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Abstract

This paper is concerned with the phenomenon of excitability in semicon-

ductor lasers consisting of a DFB section and a passive dispersive re�ector

(PDR). We assume that the PDR section contains a Bragg grating and (or)

a passive Fabry Perot �lter guaranteeing a dispersive re�ection of the optical

�eld. We investigate a single mode model for PDR lasers and derive conditions

under which excitable behavior can be demonstrated. Especially, we show the

existence of a threshold, that is, only perturbations above the threshold im-

ply a large excursion from the steady state, and where the response is almost

independent of the strength of the perturbation; moreover we establish the

existence of a refractory period, i.e., if a second perturbation is applied before

the refractory time has passed, then the system does not respond. Finally,

we discuss the importance of excitability for the transmission of signals in

communication networks.

1 Introduction

The notion of excitability originally comes from biology [6, 12, 11] and chemistry

[4, 7]. Using the language of neurobiology [17, 8], excitability can be explained by

the all-or-none behavior of neurons: a sub-threshold stimulus only implies a local

(i.e. non-propagated) response, a stimulus above the threshold leads to a pulse

propagating along the axon.

More recently, excitability has been found also in optical systems such as cavity

[9], lasers with saturable absorber [5], and semiconductor laser subjected to de-

layed optical feedback [10]. Excitability in lasers is of great interest because it

o�ers tremendous prospects for practical applications, primarily for optical switch-

ing, clock recovery, pulse reshaping, tunable pulses, and for generating a coherent

resonance output pulse in communication networks.

In [9] a nonlinear optical cavity has been investigated. It has been shown that

excitability of a ring cavity occurs in a small parameter window close to a bistable

operating region. The appearance of excitable behavior can be explained by the

interaction of the dynamical e�ects of nonlinear intracavity �eld saturation and

temperature-dependent �eld absorption in the medium on two di�erent time scales.

The corresponding mathematical model represents a slow-fast system. In [5] it has

been demonstrated that a laser with a saturable absorber displays excitability. The

system is also of a slow-fast nature and is excitable just before the threshold. It

constitutes a simple model for Q-switching in a semiconductor laser. In [10] the

evidence of excitability within the Lang-Kobayashi model has been reported.

In this paper we have studied the excitability in a laser with a passive dispersive

re�ector (PDR). The feedback comes from a Bragg grating. Fig. 1 depicts the
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ODVHU FXUUHQW SKDVH FXUUHQW

Figure 1: Schematic illustra-

tion of a DFB laser with a pas-

sive dispersive re�ector.

structure of the laser, which consists of one active DFB section and a completely

passive dispersive re�ector. In this model the PDR laser has only one active section

to which a pump current is applied. The passive part of the device may consist of

di�erent phase and re�ector sections or a combination of them. Similar devices are

used for generating high frequency self-pulsations (SP) [13], and serve very successful

as optical clock in all optical regeneration [14].

In what follows we investigate the single mode approximation of a PDR laser pro-

posed by the authors in Ref [18] in order to determine the parameter regions asso-

ciated with excitable behavior.

The paper is organized as follows. We present in Section 2 the model equations. In

Section 3 we demonstrate excitability in the model of a passive dispersive re�ector

laser. In section 4 we look for mechanisms producing excitability. To this end we

study the phase portrait, discuss possible bifurcations, and make comparison with

known excitability scenarios, and establish the existence of pulse trains. Conclusions

are given in Section 5.

