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Abstract

The paper concerns a theoretical description of the piping phenomenon

appearing in saturated sands at high �ltration velocities. Motivated by own

experiments we propose a thermodynamical two component model which ac-

counts for a threshold e�ect at a critical value of the relative velocity of compo-

nents. This property is incorporated in the source term of momentum balance

equations by means of a nonlinear contribution accounting for spatial vari-

ations of the porosity. We prove the thermodynamical admissibility of such

a model. By means of a linear stability analysis we show the existence of

the onset of instability for realistic values of material parameters gained from

experiments.

1 Introduction

We aim to construct a macroscopic model of water �ows through sandy soils describ-

ing the loss of stability related to rapid changes of permeability. These changes are

due to inhomogeneities of porosity which in�uence momentum exchange between

components. In experiments one observes these phenomena in form of channels

appearing in an initially homogeneous material. This leads, in turn, to local incre-

ments of �ow velocities, �uidization and erosion take place destroying locally parts

of the soil skeleton. Details concerning the physical motivation, experimental evi-

dence, and geophysical relevance can be found in the Ph.D.-Thesis of Theo Wilhelm

[T.W.].

Such channeling processes in saturated granular media are of interest in various

�elds of application. Their consequences in geotechnical engineering are frequently

disastrous. As an illustrative example the e�ect of piping on the �Baldwin Hills�

reservoir is shown in �gure 1.

Inspection of seepage experiments1 (see: �gure 2) in which water �ows through a

macroscopically homogeneous2 grain skeleton of sand, reveals the following charac-

teristic phenomena:

i) At �uid velocities small compared to the minimum �uidizing velocity3 the macro-

scopic homogeneity is preserved. Porosity, permeability, and thus �uid �ow rates

remain constant throughout the system.

1In these experiments the pore water pressure at the bottom of a water saturated specimen is

increased. The resulting �uid �ow rate is measured.
2The terms microscopic and macroscopic are used in a continuum mechanical sense (e.g. [J.B.]).
3The minimum �uidizing velocity is the velocity at which the Terzaghi e�ective stress theoret-

ically vanishes and the grain skeleton (theoretically) looses its strength. The hydraulic gradient is

equal to the critical hydraulic gradient (see: [T.W.] for further details and references).
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Figure 1: Piping failure at Baldwin Hills Reservoir, California 1963 (Cedergren,

1967)

ii) When the �uid velocity further increases macroscopic inhomogeneities in form

of channels directed towards the �ow direction begin to form. Flows in smaller

channels are attracted by bigger ones (see: �gure 3).

iii) When a big channel reaches the surface of the sample the �ow behavior changes

signi�cantly. The �ow rate increases rapidly and it is concentrated mainly within

the big channel. Smaller channels form back or change their directions towards the

main channel.

These observations suggest that the �uid/grain skeleton interactions are sensitive to

spatial variations of the porosity. It is demonstrated in �gure 4: The �ow resistance

in a conically formed pipe or pore channel is smaller towards the direction of the

widening of the channel.
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Figure 2: (a) Setup of seepage experiments (left) and (b) result of a seepage experi-

ment with a quartz sand-water mixture (right). The course of the �lter velocity nvF

against the applied pore water pressure gradient in terms of the hydraulic gradient

i := @zp
F
=(�

F
g)� 1 is shown.
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Figure 3: Pipe formation in seepage experiment. Picture from a seepage experiment:

At high �uid velocities channels start to select a big channel (marked as a dark

shadow on the right) for the �ow in the direction to the top, while small channels

are reoriented in direction of the big channel (light shadows on the right). The

small picture in the box indicates the position of the camera, and the area of the

experimental glass container reproduced in pictures.

grad n

Figure 4: Flow in a conically shaped pore channel (schematic).

According to the above described observation we have to construct a model which

yields an instability of �ows appearing for su�ciently high porosity gradients, and

su�ciently high relative velocities. We construct such a model by a modi�cation

of the momentum source appearing in two component models of saturated granular

materials. In terms of models based on a Darcy law it means that we are modifying

the Darcy law by making it dependent on the porosity gradient with a threshold

behavior with respect to the relative velocity. Such a model must be necessarily

nonlinear in its dependence on the relative velocity but not on the porosity gradi-

ent. We incorporate these requirements through a modi�cation of the momentum

source in the two component model. This requires a veri�cation of thermodynamical

conditions imposed on the model by the second law of thermodynamics. For this

reason we devote a rather extensive second section of this paper to the evaluation

of thermodynamical admissibility conditions.

