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Abstract

We report on a system of nonlinear partial differential equations describing signal conver-
sion and amplification in semiconductor detectors. We explain the main ideas governing
the numerical treatment of this system as they are implemented in our code WIAS–TeSCA.
This software package has been used by the MPI Semiconductor Laboratory for numerical
simulation of innovative radiation detectors. We present some simulation results focussing
on three–dimensional effects in X–ray detectors for satellite missions.
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1 Introduction

For observation of X–ray radiation in astrophysics and other applications semicon-
ductor detectors play a rapidly growing role. Devices as the DEPFET (DEPleted
Field Effect Transistor), in particular the MOS–type (DEPMOS) developed at the
MPI Semiconductor Laboratory and the Max Planck Institutes for Physics and
for Extraterrestrial Physics [9], offer very important advantages when compared to
conventional detectors. These advantages are due to the intrinsic feature of the
structure which at once has detector and amplifier properties. High amplification
and low noise can be obtained and the charge generated by the signal can be read out
at the place of origin, therefore avoiding problems connected with charge transport.

For development and optimization of such refined semiconductor detectors mathe-
matical modeling and numerical simulation is indispensable. At the MPI Semicon-
ductor Laboratory the simulation program WIAS–TeSCA is used to design detectors
and to anticipate their qualitative and quantitative behavior. Device simulations on
a prototype design of DEPFET confirm that the device is intrinsically fast and that
it will function properly.

It is the aim of this article to describe the mathematical model for semiconduc-
tor detectors and the main ideas underlying our code for numerically solving the
model equations reliably and efficiently. Finally we present some simulation results
concerning detector structures of current interest.

2 The drift–diffusion model

Charge generation by radiation and charge transport in semiconductor detectors
can be described adequately by the drift–diffusion model, consisting of a Poisson
equation for the electrostatic potential ϕ:

−∇ · (ε∇ϕ) = d+ u2 − u1 in Ω , (1)

and continuity equations for the charge carriers, electrons u1 and holes u2:

∂ui
∂t
−∇ · (µi (∇ ui + qiui∇ϕ)) = g − r in Q . (2)

Here Ω ⊂ Rn, n ≤ 3, is the Lipschitzian domain, occupied by the detector and Q =
(0, T )×Ω is a time cylinder. The source term g = g(t, x), (t, x) ∈ Ω, models charge
generation by radiation and the remaining symbols have the following meaning:

ε = ε(x) dielectric permittivity,

d = d(x) density of impurities,

µi = µi(x, |∇φi|) mobility,

φi = ϕ+ qi log ui electro–chemical potential,

q1 = −1, q2 = +1 sign of charges,

r = r0(u)(u1u2 − 1) recombination rate,
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where the index i = 1, 2 refers to electrons and holes respectively, and u = (u1, u2) is
the vector of charge densities. This system has to be completed by initial conditions

ui(0, x) = ui0(x) ≥ 0, x ∈ Ω, i = 1, 2 , (3)

and boundary conditions

ϕ = ϕΓ, ui = uiΓ on (0, T )× ΓD, i = 1, 2,

ν · ∇ϕ = ν · ∇φi = 0 on (0, T )× ΓN , i = 1, 2,
(4)

where Γ = ∂Ω = ΓD ∪ ΓN and ν is the outer unit normal on Γ.

The drift–diffusion model was derived by van Roosbroeck [13] in 1950 and is now
generally accepted. The first significant report on using numerical techniques to
solve these equations for carriers in an operating semiconductor device structure
has been published by Gummel [7] in 1964. Since then the numerical modeling of
semiconductor devices proved to be a powerful tool for device designers.

First mathematical papers devoted to the drift–diffusion equations of carrier trans-
port in semiconductors appeared at the beginning of the seventies [10, 11]. Global
existence and uniqueness of solutions under realistic physical and geometrical con-
ditions was proved firstly in [5].

The key for proving these results and also for establishing stable numerical solving
procedures is the existence of a Lyapunov function for (1–2), provided

uiΓ = exp(−qiϕΓ), g = 0 .