2 Single mode model

We consider devices in single mode operation. They can be described by single mode

rate equations which have already been successfully applied to such devices with an

active DFB re�ector [2]. For the present case of passive re�ectors, only the carrier

number N in the laser section and the number S of photons in the total device

remain as dynamic variables, and the relevant equations are

dN

dt
=

I

e
�
N

�e
� vg�lgS ;

d

dt

 
S
p
Kz

!
= (vg�lg � 
p)

S
p
Kz

; (2.1)

with e being the elementary charge, vg the group velocity, I the injection current

into the laser section and �e the spontaneous lifetime. The modal gain g will be used

in the simple linear approximation

g(N) = g 0
(N �Ntr) ;

where g 0 is the di�erential gain and Ntr is the transparency concentration. Further-

more, �l is a longitudinal �ll factor, i.e., the relative portion of power contained in
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the laser section. The transverse �ll factor is already contained in g 0, for brevity. 
p
is the optical loss rate, combining the radiation losses at the facets and the internal

optical losses. Kz denotes the axial factor of excess spontaneous emission [19]. In

devices with multiple sections, the quantities �l; 
p and Kz are generally functions

of the carrier density.

Following the analysis given in [18], it is useful to transform the equations (2.1) into

a dimensionless normal form. For these purposes, we introduce dimensionless carrier

and photon numbers,

n =
N �Nth

Nth �Ntr

; p =

q
Kth

zp
Kz

vgg
0�e�

th

l

Nth �Ntr

S :

Here, the threshold carrier number Nth is the smallest zero of (vg�lg � 
p). A

superscript or subscript th at a N -dependent quantity denotes the value at N = Nth.

With this notation and the dimensionless time � = t=�e, the desired normal form of

the rate equations becomes

dn

d�
= J � n� (1 + n)K(n)p ;

dp

d�
= T G(n)p : (2.2)

Here, the parameter J = (I � Ith)=(Ith � Itr) denotes the relative excess injection

rate, with the threshold current Ith = eNth=�e and the transparency current Itr =

eNtr=�e. Operating the laser su�ciently above threshold, this rate is typically in the

range 1 < J < 10. The parameter T = 
th
p
�e is the ratio between the carrier and

photon life times.

The two rate equation (RE) functions are

G(n) =
�l(n)

�
th

l

(1 + n)�

p(n)


th
p

and K(n) =
�l(n)

�
th

l

vuutKz(n)

Kth

z

:

Without a re�ector, i.e., for a solitary DFB laser, it is always the case that K(n) � 1

and G(n) � n, because �l; Kz and 
p are independent of n. Some examples can be

found in the literature [2, 1, 20] for the carrier density dependence of the quantities

�l; 
p; Kz contained in the RE functions. A narrow resonance-like enhancement of

Kz was found as the most prominent feature. This behaviour could be attributed

to a nearby point of mode degeneracy at which Kz diverges [20]. Similar results

were obtained in [2] for more complicated re�ectors composed of a DFB section

accomplished by a phase tuning section. We believe that such resonances of Kz

due to degeneracy points are a rather general consequence of dispersive re�ectors.

To study the consequences of these di�erent con�gurations on the dynamics, we

approximate K(n) and G(n) by

K(n) = K0 +
AW 2

4(n� n0)
2 +W 2

; G(n) = n+ � Æn tanh

�
n

Æn

�
;
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where A;W;K0, n0; �;�n are parameters. The role of each parameter has been

discussed in [18]. In the present study, the majority of parameters is �xed as J =

2; T = 500; K0 = 0:5;W = 0:02; A = 10; � = 1;�n = 0:05. Only the detuning n0

at which the function K(n) has a resonance peak is varied. Such a variation can be

achieved in real devices by tuning the phase current (cf. Fig. 1).

The system described by equations (2.2) has two stationary solutions corresponding

to laser �o�� and �on�. The �on� state is

n = 0 and p =
J

K(0)
: (2.3)

which makes sense only for J > 0. When varying the detuning n0 and keeping all

other parameters �xed, the resonance structure of K causes a dip of the stationary

photon number p as shown in Fig. 2.

self-
pulsations excitable

-0.1 0.0 0.1

0

5

10

p

K(0)

K
, p

detuning n0

Figure 2: Dependence of the threshold value

K(0) (thin solid) and of the stationary re-

duced photon number p = J=K(0) (thick

solid) on the detuning parameter n0. The

dark region indicates the range of the de-

tuning with self-pulsations. The full dots at

n0 = 0:005 represent the detuning where ex-

citability is demonstrated in the present work.

