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Summary

The paper contains a review of fundamental equations of the two component thermoporoe-

lastic materials with the balance equation of porosity. By means of the exploitation of the

second law of thermodynamics restricted to small deviations from thermodynamical equi-

librium it is proven that there exists no thermodi�usional coupling of components through

intrinsic parts of �uxes. Certainly such a coupling is still present due to convective contri-

butions. Simultaneously we show that classical partial dynamical compatibility conditions

on material interfaces cannot hold. For boundary conditions on permeable boundaries

to hold true it must be required that global balance equations contain at least surface

sources of momentum, entropy, and porosity. We show as well that the requirement of

the local thermodynamical equilibrium on permeable interfaces yields the continuity of

absolute temperature. It means that temperature becomes a measurable physical �eld in

porous materials undergoing processes with small deviations from thermodynamical equi-

libria. This result allows to extend models of mass exchange in poroelastic materials from

adsorption isothermal processes to chemical reactions, and phase transformations. Details

of the latter problems are not discussed in this paper.
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1 Introduction

The paper is devoted to the presentation of basic properties of the thermodynamical

model of thermoporoelstic materials which I have developed during the last decade.

A good deal of material contained in this work has been already published elsewhere,

and I quote it here again to make the paper selfcontained, and new contributions

understandable. The presentation of one chosen model of porous materials does not

mean, of course, that there exists any quali�cation for various models appearing in

the literature. An appropriate one must be always chosen �tting best the purpose.

For instance, the model presented in this paper is particularily well suited to describe

wave propagation in multicomponent systems, as well as large deformations of the

skeleton. It is much too complex in applications to most consolidation problems.

A model in which one assumes the incompressibility of components frequently used

in soil mechanics cannot describe all modes of acoustic and surface waves but it

describes very well various instabilities in granular geotechnical materials such as

piping. A model based on Darcy law with rigid skeleton descirbes very well �ows of

�uid components (reaction-di�usion equations) but it cannot describe consolidation

processes, and acoustic waves. One can multiply such examples.

Due to the above limitation of the contents the references are chose in a very sub-

jective manner, and re�ect solely results for one particular approach.

The general part of the present considerations is devoted to a two component system

consisting of an elastic skeleton (a solid component), and of the ideal �uid. Defor-

mations, and kinematics of both components are related to a reference con�guration

of the skeleton. This is called the Lagrangian description of motion [1]. The main

new elements of the model presented in this work are contained in the exploita-

tion of the second law of thermodynamics which yields quite explicit relations for

�uxes of the balance equations under the assumption of small deviations from the

thermodynamical equilibrium state. We do not make an assumption on a relation be-

tween partial heat, and entropy �uxes which has been made in the thermodynamical

analysis of a multicomponent system in [2, 3]. In addition we present an

analysis of conditions on interfaces material with respect to the skeleton. This

analysis allows to interpret the temperature in the classical way for processes satis-

fying the above assumption on small deviations. This means that we can e�ectively

construct boundary conditions for heat conduction problems.

In Section 4 we review brie�y results on adsorption processes coupled to the dif-

fusion. This problem indicates limitations of the contemporary modeling of mass

exchange in porous materials which is related to the assumption that processes are

isothermal. Results on nonisothermal models presented in this work allow to extend

the description to processes in which we have to incorporate the latent heats of

phase transformations, and heats of chemical reactions.

The paper is organized in the following way. Sections 2 and 3 contain the

development of the general thermodynamical two component model. Technical con-

siderations connected with the exploitation of the second law of thermodynamics are
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shifted to the Appendix. Section 4 is devoted to modeling of adsorption. Section 5

contains an analysis of the structure of conditions on interfaces material with respect

to the skeleton. In particular we present su�cient conditions for the continuity of

absolute temperature on such an interface.

2 Balance equations in Lagrangian description

Large deformations of the skelton of porous materials yield the necessity of La-

grangian description of motion. This has been proposed in a series of works [1, 4, 2]

and some details can be found in the book [5]. In this Section I present only some

main features of this description.

We consider a two-component porous medium described as a continuum. The motion

of the skeleton is assumed to be given by a di�eomorphism

fS(�; �) : B � T ! R
3
; (2.1)

where B is a reference con�guration of the skeleton, B � R
3 , and T is the time

interval. The deformation gradient, and the partial velocity of the skeleton are

de�ned by the relations

FS = Grad fS ; �xS =
@fS

@t

; (2.2)

and they are assumed to be continuous almost everywhere in B. The motion of the

�uid component is assumed to be given by a partial velocity �eld

�xF : B � T ! V
3
; (2.3)

where V3 is the three dimensional vector space. The partial �uid velocity is assumed

to be continuous almost everywhere in B. Material domains of the skeleton P � B

are assumed to satisfy usual conditions of continuum mechanics which we shall not

quote here. Certainly they also do not depend on time, and each member of their

class M S is called S-material. On the other hand, material domains of the �uid

P � B do depend on time, and their kinematics is described by the Lagrangian

velocity �eld �XF :

�XF := FS�1(�xF � �xS): (2.4)

The members of their class M F are called F -material.

The set of �elds characterizing temperature dependent processes of motion in porous

media is of the form�
�

S
; �

F
; fS; �xF ; n;�

�
; (2.5)
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where �S; �F are partial mass densities in the reference con�guration B; n is the

porosity, and � is the absolute temperature. We return later very brie�y to the

problem of systems with multiple temperatures.

In the case of porous media, whose heterogeneity is limited to an interface � dividing

the refernce con�guration into two subdomains, B+
; B

�
; c`B

+
[c`B

� = c`B, c`B+
\

c`B
� = �, where c` denotes the closure of domains in which the porous medium

may have di�erent material properties, we have the following set of balance equations

corresponding to �elds (2.5)

� partial mass balance

8P � S �material :
d

dt

Z
P

�

S
dv =

Z
P

�̂

S
dV; (2.6)

8P � F �material :
d

dt

Z
P

�

F
dv =

Z
P

�̂

F
dV; �̂

S + �̂

F = 0 (2.7)

� partial momentum balance

8P � S �material :

d

dt

Z
P

�

S�xSdV =

I
@P

PSNdA+

Z
P

p̂SdV +

I
P\�

p̂SsurfdA;

(2.8)

8P � F �material :

d

dt

Z
P

�

F �xFdV =

I
@P

PFNdA+

Z
P

p̂FdV +

I
P\�

p̂FsurfdA;

p̂S + p̂F = 0; p̂Ssurf + p̂
F
surf = 0; (2.9)

