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Abstract

An operator equation X = >>X +G in a Banach space E of Ft-adapted random elements

describing an initial- or boundary value problem of a system of stochastic di�erential equa-

tions (SDEs) is considered. Our basic assumption is that the underlying system consists of

weakly coupled subsystems. The proof of the convergence of corresponding waveform re-

laxation methods depends on the property that the spectral radius of an associated matrix

is less than one. The entries of this matrix depend on the Lipschitz-constants of a decom-

position of >>. In proving an existence result for the operator equation we show how the

entries of the matrix depend on the right hand side of the stochastic di�erential equations.

We derive conditions for the convergence under �classical� vector-valued Lipschitz-continuity

of an appropriate splitting of the system of stochastic ODEs. A generalization of these key

results under one-sided Lipschitz continuous and anticoercive drift coe�cients of SDEs is

also presented. Finally, we consider a system of SDEs with di�erent time scales (singularly

perturbed SDEs) as an illustrative example.

1 Introduction

The solution of complex and large scale systems plays a crucial role in recent scien-

ti�c computations. In particular, large scale stochastic dynamical systems represent

very complex systems incorporating the random appearances of physical processes in

nature. The development of e�cient numerical methods to study such large scale sys-

tems, which can be characterized as weakly coupled subsystems with quite di�erent

behavior, is an important challenge. Under some conditions, block-iterative methods

are very e�cient. One of these methods to solve large scale systems is given by the

waveform relaxation method. This method was �rst proposed by Lelarasmee, Ruehli

and Sangiovanni�Vincentelli [25] for the time-domain analysis of large scale integrated

circuits. For the waveform algorithm concerning deterministic processes and related

aspects, many research papers can be found, e.g. Bremer and Schneider [5], Bremer

[6], Burrage [7], in't Hout [12], Jackiewicz and Kwapisz [16], Jansen et al. [17], Jansen

and Vandewalle [18], Leimkuhler [23, 24], Miekkala and Nevanlinna [27, 28], Nevan-

linna and Odeh [30], Sand and Burrage [34], Schneider [35, 36, 37], Ta'asan and Zhang

[42], Zennaro [47], Zubik�Koval and Vandewalle [48], among many others.

To our knowledge, there is no application of the waveform relaxation methods to

stochastic processes in the refereed literature. In what follows we present a theoret-

ical foundation for the construction and convergence of waveform iterations applied

to systems of ordinary stochastic di�erential equations (SDEs). The attention is re-

stricted to Itô-interpreted SDEs (for original papers, see Itô [13, 14, 15], i.e. where

occurring stochastic integration is interpreted in the sense of Itô [15]. For basic as-

pects on the theory of SDEs in the spirit of Itô [13], see e.g. Anulova et al. [1], Arnold

[2, 3], Dynkin [9], Gard [11], Itô [13, 14, 15], Khas'minskij [19], Krylov [22], Mao [26],

Protter [32] and Revuz and Yor [33]. We see our main contribution in deriving bounds
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for the Lipschitz-constants of the corresponding stochastic integral operator and in

describing their dependence on the involved stochastic process.

The paper is organized as follows. In Section 2 we describe the key idea of waveform

relaxation method. Section 3 presents a proof for the existence and uniqueness of an

initial value problem for stochastic di�erential equations (SDEs) using Banach's �xed

point principle for vector-valued Lipschitz continuous random operators in random

product Banach spaces with appropriate norms. This key result can be used to derive

conditions for the convergence of the waveform relaxation method in the case of Itô

SDEs. Section 4 generalizes this idea to the case of one-sided Lipschitz-continuity

of the drift part, restricted to anticoercive drift coe�cients of SDEs. An illustrative

example is given in Section 5. Section 6 closes this contribution with some conclusions,

�nal remarks and interesting open problems.

2 The general idea of waveform relaxation methods

There are numerous initial- and boundary-value problems of di�erential equations

which can be formulated as �xed point problems. Therefore, in the following we

consider nonlinear equations of the type

x = >>x + g (1)

where >> maps the function space U into itself, and g 2 U . There are several tech-

niques to �nd appropriate conditions on the operator >> guaranteeing a unique solu-

tion x
� 2 U of system (1) and resulting in an e�cient algorithm to approximate x�.

In the case that (1) represents a network of weakly connected subsystems with quite

di�erent behavior, i.e. (1) carries the feature of a large scale system, the waveform

relaxation method is an e�cient approach to approximate x�. Its key steps can be

formulated as follows:

(i) Decomposition step: Find a suitable representation of U as a product of subspaces

U1;U2; :::;Un, i.e.

U = U1 � U2 � :::� Un ; (2)

and a corresponding splitting of >> into >>1, ... , >>n and g into g1; :::; gn such

that the �xed point problem (1) is equivalent to the system

x
(1)=>>1(x

(1)
; :::; x

(n)) + g1;

x
(2)=>>2(x

(1)
; :::; x

(n)) + g2;

::::::: :: ::::::::::::::::::::::::::::::::: (3)

x
(n)=>>n(x

(1)
; :::; x

(n)) + gn

where x
(k)
; gk 2 Uk, and >>k maps the space U into the subspace Uk for k =

1; 2; :::; n.
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(ii) Solution step: Solve the k-th subsystem

x
(k) = >>k(x

(1)
; :::; x

(k�1)
; x

(k)
; x

(k+1)
; :::; x

(n)) + gk (4)

by an appropriate procedure. Here, x(j); j = 1; 2; :::; n with j 6= k are the inputs

from other subsystems.