Within a certain range on the left hand side of this dip, the stationary state becomes

unstable and self-sustained pulsations emerge. A detailed stability and bifurcation

analysis of this phenomenon has been presented elsewhere [18, 3]. On the right hand

side of the power depletion, we could �nd excitability as it will be demonstrated in

the next section for the particular detuning n0 = 0:005.

3 Demonstration of excitability

A system is said to be excitable if it shows large excursions from its steady state after

applying a short perturbation above some threshold. In particular, such systems

exhibit the following properties [9, 5, 10]

(i) There exists a certain threshold such that all perturbations below the threshold

imply only small local changes near the steady state.

(ii) To any perturbation above the threshold, the system exhibits a large excursion

from its steady state where the shape and size of the response do not depend

on the strength of the perturbation.

(iii) After applying a perturbation above the threshold, there is some time interval

(refractory period) such that the system is not excitable during that period.
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In the present section we domonstrate these features for the particular point of

operation described in Fig. 2. For this purpose, we have calculated the response of

the system to short perturbations of the injection current.

First, we have applied single rectangular current impulses of variable height ÆJ0.

The duration Æ� of the impulses is as short as 0:025�e (25 ps for a typical �e = 1ns

life time). Fig. 3 shows two typical reactions of the system. At ÆJ0 = 0:9 (left

part), the response of the photon number is negligible. Thus, the current pulse can

indeed be regarded as a small perturbation. Slightly increasing the perturbation to

ÆJ0 = 1:1, a much larger excursion of the photon number can be observed (right

part of the �gure). This behavior is the �rst indication of excitability.
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Figure 3: Calculated transient response to a rectangu-
lar current perturbation with 0.025�e pulse width. Left

part: pulse height ÆJ0 = 0:9. Right part: ÆJ0 = 1:1.
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Figure 4: Dependence of the am-

plitude pmax of the excited pulse on

the perturbation amplitude ÆJ0.

The plot of the amplitude pmax of the photon pulse versus the perturbation strength

ÆJ0 gives a clear indication of the existence of a threshold in accordance with the

property (i) of excitability (Fig. 4).

Property (ii) is also ful�lled since pmax saturates above the threshold.
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Figure 5: Response of the

system to consecutive cur-

rent impulses. a) A sin-

gle impulse for reference.

b) Two impulses with �d =

0:1�e delay. c) Two im-

pulses with �d = 0:4�e.

To con�rm property (iii) we performed the following numerical simulations. We

injected into the system two sequential current impulses above threshold. Fig. 5 b

shows the response of the photon number in the case of a small delay between

the two pulses (see inset). It does not di�er from the response to a single pulse

(Fig. 5 a). With a slightly larger delay, however, the two current pulses excite two

photon pulses, each one nearly identical to that excited by a single impulse. This
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is a clear indication of a refractory period which we estimate to be about 0:37�e in

the present example.

4 Discussion

In the preceding section we have demonstrated excitable behavior of the single mode

model for lasers with passive dispersive re�ectors. In the present section we shall

address in more detail the mechanisms behind this phenomenon, their relations to

bifurcations and to known types of excitability, and possible applications.

4.1 Phase space portrait of the observed excitability

Let us assume for the moment that the duration Æ� of the applied current impulse

is much shorter than the shortest characteristic time of the system. Within this

short time, its only e�ect is to add the amount Æn = ÆJ0Æ� of carriers to the system

by keeping the photon number unchanged at the stationary value p0. Accordingly,

the evolution of the system after the applied impulse follows the phase trajectories

starting just at (n; p) = (Æn; p0).

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

1

0.2

0.5

5

2

 B 

A
stationary

state p0=J/K(0)

p

n

Figure 6: Trajectories in the (n,p)-

phase plane. The detuning is n0 =

0:005. The full dot represents the sta-

ble stationary state. The drawn tra-

jectories start with the stationary pho-

ton number p0 and with excess carrier

densities within the small interval be-

tween n = 0:010 and n = 0:012. The

dashed line indicates where the trajec-

tories have a vertical slope.