Indeed, under these assumptions the free energy

F(ϕ, u) =

∫
Ω

[
ε

2
|∇(ϕ− ϕ∗)|2 +

2∑
i=1

ui(log
ui
u∗i
− 1)

]
dx

satisfies
dF
dt

= −
∫

Ω

[
2∑
i=1

µiui|∇φi|2 + (φ2 − φ1) r

]
dx ≤ 0 , (5)

where the thermal equilibrium potential ϕ∗ is solution of the nonlinear Poisson
equation

−∇ · (ε∇ϕ∗) = d+ exp(−ϕ∗)− exp(ϕ∗) in Ω ,

ϕ∗ = ϕΓ on ΓD, ν · ∇ϕ∗ = 0 on ΓN

and the equilibrium charge densities are given by

u∗i = exp(−qiϕ∗) .

In particular, (5) implies exponential decay of the solution (ϕ, u) to (1–4) to the
thermal equilibrium (ϕ∗, u∗).
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3 Numerics for the drift–diffusion model

3.1 Calculation of contact currents

In view of real detector structures we suppose that

ΓD =

k0⋃
j=1

Kj .

An essential task of device simulation in general and of detector simulation in par-
ticular, is accurate calculation of the currents JKj through the device contacts Kj.
Since in general, by analytical reasons, only weakly regular solutions can be ex-
pected, we calculate the JKj ’s in accordance with the definition of weak solutions.
To this end, we provide suitable test functions hj as solutions of the boundary value
problems

∆hj = 0 in Ω, ν · ∇hj = 0 on ΓN , hj =

{
1 on Kj,

0 on Kk, k 6= j,

such that, evidently,
k0∑
j=1

hj ≡ 1 in Ω . (6)

Now, differentiating (1) with respect to time and adding to (2), we get the conser-
vation of total current

∇ · J = 0, J = ε∇ ∂ϕ

∂t
+

2∑
i=1

µi (qi∇ui + ui∇ϕ) .

(J sums up the dielectric displacement current, the electron and hole current.)
Hence, the Gauß theorem implies

JKj =

∫
Kj

J · ν ds =

∫
Ω

J · ∇hj dx ,

and as a consequence of (6)
k0∑
j=1

JKj = 0 .

3.2 Time discretization

For time discretization we apply Euler’s implicit method and we regard a partition
of the time interval:

[0, T ] = ∪jSj, Sj = [tj−1, tj], τj := tj − tj−1 > 0, t0 = 0 .
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Then our time discrete version of the drift–diffusion system reads

−∇ ·
(
ε∇ϕj

)
= d+ uj2 − u

j
1 ,

uji − u
j−1
i

τj
−∇ ·

(
µj−1
i (∇ uji + qiu

j
i∇ϕj)

)
= gj − rj ,

u0
i = u0i ,

(7)

where j = 1, 2, . . . indexes the discrete times, and i = 1, 2 indicates the species.

An essential feature of this discretization is that, as in the continuous case, the free
energy is Lyapunov function. More precisely, there is the following estimate [4]:

F(ϕj, uj)−F(ϕj−1, uj−1)

τj
≤ −

∫
Ω

[
2∑
i=1

µj−1
i uji |∇φ

j
i |2 + (φj2 − φ

j
1) rj

]
dx ≤ 0 .

3.3 Space discretization

For space discretization we use n–dimensional simplex elements El such that

Ω = ∪lEl .

By E we denote the set of all edges ekl = xk − xl connecting vertices xk and xl of
our triangulation. Let

Vk = {x ∈ Rn : ‖x− xk‖ ≤ ‖x− xj‖ for all vertices xj ∈ Ω}

be the Voronoi cell assigned to vertex xk and ∂Vk its surface. Our main hy-
pothesis with respect to space discretization is that the electron and hole current
Ji = qiµi

(
∇ ui + qiui∇ϕ

)
, i = 1, 2, have to be constant along simplex edges ekl:

Jikl(s) = µiklqi (∇ ui + qiui∇ϕ) (s) = const. for all s ∈ ekl .

Replacing ∇ by d/ds, we get ordinary differential equations with respect to the
edge parameter s. After integration we can express Jikl in terms of the vertex values
ϕk = ϕ(xk) and uik = ui(xk):

Jikl =
µiklqi
|ekl|

(
b
(
qi(ϕk − ϕl)

)
uil − b

(
− qi(ϕk − ϕl)

)
uik
)
,

where
b(s) =

s

exp(s)− 1

is the Bernoulli function. In order to derive a space discrete version of the drift–
diffusion system, we test (1) and (2) with the characteristic function χVk of the
Voronoi cell Vk. Thus, applying the Gauß theorem, we arrive at

εk
∑

{l: ekl∈E}

ϕk − ϕl
|ekl|

∣∣∂Vk ∩ ∂Vl∣∣ = (dk + u2k − u1k) |Vk|,

∂uik
∂t
|Vk| − qi

∑
{l: ekl∈E}

Jikl
∣∣∂Vk ∩ ∂Vl∣∣ = (gk − rk)|Vk| ,

(8)
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for all vertices xk of our triangulation.

