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Abstract

We extend the theory of vibrational stabilizability to systems with fast

and slow variables. The mathematical tools for establishing corresponding

results are the persistence theory of normally hyperbolic invariant manifolds,

the averaging theory and appropriate transformations. At the same time we

introduce modi�ed concepts of vibrational stabilizability compared with the

'classical' de�nitions.

1 Introduction

Vibrational control is an open-loop control strategy to modify the dynamical prop-

erties of a system by introducing fast oscillations with small amplitude into the sys-

tem under consideration [10]. Compared with feedback or feedforward control, this

method is in some sense unconventional since it does not need online-measurements

of states, outputs and disturbances. A well-known example for vibrational control

is the inverted pendulum that can be stabilized by vertically oscillating the pendu-

lum pin at a su�ciently high frequency and small amplitude. The corresponding

mathematical model reads

dx1

dt
= x2;

dx2

dt
= [c1 � a!2c3 sin!t] sinx1 � c2x2;

(1.1)

where x1 is the angular displacement measured from the inverted equilibrium po-

sition, x2 is the angular velocity, c1; c2; c3 are positive physical constants, a is the

amplitude and ! the frequency of the applied vibration. >From the representation

(1.1) it follows that the applied control can be viewed as a variation of the parameter

c1.

If we horizontally oscillate the pendulum pin of the inverted pendulum, then we get

the system
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dx1

dt
= x2;

dx2

dt
= c1 sinx1 � a!2c3 sin!t cos x1 � c2x2:

(1.2)

Here, the applied control cannot be viewed as a parameter oscillation, and the origin

is not more an equilibrium point.

If we introduce the notation

" := 1=!; a = �"; (1.3)

then system (1.1) can be written in the form

dx1

dt
= x2;

dx2

dt
= c1 sinx1 � c2x2 +

c3�

"
sin(

t

"
) sin x1:

(1.4)

It is well-known [1, 10, 14] that the coordinates x1 and x2 of (1.4) can be stabilized

near x1 = x2 = 0 for su�ciently small " and �2 > 2c1=c
2
3
(that is the frequency !

and the amplitude a are su�ciently small).

Concerning system (1.2) we can prove that only the coordinate x1 can be stabilized

near x1 = 0 (partial stabilization) under the same conditions.

Using (1.3), systems (1.1) and (1.2) can be represented in the form

dx

dt
= f(x) +

1

"
U(x; �;

t

"
); (1.5)

where U is T -periodic in the last argument. By introducing the fast time � by t = "�

we get from (1.5)

dx

d�
= "f(x) + U(x; �; � ); (1.6)

where U is T -periodic in � .

First contributions towards a theory of vibrational control are due to S.M. Meerkov

(see [10] for linear systems) and R.E. Bellmann, J. Bentsman and S.M. Meerkov (see

[2, 3] for systems a�ne linear in the applied control).

Important applications of the method of vibrational control are the stabilization of

plasmas [12], lasers [11], chemical reactors [2, 6].
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In what follows we extend the theory of vibrational control to systems with slow and

fast state variables where we apply the control to the slow components. In section 2

we describe the class of control systems under consideration and introduce modi�ed

de�nitions of vibrational stabilizability compared with the 'classical' de�nitions.

Section 3 contains the reduction of our control problem to some normal form by

means of normally hyperbolic invariant manifolds and appropriate transformations.

In section 4 we derive conditions for strongly vibrational stabilizability and illustrate

our result analytically by means of a linear singularly perturbed system. In the last

section we treat the case of partial vibrational stabilizability and demonstrate it by

considering the singularly perturbed van der Pol system.

2 Formulation of the problem.

We are given a process containing slow and fast variables and which can be described

by the singularly perturbed di�erential system

dz

dt
= X(z; y);

"
dy

dt
= Y (z; y);

(2.1)

where " is a small positive parameter. Concerning the functionsX and Y we suppose

(A1): X : G ! Rn; Y : G ! Rm
are twice continuously di�erentiable where G is a

neighborhood of the origin in Rn
�Rm

.

(A2): (x = 0; y = 0) is an equilibrium point of (2.1) that is possibly unstable.

Our goal is to apply a vibrational control to (2.1) such that the controlled system

has an attracting invariant manifold whose projection into the z; y-phase space is a

compact set near the origin.

Let Gn be a neighborhood of the origin in Rn. We denote by U the set of all functions

U : Gn
� R ! Rn which are twice continuously di�erentiable with respect to all

arguments and T -periodic in the second argument.

In the sequel we consider control systems of the type
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dz

dt
= X(z; y) +

1

"
U(z;

t

"
);

"
dy

dt
= Y (z; y);

(2.2)

where " is a small parameter and U belongs to the set U . (The case that U is almost

periodic in the second argument can be treated in the same way.) It is clear that

(z = 0; y = 0) is not necessarily a stationary solution of (2.2).