Trajectory A belonging to Æn = 0:010 turns immediately to the left approaching the

stable node. The maximum pmax = 0:28 of the photon number during this return

is only marginally above the equilibrium value p0 = 0:235. In contrast, trajectory

B makes a big loop through a maximum at pmax = 6:9, although its initial density

ni = 0:012 is only a bit larger.

Thus, trajectory A can be denoted as a sub-threshold response, whereas trajectory

B represents a super-threshold reponse. In the small interval p = p0; 0:010 � n �
0:012 we have a very sensitive dependence on the initial value. In that case the

threshold consists not of a point but of a small interval. Finally, we note that the

left boundary point of the threshold interval is very near the curve

pr(n) =
J � n

(1 + n)K(n)
(4.4)
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where the trajectories have a vertical slope.

To explain this e�ect we consider the curve corresponding to a function in equation

(4.4). In the case of a solitary laser without a dispersive re�ector we have K(n) � 1,

and the function pv(n) takes approximately the value J . It is a nearly straight line

through the stationary point (remember jnj � 1). It is easy to verify that the

stationary point is a stable focus such that all trajectories tend to the focus, and

spiral around it. With an appropriate dispersive re�ector, K(n) exhibits a strong

resonance enhancement that in turn causes a deep minimum of pv(n) (dashed line

in Fig. 6). This implies a slow-fast dynamics near the node. Furthermore, all

trajectories of equations (2.2) approach the stable node along a leading direction

where this line strongly attracts neighboring trajectories (see Fig. 6). A similar

bundling of the phase trajectories can be observed also to the right of the curve

(4) near to p0 = J=K(0). A more detailed analysis of these e�ect will be presented

elsewhere.

4.2 Comparison with know types of excitability

We restrict ourselves to plane vector �elds to model excitable systems. In the litera-

ture we can �nd basically two di�erent topological con�gurations of the trajectories

describing excitability: slow-fast systems [6, 11] (see Fig. 7a) and systems where two

unstable separatrices of a saddle form a closed curve �0 [5, 15, 16] (see Fig. 7b).

First we consider the saddle case. In Fig. 7b we represent a perturbation by

a vertical displacement from the stable steady state. In that case, the thresh-

old corresponds to the distance of the stable separatrix from the steady state. A

sub-threshold-perturbation leads only to small local changes. A super-threshold-

perturbation leads to a trajectory (it starts at the open circle) going around the

closed curve �0 (large excursion).

Next we consider other fast-slow system in Fig. 7a. The motion very near the

S-shaped curve is slow where the middle part is repelling and the outer parts at-

tracting. The motion between the S-branches is almost horizontal and fast (jumping

behavior). In the left picture we represent a perturbation by a horizontal displace-

ment from the steady state to the right. In that case, the threshold corresponds

to the distance of the middle-S branch from the steady state along the horizontal

straight line. A sub-threshold perturbation leads to a fast return to the steady state.

A super-threshold perturbation (see the open circle) leads �rst to a jump near the

stable right branch, following this branch to the top and then jumping to the left

stable branch and following it to the steady state, also a big excursion.

If we compare the phase portraits depictured in Fig. 6 and in Fig. 7, then obviously

we have simularities. In the compact region considered there is exactly one steady

state which is asymptotically stable and attracts all trajectories. The stationary

state is a node with one leading directions where the characteristic numbers are

very di�erent. Thus, the trajectories very rapidly approach the leading direction

7



and follow this line slowly such that we can observe a slow-fast behavior near the

steady state. On the S-shaped curve in Fig. 7a, the time derivative of the fast

variable vanishes; on the dotted line in Fig. 6, the time-derivative of n also vanishes.