� partial energy balance

8P � S �material :

d

dt

Z
P

�

S

�
"

S + 1
2
�xS2

�
dV +

I
@P

QS
�NdA =

I
@P

(PSN) � �xSdA;

(2.10)

8P � F �material :

d

dt

Z
P

�

F

�
"

F + 1
2
�xF2

�
dV +

I
@P

QF
�NdA =

I
@P

(PFN) � �xFdA;

� balance of porosity

8P � S �material :

d

dt

Z
P

ndV +

I
@P

J �NdA =

Z
P

n̂dV +

Z
P\�

n̂surfdA: (2.11)
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The sources of mass �̂S; �̂F , the volume sources of momentum p̂S; p̂F , and the surface

sources of momentum p̂Ssurf ; p̂
F
surf are assumed to satisfy the local conservation laws

(2.7), (2.9). This condition can be weakened which is not essential for considerations

of this work. We justify the necessity of the presence of momentum surface sources

and porosity surface source on the interface in Section 5.

The partial Piola-Kirchho� stress tensors are denoted by PS
;PF , the heat �ux

vectors are QS
;QF . n̂; n̂surf denote the volume source, and the surface source of

porosity, respectively. The �ux of porosity is denoted by J. N is a unit vector

orthogonal to the surface @P .

The local form of these equations in Bn� is as follows

@�
S

@t

= �̂

S
;

@�
F

@t

+Div(�F �XF ) = �̂

F
;

@�
S�xS

@t

= DivPS + p̂S;
@�

F �xF

@t

+Div

�
�

F �xF 
 �XF
�PF

�
= p̂F ;

@�
S("S + 1

2
�xS2)

@t

+Div

�
QS

�PST �xS
�
= 0;

@�
F ("F + 1

2
�xF2)

@t

+Div

�
�

F
�
"

F + 1
2
�xF2

�
�XF +QF

�PFT �xF
�
= 0;

@n

@t

+DivJ = n̂;

(2.12)

where �XF denotes the Lagrangian relative velocity (see (2.4)). We use these equa-

tions to construct �eld equations for thermoporoelastic materials.

3 Thermodynamics of thermoporoelastic materials

In order to close the system (2.12) and obtain �eld equations, and boundary con-

ditions for �elds (2.5) we need constitutive relations for the following constitutive

quantities

Z :=

�
�̂

S
; �̂

F
;PS

;PF
; p̂S; p̂Ssurf ; p̂

F
; p̂Fsurf ; "

S
; "

F
;QS

;QF
;J; n̂; n̂surf

�
: (3.1)

Certainly, constitutive relations for sources are not all independent due to conser-

vation laws.

We assume the quantities Z to be di�erentiable functions of the following constitu-

tive variables

C :=

�
�

S
; �

F
;FS; �XF

; n;�;G

�
; G := Grad�; (3.2)
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i.e.

Z = Z(C): (3.3)

As we see further we need additional �elds of microstructural variables in order to

describe processes of mass exchange. We introduce them in the next Section as they

do not in�uence basic consequences of the second law of thermodynamics which we

proceed to present.

Any solution of �eld equations which follows from (2.12) by the substitution of (3.3)

we call the thermodynamical process. As we consider solely the case of the common

temperature for the solid and the �uid we use the energy balance in the bulk form

which follows by adding equations (2.12)5 and (2.12)6.

The second law is assumed to be constructed in the same way as the balance equa-

tions of Section 2. We assume an existence of nontrivial �elds of partial entropies

�
S
; �

F , and their �uxes HS
;HF such that

8P � S �material :
d

dt

Z
P

�

S
�

S
dV +

Z
P

DivHS
dV =

Z
P

�̂

S
dV +

Z
P\�

�̂

S
surfdv;

8P � F �material :
d

dt

Z
P

�

F
�

F
dV +

Z
P

DivHF
dV =

Z
P

�̂

F
dV +

Z
P\�

�̂

F
surfdv;

(3.4)

�

S = �

S(C); �

F = �

F (C); HS = HS(C); HF = HF (C): (3.5)

It is assumed that at each point X 2 Bn� the following inequality

�̂

S + �̂

F
� 0; (3.6)

holds for all solutions of �eld equations.

By means of balance equations (3.4) it can be written in the local form

@

@t

�
�

S
�

S + �

F
�

F

�
+Div

�
�

F
�

F �XF +HS
�HF

�
� 0: (3.7)

This entropy inequality yields thermodynamical admissibility conditions which we

discuss in the Appendix. For our further considerations we limit the attention to

the model describing small deviations from the state of thermodynamical equilib-

rium. This state is de�ned within the present model as such for which the following

conditions hold

GjE = 0; �̂
S
��
E
= 0; p̂S

��
E
= 0; n̂jE = 0: (3.8)
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Then as we show in the Appendix the following relations hold true

�X

���
E
= 0; �jE = 0; � := n� nE; nE = nE

�
�
F

�
S

�
; (3.9)

and the basic constitutive relations are as follows. The intrinsic heat �ux in both

components de�ned by the sum of partial �uxes is independent of the relative ve-

locity �XF , and of the change of porosity �, and it has the form

QS +QF = �K�G = �
�
HS +HF

�
; (3.10)

K� = K� (CE) ; CE :=
�
�

F
; �

S
;FS;�

	
while the constitutive relation for the �ux of porosity simpli�es to a single constant

J = 'J

S �XF
; ' = const: (3.11)

This constant is determined for a particular initial state of the porous medium

which means it may still be parametrically dependent on an initial porosity. This

was indicated in earlier works on this model where it was argued that ' � nE for

the constant equilibrium porosity nE.

Under the restriction of processes to a small neighbourhood of the thermodynamical

equilibrium the coupling through the partial Piola-Kirchho� stress tensors reduces

solely to the coupling through the dynamical change of porosity �

PS = �

S @ 
S

@FS
� ��n1'J

S�FS�T ; (3.12)

PF =
�
�p

F +��n1'�
�
J

SFS�T ; p

F := �

F2@ 
F

@�
F
J

S�1
;

where

 

F : = "

F
���F =  

F
�
�

F
J

S�1
;�;�

�
;

 

S : = "

S
���S =  

S
�
�

S
;FS;�;�

�
; (3.13)

�n1 : = �
1

�

@

@�

�
�

S
 

S + �

F
 

F
�����
E

:

The free energies  S;  F contain solely two contributions. One is independent of �,
the other one is quadratic in �, and, in addition,

�

F = �
@ 

F

@�
: (3.14)

The sources are given by the relations

p̂S = �

�
�xF � �xS

�
+ �̂

S�xS;
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�̂

S = R

�
 

F +
p
F

�
F
J
S�1

�  

S
� �

S @ 
S

@�
S

�
; (3.15)

where the coe�cients �;R may still depend on all equilibrium constitutive variables

CE. Obviously, the formula for mass sources contains the di�erence of functions

reminding the chemical potentials of the �uid  
F + pF

�F JS�1
, and of the skeleton

 
S + �

S @ S

@�S
. However, the second contribution to the potential of the skeleton does

not coincide with the partial pressure (see: (3.121)) as �
S and FS are independent.