By means of the fast time � we may rewrite (2.2) as

dz

d�
= "X(z; y) + U(z; � );

dy

d�
= Y (z; y):

(2.3)

De�nition 1. We call the equilibrium point (z = 0; y = 0) of system (2.1) strongly

vibrationally stabilizable if to any Æ > 0 there are a su�ciently small positive number

"0 and a function U 2 U such that for 0 < " � "0 system (2.3) has an exponentially

attracting T -periodic solution (zp(�; "); yp(�; ")) satisfying jzp(�; ")j � Æ; jyp(�; ")j � Æ

for all � .

Remark. This de�nition of vibrational stabilizability di�ers from the de�nition in-

troduced by Meerkov and others [3] as follows: In [3] it is required that only the

average of the periodic solution (zp(�; "); yp(�; ")) is located in a Æ-neighborhood of

the origin, and it is assumed that the time-average of the control is zero.

De�nition 2. We call the equilibrium point (z = 0; y = 0) of system (2.1) weakly

vibrationally stabilizable if to any Æ > 0 there are su�ciently small positive numbers

"0; Æ0 and a function U 2 U such that for 0 < " � "0 the solution of (2.3) starting

for � = 0 at any point in a Æ0-neighborhood of the origin exists for all � � 0 and

stays for all � in a Æ-neighborhood of the origin.

In singularly perturbed systems the slow variables usually play a special role. There-

fore, we introduce the concept of vibrational stabilizability with respect to the vector

z of slow variables.

De�nition 3. We call the equilibrium point (z = 0; y = 0) of system (2.1) strongly
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vibrationally stabilizable with respect to the slow variable z if to any Æ > 0 there are

a su�ciently small positive number "0 and a function U 2 U such that system (2.3)

has for 0 < " � "0 an exponentially attracting T -periodic solution (zp(�; "); yp(�; "))

with the property jzp(�; ")j � Æ for all � .

De�nition 4. We call the equilibrium point (z = 0; y = 0) of system (2.1) weakly

vibrationally stabilizable with respect to the slow variable z if to any Æ > 0 there

are su�ciently small positive numbers "0; Æ0 and a function U 2 U such that for

0 < " � "0 the following properties hold:

(i) any solution (�z(�; z0; y0); �y(�; z0; y0)) of (2.3) starting for � = 0 at a point (z0; y0)

in a Æ0-neighborhood of the origin exists for all � � 0.

(ii)The inequality j�z(�; z0; y0)j < Æ holds for all � > 0.

Our aim is to �nd a vibrational control U(z; � ) stabilizing the equilibrium point

(z = 0; y = 0) of (2.1). To this purpose we �rst derive conditions on U and Y

implying that we can reduce system (2.3) to a system in some normal form to

which the method of averaging can be applied in order to prove the existence of an

attracting periodic solution near the origin.

3 Reduction to some normal form

The �rst step in our reduction process consists in eliminating the term U(z; � ) in

the �rst equation of (2.3) by means of an appropriate coordinate transformation.

To this end we assume:

(A3): To any Æ > 0 there is a Æ1 > 0 and a function U 2 U such that the di�erential

system

d�

d�
= U(�; � ) (3.1)

has the �rst integral � = h(�; c) where h is periodic in � , and jh(�; c)j � Æ for jcj � Æ1.

The assumption that the image of h is in a small neighborhood of the origin is im-

portant for establishing the stabilizability property.

As examples for (3.1) we consider the simple cases U(�; � ) � a cos � where we have
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jh(�; c)j := ja sin � + cj � jaj+ jcj, such that for jaj � Æ=2 and jcj � Æ1 = Æ=2 it holds

jh(�; c)j � Æ; and U(�; � ) � cos � z where jh(�; c)j = jcesin� j � ejcj.

The solution h(�; :) of (3.1) represents for all � a di�eomorphism and can be used

to introduce a new variable x by

z = h(�; x): (3.2)

By hypothesis (A3) we get from (3.2), (3.1) and (2.3)

dz

d�
= U(z; � ) +

@h

@x

dx

d�
= " X(h(�; x); y) + U(z; � ):

Thus, we have

dx

d�
= "

�@h
@x

�
�1

(�; x)X(h(�; x); y);

dy

d�
= Y (h(�; x); y):

(3.3)

The right hand side of (3.3) is periodic in � , hence we consider system (3.3) in the

extended phase space Rn
�Rm

� S1.