We limit the attention to small elastic deformations of the skeleton. This limitation

is not very crucial for the stability analysis shown in the third section, as it is

performed by means of a linear perturbation method which is not in�uenced by
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mechanical nonlinearities within the stress tensor of the skeleton. We also assume

the isotropy of the system, and neglect viscous e�ects in the partial stresses of the

�uid component. All these assumptions are made in order to expose better the main

property of the model yielding the instability of �ows and piping e�ects.

In the third section we present the main results of the work. We investigate the

stability of homogeneous seepage processes by superposing a small dynamical per-

turbation. We show that the dispersion relation may indeed contain solutions leading

to the instability provided a material coe�cient � which describes an in�uence of the

porosity gradient on the exchange of momentum between components is su�ciently

large. This result is illustrated by an example in the last section of the paper.

2 Construction of a macroscopical model

2.1 Fields and basic assumptions

We rely on a macroscopic two component description of saturated granular materials.

Then in a continuummechanical model processes are described by the following �elds

(x; t) 7!
�
�
S
; �

F
; n; u

S
k ; v

F
k

	
; k = 1; 2; 3; (1)

where x denotes a current position of a particle of a solid component simultaneously

occupied by a particle of the �uid component (continuous mixture), t is an instant

of time and the �elds are denoted as follows. �S; �F are the current mass densities

of the solid and �uid component, respectively, n 2 [0; 1] is the porosity (the volume

fraction of the �uid component related to the total representative volume element,

REV ), uSk - the displacement of the solid, vFk - the velocity of the �uid. We use

Cartesian coordinates
�
x
k
	
k=1;2;3

.

As we aim to describe solely certain stability properties of �ows in such materials

we neglect the compressibility of real materials. This yields some thermodynamical

limitations as well as limitations of modes of propagation of waves. The former will

be investigated in the sequel, the latter are immaterial for our present purposes.

Consequently we make the following assumption

�
S
= (1� n) �

SR
; �

SR
= const:; �

F
= n�

FR
; �

FR
= const:; (2)

where �FR; �SR are the so called �real� mass densities of components.

This assumption reduces the set of �elds (1) to the �elds of porosity n, displacement

u
S
k , and velocity vFk .

We require that �eld equations should follow from balance laws of mass and mo-

mentum for both components supplemented with appropriate constitutive relations.
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We limit attention to isotropic poroelastic materials and ideal �uids. We explain

the physical contents of these assumptions in the next section.

It is obvious from the choice of �elds that we consider solely isothermal processes,

i.e. temperature will not appear anywhere in this model in the explicit form.

2.2 Field equations

As mentioned above we rely on partial balance equations for the two component

system. Under the incompressibility assumption described in the previous section

the mass balance equations reduce to the following form (e.g. [K.W.1])

@n

@t
+

@

@xk

�
nv

F
k

�
= 0;

@

@xk

�
(1� n) v

S
k + nv

F
k

�
= 0; (3)

v
S
k : =

@u
S
k

@t
:

On the other hand the partial momentum equations are as follows

�
S

�
@v

S
k

@t
+ v

S
l

@v
S
k

@xl

�
=

@T
S
kl

@xl
+ p

�

k; (4)

�
F

�
@v

F
k

@t
+ v

F
l

@v
F
k

@xl

�
=

@T
F
kl

@xl
� p

�

k;

where we use the following notation: T F
kl ; T

S
kl - the partial Cauchy stress tensors,

p
�

k - the momentum production (di�usion force, internal friction, etc.), vFk ; v
S
k -

the partial velocities. We have neglected body forces for simplicity. They do not

in�uence thermodynamical considerations which we present in the next section, and

they can be easily supplemented when needed in applications.

These equations become �eld equations if we specify constitutive relations. For the

purpose of this work we choose the following set of constitutive variables

V :=

�
n;

@n

@xk
; ekl; wk

�
; (5)

where

ekl :=
1

2

�
@u

S
k

@xl
+
@u

S
l

@xk

�
�
@u

S
(k

@xl)
; wk := v

F
k � v

S
k ; (6)

keklk � max
����1e�� ; ���2e�� ; ���3e���� 1;

denote the deformation tensor of the solid component (skeleton), and the relative

velocity, respectively. The deformation of the skeleton is assumed to be small, i.e.

the biggest absolute value of the eigenvalues �e of ekl is much smaller than unity.
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The above choice of constitutive variables justi�es the names of components men-

tioned in section 2.1. In the limit case n = 0 we deal with a linear elastic material,

and in the limit case n = 1 we deal with an ideal (incompressible) �uid.