Finally the following dissipation inequality must hold

1

�
K�G �G+ �

�
�xF � �xS

�
�

�
�xF � �xS

�
+

@

@�

�
�

S
 

S + �

F
 

F
�����
E

1

�

�2+

+R

�
 

F +
p
F

�
F
J
S�1

�  

S
� �

S @ 
S

@�
S

�2

� 0: (3.16)

This completes the general thermodynamical construction of the two component

thermoporoelastic model.

In more general cases of multicomponent systems solely partial results on thermo-

dynamical admissibility are available [6, 3].

Further in this work use as well the Eulerian description. The local balance equa-

tions and the thermodynamical results presented above have in this description the

following form in a generic point x 2 fS (B; t)

mass balance

@�
S
t

@t

+ div
�
�

S
t v

S
�

= �̂

S
t ;

@�
F
t

@t

+ div
�
�

F
t v

F
�
= ��̂

S
t ;

�

S
t := �

S
J

S�1
; �

F
t := �

F
J

S�1
; �̂

S
t := �̂

S
J

S�1
;

vS := �xS
�
fS�1 (x; t) ; t

�
; vF := �xF

�
fS�1 (x; t) ; t

�
; (3.17)

and the operator div as well as grad in the following relations concern the Eulerian

di�erentiation with respect to x,

momentum balance

�

S
t

�
@vS

@t

+ vS � gradvS
�

= divTS + p̂St � �̂

S
t v

S
; (3.18)

TS := J

S�1PSFST ; p̂St := J

S�1p̂S;

�

F
t

�
@vF

@t

+ vF � gradvF
�

= divTF
� p̂St + �̂

S
t v

F
;

TF := J

S�1PFFST ;
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energy balance

�

S
t

�
@"

S

@t

+ vS � grad "S
�
+ �

F
t

�
@"

F

@t

+ vF � grad "F
�
+ div

�
qS + qF

�
=

= TS
� gradvS +TF

� gradvF+

+ �̂

S
t

�
"

F
� "

S
�

1

2

�
vF � vS

�
�

�
vF � vS

��
+
�
p̂St � �̂

S
t v

S
�
�

�
vF � vS

�
;

qS := J

S�1FSQS
; qF := J

S�1FSQF
;

(3.19)

balance of porosity

@�

@t

+ vS � grad� + J

S div
�
'

�
vF � vS

��
= n̂: (3.20)

Apart from the mass sources we need solely linear constitutive laws, and these have

the form

partial Cauchy stress tensors

TS = TS
0 + �

SeS � 11+ 2�SeS + ��1;

TF =
�
�p

F
� ��

�
1; p

F = p

F
0 + �

�
�

F
t � �

F
0

�
;

� :=
@

@�

�
�

S
t  

S + �

F
t  

F
�����

�=0

'; (3.21)

where TS
0 ; p

F
0 ; �

F
0 denote reference values of the Cauchy stress in the skeleton, partial

pressure in the �uid, and the partial mass density of the �uid, respectively, �S; �S; �

are Lamé parameters of the skeleton, and the compressibility parameter of the �uid,

respectively, and they may still be dependent on a reference porosity n0; the small

deformation of the skeleton eS is as follows

eS :=
1

2

�
1� FS�TFS�1

�
;



eS

 := max
���
�

(1)
��
;

��
�

(2)
��
;

��
�

(3)
���
;



eS

� 1; (3.22)

�
(a)
; a = 1; 2; 3 being the eigenvalues (principal stretches) of eS,

internal energies

"

S = "

S
�
�

S
t ; e

S
;�;�

�
; (3.23)

"

F = "

F
�
�

F
t ;�;�

�
;

where the dependence on � is even, and at most quadratic,

9



the intrinsic heat �ux

qS + qF = �{ grad�; { � K�; (3.24)

the porosity source, and the equilibrium porosity

n̂ = �
�

�

; nE = nE

�
�
F
t

�
S
t

�
; e.g. nE = n0

�
F
t

�
F
0

�
S
0

�
S
t

: (3.25)

We skip here easy proofs of the above relations.

4 Mass exchange, adsorption

Macroscopic processes of mass exchange between components of mixtures of �uids,

and solids belong to one of the three fundamental classes: phase changes, chemical

reactions or adsorption/desorption processes. Within the �rst two classes the ex-

change of mass is accompanied by thermal e�ects due to the presence of a latent

heat of reaction. The processes of the last class can be considered to be isothermal,

for instance for a small concentration of adsorbate.

We skip here the presentation of phase changes. Let us only mention that theories

of both di�usionless phase changes as well as these with di�usion (e.g. phase �eld

theories) develop recently very vehemently.

Continuum models of di�usion processes with mass exchange are developed very well

for mixtures of �uids. There is very little done for porous, and granular materials.

Some work was done on combustion problems, and most of the results are based on

the classical model of M. A. Goodwin and S. C. Cowin [7] (e.g. [8]). Di�culties

are connected with the coupling of di�usion, and heat conduction. Particularly in

processes in which one has to account for multiple temeperatures there is barely a

progress at all.

In this work we limit our attention to adsorption processes and present a construction

of the mass source contribution to mass balance equations of a three component

continuous model of porous materials.

Adsorption belongs to the most important problems of practical bearing within

theories of porous, and granular materials. This is connected primarily with a

very large internal surface per unit volume in such materials on which the mass

exchange takes place. For example in sandstones it reaches the value of 1:5 �
105m

2

m3 in comparison with 6m
2

m3 for their external surface. This property is used in

many technological processes. For instance in the growth of SiC single crystals by

sublimation the vapour of silicium �ows through a porous graphite wall in which it

forms various carbite connections. A charcoal granular materials is also used in gas

masks. Lungs, many �lters and chemical reactors are made of porous materials for

the same reason.
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The model of such a mass exchange between a �uid component, and a solid in

porous, and granular materials is based on the classical work of Langmuir (e.g. see

the review in [9]). In the original works of Langmuir the theory of adsorption was

limited to �at solid surfaces interacting with a gas. However for porous materials

whose pores are large - their diameter is greater than app. 500 Å = 50 nm - one

can still rely on the assumption that the in�uence of the curvature of the surface is

small.