Both curves have a minimum near the steady state. The nearer in Fig. 6 the steady

state is located to the minimum the better we can de�ne the threshold as in the

slow-fast system. Far from the steady state in Fig. 6 we cannot distinguish between

slow and fast variables. In summary, the phase portraits in Fig. 6 and in Fig. 7a

are topologically equivalent, and near the steady state we also represent (2.2) as a

fast-slow system.

a) b)

Figure 7: Schematic phase portraits of dif-

ferent types of excitability in 2D systems.

a) Slow-fast system with a S-shaped char-

acteristics like in the FitzHugh-Nagumo

model. The horizontal arrows give the di-

rewction of the fast motion.

b) Two separatrices of a saddle form a

closed curve �0. The steady state is rep-

resented by a full circle.

4.3 Oscillatory behavior

It is well known that excitable systems can also show oscillatory behavior. There

are di�erent bifurcations generating a stable limit cycle.

In the case of Fig. 7b a stable large amplitude limit cycle can bifurcate from a ho-

moclinic orbit of a saddle-node when the node coincides with the saddle by changing

some parameter.

In the case of Fig. 7a a stable limit cycle can appear by a Hopf bifurcation when the

stationary point is slightly shifted through the minimum of the S-shaped curve. In

the case of a slow-fast system, the amplitude of the bifurcated limit cycle increases

very quickly during a small parameter change (occurence of canard cycles). Our

system exhibits the same behavior [18].

It is also interesting to consider the impact of an increasing positiv detuning n0 on

the properties of the excitable system. To this end we compare the phase portrait for

the large value n0 = 0:025 depicted in Fig. 9 with that of Fig. 6. The main di�erence

is that the stationary point is shifted upwards on the left slope of the minimum of

pv(n). As a �rst consequence, its separation from the opposite side of the pv(n)-

valley increased. Thus, larger impulses are required to push the system through the

valley. Furthermore, this high level of p0 is above the region where trajectories are

closely bundled and the threshold behaviour is more or less lost. We conclude that

the excitability phenomenon is most pronounced close to the minimum of p = pv(n).
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Figure 8: Phase portrait for n0 = �0:025.
The dot is the unstable stationary point

and the thick solid line represents the

stable periodic orbit.
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p0=J/K(0)

p

n

Figure 9: Phase portrait for n0 = 0:025.

The depicted phase trajectories start at

positions which can be achieved from the

stable point (fat dot) by very short current

impulses.

4.4 Possible application of excitability

In the process of transparent optical siganal regeneration the decision element plays

a crucial role. It's main function is to distinguish between signals representing noise

(0-signals) and signals carrying an information (1-signals).

Let us assume that the 0-signals are small (sub-threshold perturbations) and that

the 1-signals have enough power (super-threshold perturbations). The existence of

a perturbation threshold in the excitable system (2.2), can be used to suppress the

0-signals and, probably, to equalize 1-signals.

The upper picture of Fig. 10 represents an example of a such incoming pulse train.

The dashed line in this picture indicates a threshold of perturbation. The resulting

outgoing signal is represented in lower picture of Fig. 10. Only those incoming signals

which exceed threshold are able to excite the system (2.2) and are recognized as 1-

signals. Other perturbations coursed negligible responce and should be recognized

as 0-signals.
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Figure 10: Response of the system to

the train of impulses. The repetition pe-

riod and impulse length are 0:45�e and

0:05�e, respectively. Other parameters

J=2, A=1, W=0.02, K0 = 0:05, � = 1,

�n = 0:05, �e = 1ns. Small perturba-

tions (noises) are suppressed.
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5 Conclusions

The investigation of a single mode model of a PDR laser exhibits the occurrence of

excitability. In the case of a su�cient resonance enhancement of the function K(n),

a PDR-laser can be triggered by a small injected current impulse to produce a large

excursion from the steady state. A detailed analysis con�rmed the existence of a

threshold and of a refractory period, and that shape and size of the response are

essentially independent of the magnitude of the perturbation. The results obtained

con�rm the existence of excitable behavior of PDR laser. Practical realization of

excitability for PDR lasers remain a subject for future study. However, the results

obtained make clear the importance of such work.
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