The following constitutive quantities must be speci�ed

C :=
�
T
F
kl ; T

S
kl; p

�

k;  
F
;  

S
	
; (7)

where  F
;  

S are the partial Helmholtz free energies. They are introduced below

for thermodynamical reasons.

For these quantities we assume that the following constitutive relation holds

C = C (V) : (8)

It is assumed to be su�ciently smooth.

Substitution of constitutive relations in the balance equations yields �eld equations

of the model.

2.3 Thermodynamical admissibility of constitutive relations

It is customary to require in continuous models that a second law of thermodynamics

is satis�ed by all solutions of �eld equations. For the class of isothermal processes

considered in this work we assume this law to have the following form (e.g. [K.W.1])

�
S

�
@ 

S

@t
+ v

S
k

@ 
S

@xk

�
+ �

F

�
@ 

F

@t
+ v

F
k

@ 
F

@xk

�
+

�T S
kl

@v
S
k

@xl
� T

F
kl

@v
F
k

@xl
� p

�

kwk � 0: (9)

The second law is usually formulated as an entropy inequality. It reduces to the

above form under the assumption of constant temperature. The Helmholtz free

energies are introduced for convenience. If "S; "F denote the densities of partial

internal energies and �S; �F - the densities of partial entropies then

 
S
:= "

S � T�
S
;  

F
:= "

F � T�
F
: (10)

It is customary to eliminate the restriction of the inequality (9) to solutions of �eld

equations by means of Lagrange multipliers (e.g. [I.M., K.W.2]). By doing so we

obtain the following inequality which should hold for all �elds

�
S

�
@ 

S

@t
+ v

S
k

@ 
S

@xk

�
+ �

F

�
@ 

F

@t
+ v

F
k

@ 
F

@xk

�
+

�T S
kl

@v
S
k

@xl
� T

F
kl

@v
F
k

@xl
� p

�

kwk+
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��
�
@n

@t
+

@

@xk

�
nv

F
k

��
� �

�
@

@xk

�
(1� n) v

S
k + nv

F
k

��
+

��F
k

�
�
F

�
@v

F
k

@t
+ v

F
l

@v
F
k

@xl

�
�
@T

F
kl

@xl
+ p

�

k

�
+

��S
k

�
�
S

�
@v

S
k

@t
+ v

S
l

@v
S
k

@xl

�
�
@T

S
kl

@xl
� p

�

k

�
� 0: (11)

Lagrange multipliers �; �;�F
k ;�

S
k are functions of constitutive variables V:

After application of the chain rule of di�erentiation in the inequality (11) the lin-

earity with respect to some derivatives can be seen. This yields the condition that

coe�cients of these derivatives must vanish identically. We obtain for the coe�cients

of time derivatives:

@n

@t
: � = �

S @ 
S

@n
+ �

F @ 
F

@n
; (12)

@

@t

@n

@xk
:

@

@
@n

@xk

�
�
S
 
S
+ �

F
 
F
�
= 0; (13)

@v
F

@t
: �

F
�
F
k =

@

@wk

�
�
S
 
S
+ �

F
 
F
�
; (14)

@v
S

@t
: �

S
�
S
k = �

@

@wk

�
�
S
 
S
+ �

F
 
F
�
: (15)

Consequently

�
F
�
F
k = ��S�S

k : (16)

and, according to relation (13), multipliers �F
k ;�

S
k are independent of the gradient

@n

@xk
.

On the other hand the coe�cients of spatial derivatives lead to identities4:

@v
S
k

@xl
: T

S
kl = � (1� n)�Ækl +

@

@ekl

�
�
S
 
S
+ �

F
 
F
�
+

��F
@ 

F

@wk

wl �
@T

S
ml

@wk

�
S
m �

@T
F
ml

@wk

�
F
m; (17)

@v
F
k

@xl
: T

F
kl = �n�Ækl � n

�
�
S @ 

S

@n
+ �

F @ 
F

@n

�
Ækl+

4the time derivative @ekl

@t
gives only a subclass of the conditions quoted below due to the relation

@ekl

@t
=

1

2

�
@v

S

k

@xl
+

@v
S

l

@xk

�
.
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��S
@ 

S

@wk

wl +
@T

S
ml

@wk

�
S
m +

@T
F
ml

@wk

�
F
m; (18)

@
2
n

@xk@xl
:

@

@
@n

@x(k

�
�
S
 
S
wl) � �

S
mT

S
l)m � �

F
mT

F
l)m

�
= 0; (19)

where the condition (13) was applied.