On the microscopic level of description of porous, and granular materials we rely

on the assumption that particles of the adsorbate change their kinematics from

�uid to solid due to a weak van der Waals interaction with internal surfaces of the

skeleton (a solid component of the system). The transfer of particles from the �uid

component to the internal surface of the solid depends on a partial pressure of the

�uid adsorbate, on an area of this surface, and on a number of available bare sites

on this surface. The physical interpretation of the latter depends on the nature of

adsorption processes on internal surfaces. On the macroscopic level (i.e. averaged

over the representative elementary volume (REV ) of a porous or granular material)

the normalized fraction of these sites per unit volume is denoted by 1 � x, i.e. x

is the fraction of occupied sites. If the area of the internal surface contained in the

representative elementary volume is denoted by fint, and the mass of adsorbate per

unit area of the internal surface by mA then the amount of mass which is already

adsorbed in the representative elementary volume is equal to the product mA
xfint.

Let us denote by V the volume of the representative elementary volume. Then the

amount of mass of adsorbate transfered in unit time from the liquid phase to the

solid skeleton is given by the balance relation

�̂

A
t = �m

Ad (xy)

dt

; y :=
fint

V

; (4.1)

where �̂At denotes the intensity of mass source per unit time, and unit macroscopic

volume in the current con�guration.

In order to construct the model we have to specify the rates in this relation.

For dx
dt

we assume that changes of the fraction x are described by the Langmuir

relation

dx

dt

= a (1� x) pA � bxe

�
Eb

k� ; (4.2)

where pA denotes the partial pressure of the adsorbate in the �uid phase, Eb is

the energy barrier for particles adsorbed on the solid surface due to the van der

Waals interaction forces, and it is assumed to be constant, a, and b are material

parameters which within the present model may depend solely on the temperature,

k is the Boltzmann constant, and � is the absolute temperature. In the case of full

phase equilibrium we obtain from the equation (4.2) the following relation for the
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fraction of occupied sites

x = xL :=

pA

p0

1 + pA

p0

; p0 :=
b

a

e

�
E
b

k� ; (4.3)

which de�nes the so-called Langmuir isotherm. It begins in the origin pA

p0
= 0 with

the zero value of occupied sites and saturates at the value 1 for pA

p0
! 1. At

any given partial pressure pA the fraction x is uniquely determined, and it may

change its value if we vary the pressure. This corresponds to a slow transition

from one thermodynamical equilibrium to another one. In reality such processes are

conducted through nonequlibrium states which are described by the rate equation

(4.2) and are connected with the dissipation.

In the mass source (4.1) we have also another contribution connected with the

change of the internal surface. Consequently we must formulate a relation for the

rate dy
dt
. We make the assumption that changes of the internal surface are coupled

with dissipative changes of the porosity n which in turn describe relaxation processes

of semimacroscopic changes of the volume of skeleton. This seems to be appropriate

in processes of small deformations of the skeleton with accompanying small changes

of the equilibrium porosity nE. Then their in�uence on changes of internal surface

can be neglected as being of the higher order than dissipative changes.

First of all let us notice that for su�ciently smooth internal surfaces of porous,

and granular materials with a random geometry of pore spaces a change of an

average characteristic linear dimension of the internal surface, and this of pores in

the elementary representative volume can be assumed to be proportional: Æf
1

2

int �

Æ (nV )
1

3 . Simultaneously dissipative changes of the porosity are given by a source

n̂ which describes the intensity of these changes per unit time and volume of the

porous material. Bearing the above assumption in mind we obtain immediately

1

y

dy

dt

= &

n̂

n

; (4.4)

where the proportionality factor & is assumed to be constant for the purpose of this

work.

Obviously in a thermodynamical phase equilibrium n̂ � 0, and the equilibrium frac-

tion x is connected with the partial pressure pA through the relation (4.3). Then the

mass source (4.1) vanishes identically. The behavior of the continuous model based

on the above assumptions has been checked on a simple bench-mark homogeneous

problem [10]. It was found that results are indeed qualitatively in agreement with

observations.

We present here the set of �eld equations which cover much more extensive class

of problems. In particular we can describe couplings of adsorption and di�usion as

12



well as we can incorporate boundary conditions on permeable boundaries which are

characteristic for the majority of practical problems.

We use the Eulerian description of the system in which mass densities are referred to

the current con�guration. Then for the mass density of the skeleton, the �uid carrier

of the adsorbate, and the adsorbate in the liquid state we have for x 2 fS (B; t) ;
t 2 T

�

S
t := �

S
J

S�1
; �

F
t := �

F
J

S�1
; �

A
t := �

A
J

S�1
: (4.5)

We consider solely isothermal processes. According to these remarks we have to

determine the following �elds

�
�

S
t ; �

L
t ; c;v

S
; eS;vF � vA; n; x; y

	
; �

L
t := �

F
t + �

A
t ; (4.6)

where the concentration c is de�ned by the relation

c :=
�
A
t

�
F
t + �

A
t

� 1: (4.7)

Inspection of the list (4.6) reveals that the model contains, in addition to usual

�elds describing multicomponent systems, three microstructural �elds: �; x; y. The
�rst one describes changes of the microstructural geometry, and the remaining two

- exchange of mass related to both energetic properties of the microstructure (the

number of occupied sites x), and the geometry (the fraction of the internal surface

y).

The velocity of the third component does not appear because the adsorbate in the

�uid phase moves with the same velocity as the other �uid component. Therefore

we use only two momentum balance equations, for the skeleton and for both �uid

components together.