As the original drift–diffusion equations (1–2) and its time discrete variant (7), also
the space discrete version (8) has the free energy as Lyapunov function. Indeed,
there is the following estimate [4]:

dF
dt
≤ −

∑
ekl∈E

[ 2∑
i=1

uikµikl

∣∣∂Vk ∩ ∂Vl∣∣
|ekl|

b(ϕl − ϕk)
b(φil − φik)

|φik − φil|2

+ |Vk| (φ2k − φ1k)rk

]
≤ 0 .

Now it is straight forward to combine time and space discretization in such a way
that the free energy remains Lyapunov function of the fully discretized drift–diffusion
system as it is implemented in our numerical code WIAS–TeSCA.

3.4 Decoupling, Linearization

A natural way of decoupling the drift–diffusion equations is due to Gummel [7]. It
starts from the state equations

ui = exp (qi(φi − ϕ)) . (9)

Assuming the electro–chemical potentials φi to be known from a preceding iteration,
equation (1) can be seen as a nonlinear elliptic equation with monotone nonlinearity
with respect to the electrostatic potential ϕ and can be solved via a globally conver-
gent Newton procedure. In the second step we insert ϕ into the continuity equations
and solve them for ui. Finally, from ϕ and ui we update the electro–chemical po-
tentials φi via (9).

Roughly speaking, Gummel’s iteration method converges rapidly far away and slowly
near the solution. Thus, we could combine it advantageously with Newton’s method
having a complementary behavior.

3.5 Solution of linear algebraic equations

After space and time discretization, decoupling and linearization we end up with
sparse linear equation systems. The Poisson equation is symmetric and can be solved
without any problems by conjugate gradient methods. The continuity equations,
due to the (in general) strong drift term ∇ϕ, are only structurally symmetric and
very stiff. Hence, we are often obliged to go back to direct solution procedures.
Fortunately, we have available highly efficient factorization processes with complete
super–node pivoting [12].
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4 Software Design

Originally WIAS–TeSCA [3] is a two dimensional semiconductor device simulation
package written in FORTRAN. The present redesign of WIAS–TeSCA aims at a
tool which operates on two and three dimensional spatial domains. WIAS–TeSCA
shall deal with a variable set of coupled model equations, which are defined and
have to be solved on specific parts of the simulation domain, while referring to and
communicating via the underlying discretization of the whole simulation domain.
The management of material properties also works within this concept.

In the sense of structured programming we adopt an object oriented approach [6].
The implementation is made in C, while using numerical kernels in FORTRAN.
All features which might impede portability, such as special C++ constructions
are omitted. We reuse pdelib–components [1], in particular the interface for grid
management and the interface for linear algebra. Moreover, we make use of the
interactive graphics package gltools [2], and there is an interface to the extension
language lua [8] for the description of the simulation problem.

In the following we describe the calculation of the electrostatic potential in a doped
semiconductor hetero–structured detector. To that end a nonlinear Poisson equation
with prescribed spatially varying quasi Fermi potentials of the carrier densities has
to be solved on a fully three dimensional spatial domain.

5 Simulation results

The structure and operation principle of the MOS–type DEPFET is shown in Fig. 1.
It is based on the sideward depletion as used in the semiconductor drift chamber
and the field effect transistor. The transistor is located atop a low doped n–type
semiconductor substrate. It becomes fully depleted by applying a sufficiently high
negative voltage to the backside p+ contact. By suitable doping, a potential mini-
mum for electrons is formed below the transistor channel. The fully depleted bulk
is the sensitive volume of the detector in which electron–hole pairs created by the
incident radiation are separated by the electric field. While the holes are moved to
the negatively biased back–contact, the electrons are collected in the local potential
minimum below the channel of the transistor (the so called ”internal gate”) and
thus, increase its charge density by induction. As a consequence, the transistor cur-
rent is increased as long as the signal charge is not removed from the internal gate.
The removal of the signal charge (emptying of the internal gate) can be performed in
a way, which will be described below. Arranging many DEPFETs over an extended
area leads to a pixel detector array with each single DEPFET providing one pixel.