The condition following from the linearity with respect to the derivative @ekl
@xm

is

immaterial for further considerations, and we shall not quote it here.

It remains the following nonlinear part of the inequality which is called the residual

inequality: �
�
S @ 

S

@n
+ �

�
wk

@n

@xk
+
�
wk + �

F
k � �

S
k

�
p
�

k � 0: (20)

It de�nes the dissipation in processes.

Let us notice that the dissipation contains an explicit dependence on the Lagrange

multiplier �. This multiplier plays the role of the reaction force on the constraint

following from the assumption on incompressibility of real components (compare

[K.W.1]). Consequently it should be determined by �eld equations rather than by

a constitutive relation, and it should not appear in the dissipation inequality as the

constraint (3)2 is holonomous (i.e. nondissipative). Hence the inequality (20) cannot

contain linear contributions of the porosity gradient, and this yields the necessity of

dependence of the momentum source on this gradient.

We do not investigate the above results in their full generality, and proceed to

simpli�cations yielding a model su�cient for our purposes.

We assume the system to be isotropic, and linear with respect to a dependence on the

porosity gradient @n

@xk
. This means that neither free energies  S

;  
F
; nor partial stress

tensors T S
kl; T

F
kl ; may depend on the porosity gradient. Then the identities (13), and

(19) are identically satis�ed. Simultaneously we have the following representation

for the momentum source (an isotropic vector function of two vectorial constitutive

variables)

p
�

k = �wk + �
@n

@xk
+ �"klmwl

@n

@xm
; (21)

where �; �; � are scalar functions of invariants: W :=
1

2
wkwk; and wk

@n

@xk
: "klm is the

permutation symbol. Substitution in (20) yields�
� + � + �

S @ 
S

@n
+ �

�
1

�F
+

1

�S

�
@

@W

�
�
S
 
S
+ �

F
 
F
��
wk

@n

@xk
+

+�

�
1 +

�
1

�F
+

1

�S

�
@

@W

�
�
S
 
S
+ �

F
 
F
��
wkwk � 0: (22)

We have used here the identity (13), and, in addition, we left out the dependence

on nonlinear invariants containing contributions of ekl. The latter simpli�cation is

due to the assumption (6).
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Apparently the contribution with the coe�cient � does not appear in the dissipation

inequality (22). It means its sign can be arbitrary as far as the thermodynamical

admissibility is concerned. However this contribution to momentum balance equa-

tions seems to yield vibrations whose physical meaning is at least unclear. For this

reason we assume in this work � � 0:

According to the previous remarks we have to choose � in such a way that the

contribution of � to (22) disappears. We proceed to investigate this problem.

The linearity with respect to the porosity gradient, and the assumption that � is a

�eld yield:

� + � + �
S @ 

S

@n
= 0;

@

@W

�
�
S
 
S
+ �

F
 
F
�
= 0: (23)

On the other hand in static processes (vFk = 0; v
S
k = 0) the momentum balance of

the �uid (4)2, and relation (18) yield:

�
@p

F

@xk
� �jwk=0

@n

@xk
= 0; p

F
:= n

 
�+

�
�
S @ 

S

@n
+ �

F @ 
F

@n

�����
wk=0

!
: (24)

Simultaneously we expect in this case that the pore water pressure p and the partial

pressure in the �uid p
F are related to each other: pF = np [J.B.]. On the other

hand the expression in parenthesis of (24)2 cannot be constant in general as the

free energies depend, for instance, on the deformation ekl. Consequently, the above

relation for the partial pressure, and the fact that the pore water pressure p is

constant in such static experiments we must require:

p = � �jwk=0 ;
�
�
S @ 

S

@n
+ �

F @ 
F

@n

�����
wk=0

= 0; � = p: (25)

It follows from (23)1

�
S @ 

S

@n

����
wk=0

= 0: (26)

We proceed to specify constitutive relations for partial stresses T F
kl ; T

S
kl, and the

contribution � @n

@xk
to the momentum source.