Field equations follow from three mass balance equations, two momentum balance

equations, the balance equation of porosity, integrability condition for the deforma-

tion of the skeleton, and two evolution equations for two additional microstructural

variables. They have the form

mass balance

@�
S
t

@t

+ div
�
�

S
t v

S
�

= ��
L
t ĉ;

@�
L
t

@t

+ div
�
�

L
t v

F
�
= �

L
t ĉ;

@c

@t

+ vF � grad c = (1� c) ĉ; ĉ :=
�̂

A
t

�
L
t

= �
m
A

�
L
0

d (xy)

dt

; (4.8)
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momentum balance

@�
L
t v

F

@t

+ div
�
�

L
t v

F

 vF + p

L1
�
+ �

�
vF � vS

�
= 0

�

S
t

@vS

@t

= divTS + �

�
vF � vS

�
; (4.9)

porosity balance

@�

@t

+ ' div
�
vF � vS

�
= �

�

�

;

where

TS = TS
0 + �

S tr eS1+2�SeS + ��1; (4.10)

p

L = p

L
0 + {

�
�

L
t � �

L
0

�
+ ��; p

F = (1� c) pL; p

A = cp

L
;

with material parameters '; �S; �S;{; �; � being constant. They depend paramet-

rically on the constant initial porosity n0. In addition we have

integrability condition

@eS

@t

= symgradvS; (4.11)

evolution equations for microstructural variables

d ln y
y0

dt

= �&
�

nE

; y (t = 0) = y0 �
fint (t = 0)

V

;

dx

dt

=
1

�ad

�
(1� x)

cp
L

p0

� x

�
; x (t = 0) =

c0p
L

0

p0

1 +
c0p

L

0

p0

; (4.12)

�ad :=
1

b

e

Eb

kT ; c0 := c (t = 0) :

Again the material parameters &; p0; �ad are assumed to be constant.

General results for this system of equations have not been obtained as yet. How-

ever some important particular problems have been solved under the assumptions of

negligible accelerations, and a negligible explicit time dependence of porosity. Their

discussion can be found in the Ph-D Thesis of B. Albers [9], and subsequent publi-

cations [11, 12, 13]. We quote here solely the most important conclusions of these

works.
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Investigation of a one dimensional �ow of an ideal liquid through a poroelastic lin-

ear material has shown that the rate of adsorption depends on the magnitude of the

relative velocity. This dependence is nonmonotonous. The rate is small for either

small or very large relative velocities, and there appears a maximum of the rate at

an intermediate velocity. Both position of this maximum as well as its amplitude

depend on the time lapse from the beginning of the adsorption process. It has been

also found out that an in�uence of changes of internal surface is limited to a very

small neighbourhood of the initial instant of time. This is understandable as the

relaxation time of porosity is much smaller than this of adsorption. Simultaneously

it has been con�rmed that an intensity of adsorption processes coupled to di�usion

depends on the surface permeability which controls the relative velocity in the sys-

tem. In the work in progress similar results seem to follow from a numerical analysis

of a two dimensional problem.

5 Interfaces, ideal walls, boundary conditions

5.1 Introduction

Properties of interfaces in multicomponent systems with di�erent kinematics of com-

ponents are much more involved than these following from dynamical compatibility

conditions of the usual continuum thermodynamics. This is related to the existence

of boundary layers in transition regions between a porous body, and a neighbouring

system (e.g. a �uid component �owing through a permeable boundary of the porous

body to the exterior or another porous body with, maybe, di�erent number of com-

ponents which is the case if it is, for instance, not fully saturated). Boundary layers

are replaced in the present model by singular surfaces, and these, as a consequence

of these properties, must possess a structure of its own replacing gradients of �elds

in transition regions. This is the reason for introducing surface sources on mate-

rial surfaces (interfaces of the skeleton) as we indicated in Section 2. We proceed

to improve this motivation, and to investigate consequences of such improved con-

ditions on the construction of thermodynamical properties of �elds and boundary

value problems.

One of such problems appears in a physical interpretation of the temperature. We

limit the attention to the single temperature �eld common for all components as the

problem for systems with multiple temperatures does not have a solution as yet.

The classical thermodynamical argument concerning the interpretation of the tem-

perature is as follows. If we bring together two thermodynamical systems each of

them being in the state of thermodynamical equilibrium, and the contact surface

admits solely a nonmechanical �ux of energy between them (i.e. the mechanical

working of one system on the other is not allowed) then we say that these two

systems are in thermodynamical equilibrium with each other if this nonmechanical

�ux vanishes. By constructing equivalence classes of such systems we introduce an

15



empirical temperature as a scalar-valued function on the set of all systems which is

the same for the systems in a thermodynamical equilibrium with each other. The

classical considerations of the integrability of Gibbs equaltion lead then to the no-

tion of the absolute temperature as a special choice of an empirical temperature.

This argument is transferred to systems in which solely local thermodynamical equi-

libria appear. However, we can indeed consider local equilbria on interfaces if we

can prove the continuity of the temperature in globally nonequilibrium processes.

Such an argument is based in single component systems on dynamical compatibility

conditions. Namely on a material surface of such a system the global energy, and

entropy balances yield the continuity of the normal component of the heat �ux, and

of the entropy �ux. Consequently, if these two �uxes are related to each other by a

classical proportionality relation with the proportionality factor being equal to the

inverse of the absolute temperature then it follows that the temperature must be

continuous as well. Consequently if one of the systems is identi�ed with a thermome-

ter we can measure the temperature by the contact through the interface, and we

can control the temperature on the boundary if we want to construct the boundary

value problem for the heat conduction.

In the case of multicomponent systems permeable interfaces are not material for

some components, and, consequently, partial heat and entropy �uxes are not contin-

uous. The question arises if we can still use the classical argument on the continuity

of the temperature, and, consequently, if we can construct boundary value problems

in terms of the temperature for the heat conduction in such systems. We proceed

to investigate this question.

5.2 Compatibility conditions on an interface

We consider a smooth orientable surface �, material with respect to the skeleton,

i.e.

	(X) = 0; X 2 B; N :=
Grad	

jGrad	j
(5.1)

where N is the unit normal vector specifying the positive and negative sides of the

surface �. In its current con�guration, this surface is described by the equation

 (x; t) := 	
�
fS�1(x; t)

�
= 0; x 2 fS(B; t)

(5.2)

i.e. n :=
grad 

j grad j
=

FS�TN

jFS�TNj
; u = �xS � n;

with n being the unit normal vector, and u is the normal speed of propagation of

the image � := fS(�; t). The vector n is well de�ned due to the relation

��
J

SFS�TN
��
= 0;

��
: : :

��
:=

�
: : :

�+
�

�
: : :

�
�

; (5.3)
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which follows from the smoothness assumption. The brackets
�
: : :

�+
,
�
: : :

�
�

denote

the positive and negative �nite limits on the surface �.

Let us consider the balance equations reduced to this surface.