Our two– and three–dimensional device simulations of pixel cells with WIAS–TeSCA
concern the response of the device to radiation (the collection mechanism), the
functionality of the emptying of the internal gate (the clearing mechanism), and the
transfer of charge between two internal gates. The latter mechanism plays a role in
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Figure 1: The DEPFET structure

detector arrays, when the option of noise reduction by switching and repeated read
out is used, see [9].

A perspective view on the electrostatic potential and the carrier densities in two
operating states of a single pixel cell is shown in Figs. 2–5. The pixel cell measures
18µm×15µm×280µm and the figures show a section of the three dimensional simu-
lation domain up to a depth of 12µm. For this type of topologies care has to be taken
to avoid detrimental effects due to the sideward limits of the structure. In the three
dimensional plot of the hole density, see Fig. 5, atop the structure the p+ contacts
are visible red shaded. The drain (D) stretches over the full width of the device and
is connected with the source (S) through the MOS enhancement channel below the
gate (G), see Fig. 1. In the three dimensional plot of the electron density, see Fig. 3,
atop the structure the n+ clear contact (Cl) is visible red shaded. It is separated
from the source by the clear gate, see also Fig. 1. The signal charge is stored within
the internal gates located below the transistor channel. As the DEPFET transistors
are built on detector grade low doped silicon, additional buried n–type doping fairly
close to the surface is necessary in order to move the position of the internal gate
close to the surface (at a distance smaller than the gate length) and simultaneously
prevent the flow of holes from the transistor through the bulk towards the strongly
negatively biased backside diode.

Single photon detection of X–rays with a high energy resolution requires the collec-
tion of the whole generated signal charge without any losses. Since in the charge
collection mode all generated electrons have to drift into the internal gates the still
positively biased clear contacts have to be shielded from the sensor region. Fig. 2
shows the build up of a potential barrier beneath the n–doped clear contact by a
buried p–doped layer. This layer becomes completely depleted from holes during
the clearing phase, where a high positive voltage is applied to the clear contact,
see Fig. 5. After turning off the clear voltage the p–doped region remains depleted
forming the required potential barrier by the influence of the negative space charge
of the acceptor ions. This non steady state can be simulated by applying a locally
fixed quasi Fermi potential for holes in the buried p–doped layer.

After each readout the internal gate has to be emptied. Complete clearing of the
internal gate avoids noise due to fluctuations in the left–over charge. Clearing of the
internal gate is performed by the application of a positive voltage pulse of approx-
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Figure 2: DEPMOS pixel cell in collection mode: electrostatic potential.
Bottom: three dimensional plots. Top: level plots at a depth of 500nm.
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Figure 3: DEPMOS pixel cell in collection mode: electron density.
Bottom: three dimensional plots. Top: level plots at a depth of 500nm.
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Figure 4: DEPMOS pixel cell in clearing mode: electrostatic potential.
Bottom: three dimensional plots. Top: level plots at a depth of 200nm.
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Figure 5: DEPMOS pixel cell in clearing mode: hole density.
Bottom: three dimensional plots. Top: level plots at a depth of 200nm.

12



imately 12V to the clear contact. Fig. 4 displays a potential barrier between the
internal gate and the n+ clear contact. Such a barrier hinders the clearing mech-
anism and its removal was a task for further optimization of the device. Proper
adjustment of device layout, doping profiles and applied voltages leads to detector
structures which are intrinsically very fast such that the read out and clearing speed
will rather be limited by effects in the signal routing.

Acknowledgments

We thank Gerd Reinhardt (WIAS Berlin) for his support with the graphics.

References

[1] J. Fuhrmann, Th. Koprucki, and H. Langmach, pdelib: An open modular tool
box for the numerical solution of partial differential equations. design patterns.,
Proceedings of the 14th GAMM Seminar on Concepts of Numerical Software
(W. Hackbusch and G. Wittum, eds.), Notes on Numerical Fluid Mechanics,
Vieweg Verlag, 1998, submitted.

[2] J. Fuhrmann and H. Langmach, gltools, Weierstrass Institute for Applied
Analysis and Stochastics, Mohrenstraße 39, D–10117 Berlin, http://www.wias-
berlin.de/˜gltools.

[3] H. Gajewski et al., TeSCA Two– and three–dimensional SemiConductor Analy-
sis package, Weierstrass Institute for Applied Analysis and Stochastics, Mohren-
straße 39, 10117 Berlin, Germany.
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