For the latter we make the following assumption motivated by the results for the

dependence of free energies on the porosity in the static case (25)2

�
S @ 

S

@n
= ��F

@ 
F

@n
=

�
p
2

�
1 +

W � Y

jW � Y j

�p
W; �; Y > 0; (27)

where the material parameter � may be still dependent on the porosity n, deforma-

tion of the skeleton ekl, and the invariant of the relative velocity W . The expression

in parenthesis introduces the threshold behavior into the model. Its existence has
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been indicated in the introduction (see �gure 2b). The constant
p
2Y denotes the

threshold. As we see further it yields �ow instabilities for relative velocities whose

magnitude exceeds the limit
p
2Y . It needs to be determined experimentally, how-

ever, in a �rst approximation it can be set equal to the minimum �uidizing velocity.

For the partial stress tensors T S
kl, T

F
kl we assume in addition that they do not contain

contributions of the relative velocity wk. Otherwise we would have some sort of viscid

reactions of the material which we excluded from the beginning of the construction

of the model. Inspection of relations (17), (18) shows that such contributions would

be of the order higher than one in wk. Such an assumption together with (27) yields

the following constitutive relations:

T
S
kl = � (1� n) pÆkl +

@

@ekl

�
�
S
 
S
+ �

F
 
F
�
; (28)

T
F
kl = �npÆkl:

In addition the assumption on small deformations of the isotropic skeleton yields

Hooke�s relation in the partial stress T S
kl

@

@ekl

�
�
S
 
S
+ �

F
 
F
�
= �

S
emmÆkl + 2�

S
ekl; (29)

where �S; �S are Lamé parameters dependent solely on the porosity n:

The momentum balance equations (4) have then the following form

�
S

�
@v

S
k

@t
+ v

S
l

@v
S
k

@xl

�
= � (1� n)

@p

@xk
+

@

@xl

�
�
S
emmÆkl + 2�

S
ekl

�
+

+�wk �
�
p
2

�
1 +

W � Y

jW � Y j

�p
W

@n

@xk
; (30)

�
F

�
@v

F
k

@t
+ v

F
l

@v
F
k

@xl

�
= �n

@p

@xk
� �wk +

�
p
2

�
1 +

W � Y

jW � Y j

�p
W

@n

@xk
;

�
S
; �

S
;�;�; Y > 0:

In the remaining part of this work we investigate linear stability properties of pro-

cesses described by these equations.

Relations (27) and (29) yield integrability relations

@

@ekl

�
�
F
 
F

n
�
�
S
 
S

1� n

�
=

@

@n

�
�
S
emmÆkl + 2�

S
ekl

�
; (31)

which impose limitations of the dependence of material parameters �S; �S on the

porosity n. For instance, if we assume that  F is independent of ekl we obtain a linear
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dependence on the porosity. This is a relatively good approximation for porosities

between approximately 0:1 to 0:4. Otherwise we have to construct a model without,

for instance, the requirement (27). Simultaneously the de�nition of � which is a part

of relation (27) has consequences on the behavior of material parameters �S; �S.

The above integrability conditions indicate that these parameters may change in a

discontinuous manner at W = Y , i.e. by �ows locally yielding �uidization. This is

in accord with the remarks which we made in the introduction. We shall account

for this property in the next section assuming that the elastic parameters become

much smaller after �uidization.

3 Stability analysis

In this section a perturbation analysis for a saturated elastic grain skeleton subject

to an upward �uid �ow is shown. The nonlinear interaction term introduced in the

previous section is taken into account. It is shown that the analysis is therefore

capable to model experimentally observed instabilities that classical models are not

able to describe.

3.1 Experimental observation

The stability of a (quartz) sand-water mixture at a critical upward �uid �ow was

investigated experimentally. A 20 cm high column of �ne quartz sand contained in

a perspex cylinder was used as specimen (see �gure 2a). The pore water pressure at

the bottom of the column was controlled and the out�ux at the top was measured.

The permeability and the relative �uid velocity were calculated from the geometry of

the specimen, the applied pressure gradient and the water out�ux. Figure 2b shows

the �lter velocity, vf := nv
F , as a function of the applied pressure gradient in terms

of the hydraulic gradient, i := @zp=(�
F
g)� 1 (the signs are due to the conventions

that p is positive for compression and gravitation g is pointing towards the positive

z-direction). At the rapid �uid velocity increasement shown in the �gure a channel

has formed. The system has lost stability.