For " = 0 we get the system

dx

d�
= 0;

dy

d�
= Y (h(�; x); y):

(3.4)

In the next step we will reduce system (3.3) to a system containing only slow vari-

ables by means of a compact exponentially attracting invariant

manifold. To this purpose we assume

(A4). To any Æ > 0 there is a neighborhood Gn

x
of the origin in Rn

such that for

x 2 Gn

x
the di�erential system

dy

d�
= Y (h(�; x); y) (3.5)

has an exponentially attracting T -periodic solution y = p0(�; x) with the properties

(i) p0 is di�erentiable with respect to x.
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(ii) p0 satis�es jp0(�; x)j � Æ=2.

Remark 1. Assumption (A4) implies that �0 := f(x; y; � ) 2 Gn

x
� Rm

� S1 : y =

p0(�; x)g is a compact normally hyperbolic invariant manifold of system (3.4) [7, 15].

Remark 2. Assumption (A1) does not imply that (3.4) has only one exponentially

attracting invariant manifold. But it is clear that exponentially attracting invariant

manifolds cannot intersect each other.

Remark 3. Under the hypotheses (A1) � (A4) the equilibrium point (z = 0; y = 0)

of system (3.4) is weakly vibrationally stabilizable. This follows immediately from

the property that (x = c 2 Gn

x
; y = p0(�; x)) is a solution of (3.4).

According to the theory of normally hyperbolic invariant manifolds they persists

under small perturbations [7, 15]. Thus we have

Theorem 1 Under the assumptions (A1) � (A4) there exists a su�ciently small

positive "0 such that for 0 � " � "0 system (3.3) has a compact exponentially

attracting invariant manifold �" := f(x; y; � ) 2 Gn

x
� Rm

� S1 : y = p(�; x; ") =

p0(�; x) +O(")g where p is T -periodic in � and has the same smoothness as X.

Our aim is to prove the existence of an asymptotically stable T -periodic solution of

system (3.3). Since �" is an exponentially attracting invariant manifold of (3.3) it is

su�cient to consider system (3.3) on the manifold �" that is, we study the system

dx

d�
= "

�@h
@x

�
�1

(�; x)X(h(�; x); p(�; x; ")): (3.6)

4 Existence of a small asymptotically stable T - pe-

riodic solution

Equation (3.6) can be written in the form

dx

d�
= "

�@h
@x

�
�1

(�; x)X(h(�; x); p0(�; x)) +O("2): (4.1)

Since the right hand side of (4.1) is T -periodic in � we use the averaging theory

to prove the existence of a T -periodic solution of (4.1). To this end we have to
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introduce the following assumption. Let

X0(x) :=
1

T

Z
T

0

�@h
@x

�
�1

(�; x)X(h(�; x); p0(�; x))d�:

(A5): X
0(x) = 0 has a solution x = x0 with jx0j � Æ1=2. The spectrum of the Jaco-

bian A := X0
x
(x0) is located in the left half plane.

Then, applying the fundamental theorem of the theory of averaging [5, 13] we have

the following result.

Theorem 2 Assume the assumptions (A1) � (A5) are valid. Then, there exists a

su�ciently small positive "1 such that for 0 < " � "1 system (4.1) has an exponen-

tially attracting periodic solution x = q(�; ") located in an Æ1-neighborhood of the

origin.

Under the assumptions of Theorem 2 it follows that for 0 < " � "1 (z = h(�; q(�; ")); y =

p(�; q(�; "); ")) is an exponentially attracting periodic solution of system (2.3) satis-

fying jh(�; q(�; "))j+ jp(�; q(�; "); "))j < 2Æ. Thus, we have

Corollary 1 Under the assumptions of Theorem 2 the equilibrium point (z = 0; y =

0) of system (2.1) is strongly vibrationally stabilizable.

We illustrate our result by considering the following singularly perturbed linear

system

dz

dt
= az + by;

"
dy

dt
= z � y

(4.2)

with a+ b > 0; 0 < "� 1. Hence, the equilibrium point (z = 0; y = 0) is a saddle

that is, an unstable equilibrium. We want to apply a high frequency control to the

slow variable z in the �rst equation in order to stabilize the system near the origin.

The corresponding control system has the form

dz

dt
= az + by +

1

"
cos

� t
"

�
z;

"
dy

dt
= z � y:

(4.3)
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Introducing the fast time � we get from (4.3)

dz

d�
= "(az + by) + cos � z;

dy

d�
= z � y:

(4.4)

Using the coordinate transformation

z = esin �x

we get from (4.4)

dx

d�
= "(ax+ bye� sin �

);

dy

d�
= esin � x� y:

(4.5)

If we consider x as a parameter in the second equation in (4.5), then to given x this

equation has a unique 2�-period solution y0(�; x) := p0(� )x where p0(� ) is de�ned

by

p0(� ) :=
e��

e2� � 1

h Z 2�

0

e�+sin�d� + (e2� � 1)