Mass balance

According to (2.6) in the absence of mass sources the jump of the mass density of

skeleton [[�S ]] is not limited by the balance equations, and the jump of the mass

density of the �uid must ful�l the condition

8X2�

��
�

F �XF
��
�N = 0 =) 8x2�

��
�

F
t (v

F
� vS)

��
� n = 0: (5.4)

The latter relation in the current con�guration shows that the mass �ow of the �uid

through the interface is continuous. The interface does not contain sinks.

Momentum balance

Due to the presence of surface sources in (2.8) we obtain in X 2 �

��
PSN

��
� p̂Ssurf = 0;

�
�

F �XF
�N

���
�xF
��
=
��
PF

��
N+ p̂Fsurf ; (5.5)

or, in the Eulerian description, for x 2 �

��
TSn

��
+ p̂

S
surf = 0; p̂

S
surf := J

S�1
��FS�TN���1p̂Ssurf

�
�

F
t (v

F
� vS) � n

���
vF
��
= �

��
p
F
��
n + p̂

F
surf ; p̂

F
surf := J

S�1
��FS�TN���1p̂Fsurf

(5.6)

where we have used the constitutive assumption that the �uid is ideal (see: (3.12),

(3.21)2), i.e.

PF = J

STFFS�T � �J
S
p
FFS�T ; p

F := p

F + ��: (5.7)

Relation (5.6)2 motivates the necessity of the surface sources of momentum. It

has been argued (e. g. [3, 14, 15, 9]) that the boundary conditions on permeable

boundaries of skeleton should follow from the bulk momentum balance

�
�

F �XF
�N

���
�xF
��
�

��
PF +PS

��
�N

�����
�

= 0 (5.8)

and from the �ow condition for the �uid

�

F �XF
�N

�����
�

= �0

��
J

S�1P
F
� FS

n

�������
�

=)

=) �

F
t

�
vF � vS

�
� n

�����
�

= �

�
p

F�
�
n
�

n
+
p

F+

������
�

;

� :=
3�0
n
�

�
N �CS�1N

�
�1=2

;

(5.9)
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�XF
� �XF

�NN

�����
�

= 0; (5.10)

where � is the so-called surface permeability coe�cient. The condition (5.10) is

characteristic for ideal �uids, and, if needed, can be replaced by a Beavers-Joseph

type of a condition for the slip motion. In such a case the constitutive law for

the partial stress TF must be modi�ed in order to include shear stresses (e.g. due

to viscosity of the �uid component). Condition (5.9) states that the amount of

�uid mass which �ows through a permeable boundary is driven by the discontinuity

of the pressure. It has been assumed that for relatively slow processes the pore

pressure can be described by the simple relation p = pF

n
. Relation (5.9)2 can be

easily motivated on theoretical grounds. If one assumes that in a thin transition

layer near the interface � a simple Darcy law holds true

�n grad
p
F

n

� �(vF � vS) = 0; (5.11)

then

�
F
t hni

�L

��
p
F

n

��
� �

F
t (v

F
� vS) � n; hni := 1

2
(n+ + n

�); (5.12)

where L is the thickness of the boundary layer. Relation (5.12) coincides, of course,

with (5.9)2 if � := �F
t
hni

�L
.

In the case of thermodynamical equilibrium we have �XF
� N

���
�
= 0 and relations

(5.6)2, and (5.9)2 imply

��
p

F
��
+ p̂

F
surf � n

�����
�

= 0;

��
p
F

n

�������
�

= 0: (5.13)

Consequently, if the source p̂Fsurf �n
���
�
were zero the porosity n had to be continuous.

This, certainly, cannot be the case.

The presence of the surface source of momentum can be easily understood in semimi-

croscopical terms. Various values of the surface permeability coe�cient � yield a

di�erent distribution of the total load between solid and �uid components which

is exerted by subbodies on each other through the interface �. Hence the partial

pressure pF cannot be continuous on �.
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Energy balance

Bearing the global balance equations (2.10) in mind we obtain for X 2 �

��
QS

��
�N

�����
�

=
��
PS
��
N � �xS

�����
�

� �p̂Ssurf �
�XS

�����
�

;

�

F �XF
�N

��
"

F + 1
2
�xF2

��
+
��
QF

��
�N

�����
�

=
��
(PFN) � �XF

�������
�

:

(5.14)

The second condition can be easily transformed to the following form

�

F �XF
�N

��
"

F + 1
2
(�xF � �xS) � (�xF � �xS)

�������
�

+
��
QF

��
�N

�����
�

=

=
��
(PFN) � (�xF � �xS)

�������
�

� p̂Fsurf � �x
F

�����
�

;

(5.15)

where the momentum condition (5.5)2 has been used. Consequently the bulk energy

transport through the interface � can be written in the form

��
QS +QF

��
�N

�����
�

= ��
F �XF

�N

��
"

F
� J

S p
F

�
F
+ 1

2
(�xF � �xS) � (�xF � �xS)

�������
�

; (5.16)

where the relation (5.7) has been applied. It is clear that the heat �ux (QS+QF ) �N
is not continuous on permeable boundaries.

Entropy balance

The global partial entropy balance equations

8P - S-material :
d

dt

Z
P

�

S
�

S
dV +

I
@P

HS
�NdA =

Z
P

�̂

S
dV +

I
@P

�̂

S
surfdA;

(5.17)

8P - F-material :
d

dt

Z
P

�

F
�

F
dV +

I
@P

HF
�NdA =

Z
P

�̂

F
dV +

I
@P

�̂

F
surfdA

yield for the interface

��
HS

��
� Nj� = �̂

S
surf ; (5.18)

�

F �XF
�N

��
�

F
����

�
+
��
HF

��
� Nj� = �̂

F
surf :

Hence the intrinsic bulk transport of the entropy through the interface satis�es the

relationhh
HS +HF + �

F
�

F �XF
ii
�N

���
�
= �̂

S
surf + �̂

F
surf : (5.19)
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We combine this result with the relation (5.16) for the intrinsic bulk transport of

energy. Bearing relation (3.10)1 in mind we obtain

�

F �XF
�N

��
"

F
� J

S p
F

�
F
� ��F

������
�

=

= � [[�]]
D
HS +HF + �

F
�

F �XF
E
�N

���
�
+ �̂

S
surf + �̂

F
surf ; (5.20)

where 2 h� � � i = (� � � )+ + (� � � )�, i.e. it is an average value on the interface, and we

neglected the quadratic contribution of the relative velocity. This is justi�ed as the

relation (3.10)1 was derived under the assumption of the small deviation from the

state of thermodynamical equilibrium.