3.2 Model

The calculation is based on the balance equations (3) and (30). Modelled is the

vertical �ow of water through a grain skeleton in a wide tube. Due to the boundary

conditions (horizontal displacements are zero) the problem reduces to one dimension.

Gravitation is considered in the calculation by adding appropriate source terms to

the momentum balance equations, �Sg in (30)1 and �
F
g in (30)2. It is assumed that

the relative velocity has exceeded the threshold, W > Y , such that the nonlinear

interaction term becomes active. In the one dimensional case only the components

11



T
F
33
; T

S
33

and e33 appear in the calculation (not quoted here). Thus the indices will

be skipped (e.g. e := e33).

3.3 Field equations

Together with the compatibility condition relating the motion of the skeleton to the

deformation:

@te = @zv
S (32)

the equations for the �elds fn; p; vF ; vS; eg are:

@tn+ @z

�
nv

F
�
=0

�@tn+ @z

�
(1� n)v

S
�
=0

n�
FR
�
@tv

F
+ v

F
@zv

F
�
=�n @zp+ n�

FR
g��(vF�vS)+� jvF�vSj@zn (33)

(1� n)�
SR
�
@tv

S
+ v

S
@zv

S
�
=E @ze� (1� n)@zp+ (1� n)�

SR
g +

+�(v
F � v

S
)� � jvF � v

Sj @zn
@te= @zv

S

The elasticity parameter E of the grain skeleton is related to the Lamè parameters

of the formula (29) by the classical relation E = �
S
+ 2�

S. It is assumed to be

constant in this linear analysis.

3.4 Ground state � homogeneous seepage

The stability of the uniform state of a granulate subject to an upward �uid �ow is

investigated. This state of uniform �ow, indicated by the subscript 0, is characterized

by:

n(z; t) = n0 = const

v
S
(z; t) = v

S
0
= 0

v
F
(z; t) = v

F
0
= const (34)

p(z; t) = p0(z)

e(z; t) = e0 = �
c1

E
z

The stress distribution in the grain skeleton follows to be a linear function of depth.

From this and the constitutive relation for the skeleton, the deformation �eld for the

ground state (34)5 follows. The constant c1 is positive, as stresses in the skeleton

are de�ned negative for compression.

Substituting (34)1�5 into the �eld equations reduces them to the equations governing

the equilibrium:

0 = 0

12



0 = 0

�@z p0 + �
FR
g �

�

n0
v
F
0
= 0 (35)

�
c1

1� n0
� @z p0 + �

SR
g +

�

1� n0
v
F
0
= 0

0 = 0

These equations describe a steady ground state. In the case of a velocity controlled

system5 the pore water pressure p0(z) and the deformation e0(z) can be calculated

from these equations for a given �uid velocity vF
0
. In the case of a pressure gradient

controlled system6 the �uid velocity vF
0
and the deformation e0(z) can be calculated

for a given pressure gradient.

If c1 is set equal to the submerged unit weight of the skeleton, 
0

0
:= (1� n0)(�

SR�
�
FR

)g, equations (35)3�4 imply that vF
0
must vanish, thus describing the so called

�geostatic� stress state consistently:

Ee0 = �
0

0
z

p0 = �
FR

g z (36)

3.5 Linear equations governing small perturbations

To study the stability of the steady ground state the �elds (34)1�5 are augmented

by small perturbations (indicated by subscripts 1):

n(z; t) = n0 + n1(z; t)

v
S
(z; t) = v

S
1
(z; t)

v
F
(z; t) = v

F
0
+ v

F
1
(z; t) (37)

p(z; t) = p0(z) + p1(z; t)

e(z; t) = e0(z) + e1(z; t)

Substituting (37)1�5 into the �eld equations (33)1�5, linearizing and considering the

relations for the equilibrium solutions, (35)3�4, the linearized equations governing

the perturbations follow as:

@tn1 + n0@zv
F
1
+ v

F
0
@zn1 = 0

�@tn1 + (1� n0)@zv
S
1

= 0

n0�
FR
@tv

F
1

= �n1@zp0 � n0@zp1 + n1�
FR
g +

��(vF
1
� v

S
1
) + � jvF

0
j @zn1 (38)