Z
�

0

e�+sin�d�
i
: (4.6)

It is easy to check that y0(�; x) is exponentially stable and that

�0 := f(x; y; � ) 2 Gn

x
�Rm

� S1 : y = p0(� )xg (4.7)

represents a compact exponentially attracting invariant manifold of system (4.5) for

" = 0. Therefore, hypotheses (A1)� (A4) are satis�ed and for su�ciently small " we

get by Theorem 1 that (4.5) has a compact normally hyperbolic invariant manifold

�"

�" := f(x; y; � ) 2 Gn

x
�Rm

� S1 : y = p(�; ")x = (p0(� ) + p1(� )"+ :::)xg;

where p is 2�-periodic in � . On �" (4.5) reads

dx

d�
= "(a+ bp(�; ")e� sin �

)x = "(a+ bp0(� )e
� sin �

)x+O("2): (4.8)

Using

m :=
1

2�

Z
2�

0

p0(� )e
� sin �d� � 1:29 6= 0
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the averaged equation to (4.8) has the form

dx

d�
= "(a+ bm)x:

For a + bm < 0 hypothesis (A5) is satis�ed. Consequently, by Theorem 2 system

(4.2) is vibrationally stabilizable.

5 Partial vibrational stabilizability

In the sequel we replace hypothesis (A4) by the following assumption.

(A�

4
). To any Æ > 0 there is a neighborhood Gn

x
of the origin in Rn

such that for

x 2 Gn

x
system (3.5) has an exponentially attracting T -periodic solution y = p0(�; x)

that is di�erentiable with respect to x.

Compared with assumption (A4) we do not assume that the periodic solution p0

is located in a small neighborhood of the origin. A consequence of this hypothesis

is that we are not able to guarantee that the y-component of system (2.1) can be

vibrationally stabilized near y = 0.

The following observation is obvious.

Lemma 1 Assume the hypotheses (A1) � (A3) and (A�

4) are valid. Then system

(2.1) is weakly vibrationally stabilizable with respect to the slow component z.

The following theorem can be proved in the same way as Theorem 2.

Theorem 3 Assume the assumptions (A1)� (A3); (A
�

4
); (A5) are valid. Then there

exists a su�ciently small positive "1 such that for 0 < " � "1 system (3.3) has

an exponentially attracting T -periodic solution (z = h(�; q(�; ")); y = p(�; q(�; "); "))

satisfying jh(�; q(�; "))j < Æ.

>From Theorem 3 we get immediately

Corollary 2 Under the assumptions of Theorem 3 the equilibrium point (z = 0; y =

0) of system (2.1) is strongly vibrationally stabilizable with respect to the slow com-

ponent z.
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We illustrate Theorem 3 by considering the van der Pol equation with large damping

[8]. In that case, it can be represented by the singularly perturbed system

dz

dt
= �y;

"
dy

dt
= z + y � y3:

(5.1)

It is well-known that system (5.1) has for 0 < " � 1 a unique exponentially stable

relaxation oscillation [8]. The corresponding closed curve in the (z; y)-phase plane

contains the origin as unique equilibrium point which is unstable. Our goal is a

strong vibrational stabilization of the z-component near the origin by applying an

additive high-frequency control. We consider the control system

dz

dt
= �y +

a

"
cos

� t
"

�
;

"
dy

dt
= z + y � y3:

(5.2)

Introducing the fast time � and the new coordinate x by z = x+ sin � we get from

(5.2)

dx

d�
= �" y;

dy

d�
= a sin � + x+ y � y3:

(5.3)

For jxj su�ciently small, the di�erential equation

dy

d�
= x+ y � y3

has three equilibria yx
�1 < yx0 < yx where yx

�1 and yx1 are hyperbolic stable equi-

libria which are located near �1 and 1 respectively. Consequently, for su�ciently

small jaj and jxj, the second di�erential equation in (5.3) has two T -periodic so-

lutions px
�1(� ) and px1(� ) which are exponentially attracting and satisfy jpx

�1(� ) �

yx
�1j < % and jpx1(� ) � yx1 j < % respectively, where % is a small number [9]. There-

fore, according to Theorem 3, there exists a su�ciently small "1 such that for

0 < " � "1 system (5.3) has two exponentially attracting T -periodic solutions

(x
�1(�; "); y�1(�; ")); (x1(�; "); y1(�; ")). Therefore, system (5.1) can be strongly vi-

brationally stabilized with respect to the slow component.

Note, if we want to stabilize (5.1) by the linear multiplicative control
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dz

dt
= �y +

a

"
cos

� t
"

�
z;

"
dy

dt
= z + y � y3;

(5.4)

then computer experiments indicate that the equilibrium point (z = 0; y = 0) of

(5.1) cannot be vibrationally stabilized that way.
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