In the classical thermodynamics the problem of continuity of the absolute tempera-

ture is considered on the so-called ideal walls (see: I. Müller [im1]). The existence of

ideal walls is required if we want temperature to be a measurable quantity1. Then

entropy productions on such a surface are zero. If we make this assumption for

the interface � then the absolute temperature � is continuous on this surface if it

is either impermable or if the Gibbs free energy of the �uid component (chemical

potential) is continuous

��
�

F
��

= 0; �

F := "

F
� J

S p
F

�
F
� ��F : (5.21)

This condition seems to be plausible because the density of the true Gibbs free energy

of the �uid component �FR is approximately equal to �F due to the relation between

the true mass density �FR, and the partial mass density �F : �F = n�
FR. Hence the

assumption on a local thermodynamical equilibrium yielding the continuity of �FR

leads to the continuity of �F .

The above considerations show that processes arbitrarily deviated from the state of

thermodynamical equilibrium yield problems with the operational de�nition of tem-

perature. In such processes one cannot expect that surface entropy sources vanish.

They are most likely of the second order in nonequilibrium variables, and, conse-

quently remain in the jump condition. The requirement of continuity of the true

chemical potential is not ful�lled either because one has to account for convective

contributions in both energy, and entropy jump conditions.

We complete the considerations for interfaces material with respect to the skeleton

with the analysis of porosity equation. From (2.11) we obtain easily

hh
'J

S �XF
�N

ii
� �

F �XF
�N

��
'

�
F
J
S�1

��
= n̂surf ; (5.22)

1Another example of such a wall for the transport of mass rather than energy is the semiper-

meable membrane of the mixture of �uids on which the chemical potential is continuous.
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where relation (3.11) has been used.

Obviously the above relation could not be satis�ed on an interface between two

di�erent porous materials for which [[']] 6= 0 if the initial porosity of both bodies

was di�erent, and the surface source of porosity was zero. Note that quantities

appearing on the left hand side are all speci�ed either by the initial conditions or

by a solution of �eld equations. On the other hand �eld equations do not contain

contributions of n̂surf . Consequently relation (5.24) can be considered to be the

de�nition of this source.

Let us mention in passing that surface sources p̂Ssurf ; n̂surf are not needed for consis-

tency of the model if the surface is not material, e.g. in the case of shock waves. In

those cases the usual dynamical compatibility conditions yielding Rankine-Hugoniot

conditions preserve their validity. The presence of sources is strictly related to a

material change of microstructure on an interface between two di�erent porous ma-

terials.

6 Conclusions

New results presented in this work concern two topics: a relation between partial

�uxes of heat, and entropy following from the second law of thermodynamics, and

relations on permeable interfaces separating a porous material from a single compo-

nent system or a di�erent porous material.

We have shown that the assumption on small deviations from thermodynamical

equilibrium, i.e.

max
n
kGk ;




�XF



 ; k�ko� 1; (6.1)

where the norms are chosen as supremum norms on B�T , yields an explicit answer

to the �rst question in the following form

HS +HF =
QS +QF

�
; J = 'J

S �XF
; (6.2)

where QS +QF is independent of �XF , and J is independent of G.

Under the same assumption, and under the condition of local equilibrium of the

�uid component on interfaces (i.e. the continuity of the chemical potential of the

�uid component) we have shown that the absolute temperature is continuous on

such interfaces.

These results allow to extend the model of poroelastic materials which has been

investigated in earlier contributions to nonisothermal processes.

Apart from these two important results we have shown that the couplings between

two components reduce also in a considerable manner under the condition of small
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deviations from the state of thermodynamical equilibrium. Namely we have shown

that partial Cauchy stresses in the skeleton cannot depend on the current mass

density of the �uid, and, vice versa, partial Cauchy stresses in the �uid depend

solely on the current partial mass density of the �uid, and on the deviation of

porosity �, but not on deformations of the skeleton. It means that in the linear

simpli�ed version of the model we do not obtain the Biot's multicomponent model of

porous materials. However, in spite of some claims in the literature, this di�erence

has solely a quantitative in�uence on properties of weak discontinuity waves, but

it does not in�uence either the number of modes or their basic properties. This

was in a way expected if one inspected carefully the analysis of wave propagation

in mixtures of �uids. In the case of so-called ideal mixtures (no interaction terms

in partial free energies) the number of modes remains the same as in the case of

interacting mixtures, and only the speeds of propagation change a little.

Finally let us note that there is an indication that mass exchange processes yield

their own contributions to stresses in the skeleton independent of the deformation.

Namely in contrast to the �uid, for which the de�nition of the chemical potential

contains the partial pressure divided by the mass density pF

�F JS�1
, the chemical poten-

tial coupled to mass source for the skeleton contains the contribution �S @ 
S

@�S
, rather

than � trTS

3�SJS�1
which would be a usual partial pressure contribution in the skeleton.

It means that the presence of mass exchange yields additional stress e�ects in the

skeleton which would appear even in the case of lack of deformations of the skeleton.

7 Appendix: Evaluation of the entropy inequality

In this Appendix we evaluate solutions of the local entropy inequality. As usual in

thermodynamics �eld equations are considered to be constraints imposed on the class

of smooth solutions of the inequality. These constraint conditions are eliminated by

Lagrange multipliers [16, 5]. Hence we have for all su�ciently smooth �elds (2.5)

�

S @�
S

@t

+ �

F @�
F

@t

+ �

F �XF
�Grad �F +Div

�
HS +HF

�
�

��S
@�

S

@t

� �F
�
@�

F

@t
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where the multipliers �S;�F ;�F
;�vS

;�vF
;�";�n are constitutive functions contin-

uously di�erentiable with respect to constitutive variables almost everywhere on the

domain B � T .

We have replaced the �eld of motion of the skeleton fS by the �eld of deformation

gradient FS , and the �eld of velocity �xS. Then the new �elds must satisfy the

following compatibility conditions in almost all points of the domain B

@FS
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= Grad �xS; GradFS =
�
GradFS

�23T
: (A.2)

We account for the �rst condition in the same way as we do in the case of all other

�eld equations, while the second one shall be directly substituted in thermodynam-

ical relations.