(1� n0)�
SR
@tv

S
1

= E @ze1 � (1� n0)@zp1 + n1@zp0 � n1�
SR
g +

+�(v
F
1
� v

S
1
)� � jvF

0
j @zn1

@te1 = @zv
S
1

5The �uid �ow v
F
0
is controlled in the experiment. The known porosity depends on the material

used and the way the experiment is prepared.
6The pore �uid pressure gradient @zp0 is controlled in the experiment.
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3.6 Solutions in the form of plane waves

The perturbations are assumed to be in the form of plane waves:

n1(z; t) = Ne
(st+ikz)

v
S
1
(z; t) = V

S
e
(st+ikz)

v
F
1
(z; t) = V

F
e
(st+ikz) (39)

p1(z; t) = Pe
(st+ikz)

e1(z; t) = Be
(st+ikz)

Here the amplitudes N; V S
; V

F
; P; B are constant and k is the wave vector. It

corresponds to the wavelength by 2�=jkj. The factor s is in general complex, s =

a � ib. The propagation velocity of the wave is b=jkj. The real part a determines

the stability of the system. If it is negative or zero disturbances decay exponentially

or remain small. The system is stable. If it is positive small disturbances grow

exponentially with time.

Substituting the plane wave solutions (39)1�5 into the governing equations for the

small perturbations, (38)1�5, these degenerate into �ve linear equations for the �ve

unknowns xk := (n1; v
S
1
; v

F
1
; p1; e1):

Ajkxk = 0 (40)

with:

Ajk =

0
BBBB@

s+ v
F
0
ik 0 n0ik 0 0

�s (1� n0)ik 0 0 0

@zp0 � �
FR
g � � jvF

0
j ik �� n0�

FR
s+� n0ik 0

�@zp0 + �
SR
g + � jvF

0
j ik (1� n0)�

SR
s+� �� (1� n0)ik �Eik

0 �ik 0 0 s

1
CCCCA

This system of linear equations has nontrivial solutions if and only if the determinant

of its coe�cient matrix Ajk vanishes. This condition leads to dispersion relation

(third order polynomial) for s as a function of k. Its roots determine all possible

plane wave modes for a given wave vector k. They were calculated using the algebra

package Maple. As the expressions are rather lengthy they are not quoted here.

Depending on the parameters gained from experiments the real part of s might

be greater than zero for some wave vectors k. These modes lead to an exponential

increase in the amplitude of the originally small perturbations and thus to an instable

behavior.

As parameters for the calculation values from the experiment presented in �gure 2b

close to its critical state were used:

�
SR

= 2650 kg/m3

�
FR

= 1000 kg/m3

n0 = 0:47
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� = n
2

0
�
FR
g=� = 1:2 � 107 kg/(m3 s)

v
F
0

= �1:6 � 10�4 m/s

@zp0 = �
FR
g �

�

n0
v
F
0
= 14085 Pa/m

Here � is the (Darcy) permeability evaluated from the experiment. The bulk

modulus was assumed to be very small E = 1:0 Pa. This assumption is motivated

by a dependence of the sti�ness of sand from the mean stress. In the range well

bellow the threshold the skeleton behaves in a rather sti� manner with values of

material parameters di�erent from those in the vicinity of the point of �uidization.

However the ground state belongs to this vicinity. There the sand looses its sti�ness.

This is the reason for the choice of the small value of E. Such a dependence was

indicated at the end of section 2.3.

Out of three roots �gure (5) shows the signi�cant root responsible for the unstable

behaviour:

Re(s)

0
2000

20000

0

0.1

−2000

10000

0
Γ

k

Figure 5: Real part of one of the three roots of the dispersion relation as a function

of the wave number k, and the material parameter appearing in the nonlinear inter-

action �. Unstable modes can be seen (Re(s) > 0) can be seen for �
>� 6000 kg/(m2

s). The bulk modulus used in the calculation is E = 1:0 Pa.

The real part of s is plotted as a function of the wave number k and �, the parameter

of the nonlinear interaction term. Regions where the real part of s is greater than

zero represent unstable modes. It can be seen that there exist unstable modes for

physically relevant parameters (� > 0; E > 0).

The instability of the system could be modelled using even the simplest form of the

nonlinear interaction term. The same calculation omitting the nonlinear interaction

(by setting � = 0) does not show unstable modes (Re(s) > 0) unless the bulk

modulus E is set to unrealistic, negative values (not quoted here).

The above results show that the new model can be used for more realistic conditions
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of �ows in soils in order to describe the �uidization phenomena and the accompa-

nying creation of patterns.
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