� kax2nk

�
p2b (s2n�s2n+1)(x

1
2n � x

k

2n)h
ps2n�2�s2n�1(x

2
2n�2�x32n�1)ps2n�2�s2n�1(x32n�2�x12n�1)

+ ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x22n�2�x12n�1)

i

ps2n�2�s2n�1(x
1
2n�2�x22n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�

ps2n�1�s2n(x
1
2n�1�x12n)ps2n�1�s2n(x22n�1�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�1�s2n(x
1
2n�1�x12n)ps2n�1�s2n(x22n�1�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�1�s2n(x
1
2n�1�x22n)ps2n�1�s2n(x22n�1�x12n)ps2n�1�s2n(x32n�1�x12n)

�
:

As in the �rst two estimation steps at the beginning of this subsection, by Chapman-

Kolmogorov, we sum over x22n�1 and x
1
2n�1 ; and use Lemma 2 (b) six times to
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obtain the upper bound

c2

s2n�2 � s2n

X
x32n�12Z2; x2n2(Z2)3

exp
�
� kax2nk

�
p2b (s2n�s2n+1)(x

1
2n � x

k

2n)

ps2n�2�s2n�1(x
2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�
ps2n�2�s2n(x

1
2n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
1
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
3
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

�
+

c2

s2n�2 � s2n

X
x3
2n�1

2Z2; x2n2(Z2)3
exp

�
� kax2nk

�
p2b (s2n�s2n+1)(x

1
2n � x

k

2n)

ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�
ps2n�2�s2n(x

1
2n�2�x12n)ps2n�1�s2n(x32n�1�x22n)

+ ps2n�2�s2n(x
1
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

+ ps2n�2�s2n(x
2
2n�2�x22n)ps2n�1�s2n(x32n�1�x12n)

�
:

Lemma A6, applied to the sum over x12n, leads to factors cA6 = cA6(T; 2�; �); to

several new

ai 2 A depending on a; b; k; �; and s2n�2; : : : ; s2n+1;(A38)

and replacements of x2n as (x12n�2; x
2
2n; x

3
2n) in the exponential expressions, and

certain p{terms. For the p{terms we use Lemma 2 (b), estimating additionally

their time expression as follows:

e5�
2
a
2
i [2b (s2n � s2n+1) + s2n�2 � s2n] � s2n�1 � s2n+1 :(A39)

This way we get the bound

cA6
c2

s2n�2 � s2n

c2

s2n�1 � s2n+1

X
x32n�1;x

2
2n;x

3
2n2Z2

ps2n�2�s2n�1(x
2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)�

ps2n�1�s2n(x
3
2n�1�x22n) exp

h
�


a1(x12n�2; x22n; x32n)

i

+ ps2n�2�s2n(x
1
2n�2�x22n) exp

h
�


a2(x32n�1; x22n; x32n)

i

+ ps2n�2�s2n(x
3
2n�2�x22n) exp

h
�


a3(x32n�1; x22n; x32n)

i�

+ cA6
c2

s2n�2 � s2n

c2

s2n�1 � s2n+1

X
x32n�1;x

2
2n;x

3
2n2Z2

ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)ps2n�1�s2n(x32n�1�x32n)
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ps2n�1�s2n(x

3
2n�1�x22n) exp

h
�


a1(x12n�2; x22n; x32n)

i

+ ps2n�2�s2n(x
1
2n�2�x22n) exp

h
�


a2(x32n�1; x22n; x32n)

i

+ ps2n�2�s2n(x
2
2n�2�x22n) exp

h
�


a3(x32n�1; x22n; x32n)

i�:

By Lemma A2, the sum over x32n and x
2
2n gives the estimate

cA6
cA2 c2

s2n�2 � s2n

cA2 c2

s2n�1 � s2n+1

X
x3
2n�1

2Z2

ps2n�2�s2n�1(x
2
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)�

exp
h
�a

1
1jx12n�2j+ �(a21 + a

3
1)jx32n�1j

i
+ exp

h
�a

2
2jx12n�2j+ �(a12 + a

3
2)jx32n�1j

i
+ exp

h
�a

2
3jx32n�2j+ (a13 + a

3
3)jx32n�1j

i�
+ cA6

cA2 c2

s2n�2 � s2n

cA2 c2

s2n�1 � s2n+1

X
x32n�12Z2

ps2n�2�s2n�1(x
3
2n�2�x32n�1)ps2n�2�s2n�1(x12n�2�x32n�1)�

exp
h
�a

1
1jx12n�2j+ �(a21 + a

3
1)jx32n�1j

i
+ exp

h
�a

2
2jx12n�2j+ �(a12 + a

3
2)jx32n�1j

i
+ exp

h
�a

2
3jx22n�2j+ (a13 + a

3
3)jx32n�1j

i�
:

Finally, by Lemma A6, the sum over x32n�1 amounts to

cA2 cA6 c2

s2n�2 � s2n

cA2 cA6 c2

s2n�1 � s2n+1

3X
�{=1

3X
�k=2

p2b�{ (s2n�2�s2n�1)(x
1
2n�2�x

�k
2n�2) exp

�
� ka�{;�kx2n�2k

�
with cA6 = cA6(T; 4�; �) and some a�{;�k 2 A and b�{ � 1; where the a�{;�k and b�{

depend on a; b; k; �; and s2n�2; : : : ; s2n+1 [via a1; a2; a3 { recall (A38) { which

enter into the e5�
2

{factor in Lemma A6]. This is our estimate for that abundance

part of Mk
n(a; b): Since

cA2(T; 2�; �) cA6(T; 4�; �) c2(�) � c24(T; �; �)(A40)

as de�ned in the lemma, this means that

M
k

n
(a; b) � c24

s2n�2 � s2n

c24

s2n�1 � s2n+1

3X
�{=1

3X
�k=2

M
�k
n�1(a�{;�k; b�{); n � 2;(A41)

and

M
k

1 (a; b) �
c24

s0 � s2

c24

s1 � s3
e2�kx0k

3X
�{=1

3X
�k=2

p2b�{ (s0�s1)(x
1
0�x

�k
0):(A42)

Iteration gives (81), and inserting (81) into (A37) amounts to (80), �nishing the

proof of Lemma 24.
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A.3. A Feynman integral estimate. We need also the following simple estimate.

Lemma A8 (Feynman integral estimate). For n � 2 and s0 > s1 > 0; set

Kn(s0; s1) :=

Z
s1

0

ds2 � � �
Z

sn�1

0

dsn
1Q

n

j=2 (sj�2 � sj)
:(A43)

Then, for each p 2 (0; 1);

Kn(s0; s1) �
1

p
c
n�2
A8

�
s0

s0 � s1

�p
;(A44)

where

cA8 = cA8(p) := �= sin
�
� (1� p)

�
:

Proof. We proceed by induction. If n = 2, then the left hand side of (A44) equalsZ
s1

0

ds2

s0 � s2
= log

s0

s0 � s1
� 1

p

�
s0

s0 � s1

�p
;(A45)

where we used the elementary inequality

log r � p
�1
r
p
; r � 1:(A46)

Hence, (A44) holds in the case n = 2: Suppose now that it is true for n � 2. Then,

Kn+1(s0; s1) =

Z
s1

0

ds2

(s0 � s1) + (s1 � s2)
Kn(s1; s2)

� 1

p
c
n�2
A8 s

p

1

Z
s1

0

ds2

(s0 � s1) + s2

1

s
p

2

:(A47)

Substituting r := s2=(s0 � s1) the right hand side is

=
1

p
c
n�2
A8

�
s1

s0 � s1

�p Z s1=(s0�s1)

0

dr

(1 + r) rp
(A48)

� 1

p
c
n�2
A8

�
s0

s0 � s1

�p Z 1

0

dr

(1 + r) rp
=

1

p
c
n�1
A8

�
s0

s0 � s1

�p
by a standard residue calculation. The result follows for n+ 1:
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