It is easy to see that application of constitutive relations (3.3) yields a linearity of

the above inequality with respect to the following derivatives
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spatial derivatives
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: (A.4)

This means that coe�cients of these derivatives must vanish identically, and we

obtain the following set of relations determining Lagrange multipliers
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in the case of coe�cients of time derivatives, and the identities limiting constitutive

relations
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as well as implicit relations for partial stresses
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in the case of coe�cients of spatial derivatives.

There remains the residual inequality which determines the dissipation D
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We have made use of local balance equations for sources.

Apparently the dissipation D has the minimum in the state in which it is zero.

Such a state is called the state of thermodynamical equilibrium. It appears if all

three sources �̂S; p̂S; n̂, and the temperature gradient G are zero. For su�ciently

smooth constitutive relations it means that D must be at least of the second order

with respect to deviations from this state, and these are described by the gradient

G again, the di�erence of chemical potentials of both components whose prototype

appears as a coe�cient of the mass source in (A.8), the relative velocity represented

by the Lagrangian velocity �XF
� FS�1

�
�xF � �xS

�
, and by the deviation of the

porosity n from its equilibrium value nE:

� := n� nE; nE = nE (CE) ; CE :=
�
�

F
; �

S
;FS;�

	
(A.9)

The constitutive relation for the equilibrium porosity nE contains solely those con-

stitutive variables whose values in the state of equilibrium are di�erent from zero.
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This structure indicates simpli�cations for processes with small deviations from the

state of thermodynamical equilibrium.

Substitution of the de�nition (A.9) in the balance equation of porosity (2.12)7 yields

@nE

@t

= 0;
@�

@t

+DivJ =n̂; (A.10)

provided the deviation � is small. We have used the fact that the source of porosity

must vanish in the state of thermodynamical equilibrium.

Bearing the constitutive relation for nE in mind we obtain

�
@nE

@�
S
�
@nE

@�
F

�
�̂

S +
@nE

@FS
�
@FS

@t

+
@nE

@�

@�

@t
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where we have applied mass balance equations in the case �XF = 0 (equilibrium!).

The �rst term in this relation vanishes in equilibrium, and, consequently, nE can be

an arbitrary function of mass densities. On the other hand, neither @FS

@t
nor @�

@t
are

identically zero in equilibrium, and they may have locally arbitrary values. Conse-

quently their coe�cients being independent of those derivatives must be identically

zero, and we �nally obtain

nE = nE

�
�

S
; �

F
�
: (A.12)

Dimensional analysis leads then to the conclusion that the equilibrium porosity nE
is solely a function of the fraction �F

�S
.

Let us return to the problem of deviations from equlibrium. By means of the de�-

nition (A.9) we can specify the assumption that these deviations are small:

1. All constitutive quantities appearing in �eld equations must be at most linear

functions of the constitutive variables G; �X
F
;�:

2. The dissipation D may contain at most quadratic contributions of the consti-

tutive variablesG; �X
F
;�: Partial energies, and entropies do not depend onG,

and �XF but they may contain a quadratic contribution of �. This exception
is related to the structure of dissipation due to the relaxation of porosity.

We use also the assumption that the system is isotropic.

Inspection of the dissipation inequality shows immediately that under these assump-

tions both n̂, and �n must be linear homogeneous functions of �, i.e.

n̂ = �
�

�

; �n = �n1�; � = � (CE) ; �n1 = �n1 (CE) ; (A.13)
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The form of these relations has been chosen for convenience in the further analysis.

Simultaneously due to relations (A.5) we obtain

�vS = �vF = 0: (A.14)

Bearing relations (A.5)4 (A.13)2 in mind we see that the contribution of � to ener-

gies, and entropies must be quadratic, and such that multipliers �S;�F , and �" are
independent of �:

The above assumption yields as well the following representations for vector �uxes
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: (A.15)

Substitution of these relations in (A.6) yields the following set of identities
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4. �H� + �"K� � �n1��� = 0; (A.164)
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with the relation containing derivatives with respect to n of thermal components

of �uxes identically satis�ed. According to the above assumption we account only

for the �rst order contributions with respect to �XF , G, and �. This concerns also
identities following from (A.163) after simplifying with respect to �XF , and G.

The relations for stresses become now true constitutive relations

�"PS = ��F
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FS�T ; (A.17)

and the residual inequality has the form
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It is clear that the approximation made above cannot admit mixed terms of this

form as the �rst contribution to the above inequality. Hence we have in addition
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The relation (A.164) indicates that�� = 0: The same relation together with (A.161;2;3)

yields that �" depends solely on the temperature �. Then the classical argument

for the state of equilibrium gives

�" =
1

�
: (A.20)

The structure of the multiplier �n given by (A.13) indicates that the partial energies
and entropies may contain solely terms independent of � or quadratic in �.

Now it is convenient to introduce the following notation

 

F = "

F
� ��F ;  

S = "

S
���S; (A.21)
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F , and  

S are, of course, the prototypes of Helmholtz free energies. These are

constitutive quantities as well. We substitute them in the above relations after

presenting another simpli�cation.

Namely it is easy to show that it is compatible with the above thermodynamical

structure to require the following condition to hold

Hv =
1

�
Kv: (A.22)
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�v = 'J

S
; ' = const;

and

Kv = ��F
�
@ 

F

@�
+ �

F

�
: (A.24)

In thermodynamics of single component materials the right hand side of this relation

is identically zero. It may also be the case in the present model but the second law

of thermodynamics does not impose this condition.

Let us summarize the results. Apart from the constitutive relations (A.23) for free

energies which should be in addition quadratic with respect to � we have

QS +QF = �
�
HS +HF

�
= �K�G+Kv

�XF
; (A.25)

with Kv given by (A.24). Simultaneously

J = 'J

S �XF
; ' = const: (A.26)

2The analogous result has been obtained for isothermal conditions in my earlier works (e.g.[3])

under the assumption of constant equilibrium porosity nE . This assumption is not made in this

work, and, consequently, the result for ' should be understood as a dependence on an initial value

of the equilibrium porosity. This is a consequence of the assumption that processes deviate little

from the thermodynamical equilibrium
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Partial stresses are given by the relations
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The residual inequality de�ning the dissipation has the form
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where due to the assumption on small deviations from equilibrium the quadratic

contribution of the relative velocity to the mass source was neglected.

As usual in linear nonequilibrium thermodynamics we assume sources to be propor-

tional to their conjucated forces, and, consequently, due to the isotropy we have
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S @ 
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S

�
; (A.30)

where �, and R are phenomenological coe�cients.

This completes considerations of the local thermodynamical admissibility.
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