(iii) Relaxation step: Derive conditions such that the successive solution of the sub-

systems (4) leads to the unique solution of the large scale system.

The steps (ii) and (iii) can be combined to some �diagonalized� iteration scheme (see

Schneider [37] for details). In the case of the Gauss�Jacobi procedure

x
(1)
i =>>1(x

(1)
i ; x

(2)
i�1; x

(3)
i�1; :::; x

(n�1)
i�1 ; x

(n)
i�1) + g1;

x
(2)
i =>>2(x

(1)
i�1; x

(2)
i ; x

(3)
i�1; :::; x

(n�1)
i�1 ; x

(n)
i�1) + g2;

::::::: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: (5)

x
(n)
i =>>n(x

(1)
i�1; x

(2)
i�1; x

(3)
i�1; :::; x

(n�1)
i�1 ; x

(n)
i ) + gn

we get the diagonalized iteration scheme

x
(1)
i =>>1(x

(1)
i�1; x

(2)
i�1; : : : ; x

(n)
i�1) + g1;

x
(2)
i =>>2(x

(1)
i�1; x

(2)
i�1; : : : ; x

(n)
i�1) + g2;

::::::: :: :::::::::::::::::::::::::::::::::::::::::::: (6)

x
(n)
i =>>n(x

(1)
i�1; x

(2)
i�1; : : : ; x

(n)
i�1) + gn

which represents a block Picard iteration. To prove the convergence of (6) we assume

(H1) For k = 1; :::; n, Uk is a complete metric space with norm jj:jjk.
(H2) For k = 1; : : : ; n; >>k : U1�U2�: : :�Un ! Uk is a globally Lipschitz continuous,

nonlinear mapping, i.e.

jj>>k(x
(1)
; : : : ; x

(n))�>>k(�x
(1)
; : : : ; �x(n))jjk

� lk1jjx(1) � �x(1)jj1 + : : :+ lknjjx(n) � �x(n)jjn (7)

for all x(1); �x(1) 2 U1; : : : ; x
(n)
; �x(n) 2 Un:

Let L := (lkj); 1 � k; j � n; be the matrix of Lipschitz constants lkj of operators >>k,

k = 1; 2; :::; n.

Theorem 1 We assume the hypotheses (H1) and (H2) to be satis�ed. Under the ad-

ditional assumption that the spectral radius %(L) of matrix L is lesser than one, the

iteration scheme (6) converges in U with respect to an appropriate norm jjj:jjj (for its
de�nition, see (9) in the proof below).

PROOF. Without loss of generality we may assume that all entries of L are strictly

positive. Then, by a theorem of Perron (see [10]), the fact %(L) < 1 implies that %(L)
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is an eigenvalue of L to which an eigenfunction e with strictly positive components

e1; : : : ; en exists. From (6) and (7) we get for k = 1; : : : ; n

jjx(k)i � �x
(k)
i�1jjk � lk1jjx(1)i�1 � �x

(1)
i�2jj1 + : : :+ lknjjx(n)i�1 � �x

(n)
i�2jjn:

Hence, we have

e1jjx(1)i � x
(1)
i�1jj1 + : : :+ enjjx(n)i � x

(n)
i�1jjn

� (e1l11 + e2l21 + : : :+ enln1)jjx(1)i�1 � x
(1)
i�2jj1 + : : :

+(e1ln1 + e2ln2 + : : :+ enlnn)jjx(n)i�1 � x
(n)
i�2jjn

= %(L) (e1jjx(1)i�1 � x
(1)
i�2jj1 + : : :+ enjjx(n)i�1 � x

(n)
i�2jjn) :

(8)

Now we introduce a norm jjj:jjj in U := U1 � : : :�Un by

jjjxjjj := e1jjx(1)jj1 + : : :+ enjjx(n)jjn: (9)

Using this norm we obtain from (8)

jjjxi � xi�1jjj � %(L) jjjxi�1 � xi�2jjj:

Thus, the iteration scheme (6) is convergent in U with respect to the norm (9),

provided that %(L) < 1. �

Similar convergence results can be derived for modi�ed schemes. The iterativemeth-

ods to solve the subsystems can be applied in form of Gauss�Jacobi, Gauss�Seidel,

successive overrelaxation (SOR) or Picard iterations in general, where the related

spectral radii control the convergence of these algorithms in appropriate Banach

spaces. For example, if we replace the Gauss�Jacobi procedure (6) by the Gauss�

Seidel iteration

x
(1)
i =>>1(x

(1)
i�1; x

(2)
i�1; x

(3)
i�1; :::; x

(n�1)
i�1 ; x

(n)
i�1) + g1;

x
(2)
i =>>2(x

(1)
i ; x

(2)
i�1; x

(3)
i�1; :::; x

(n�1)
i�1 ; x

(n)
i�1) + g2;

::::::: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: (10)

x
(n)
i =>>n(x

(1)
i ; x

(2)
i ; x

(3)
i ; :::; x

(n�1)
i ; x

(n)
i�1) + gn;

then the corresponding matrix ~L = (~lk;j) of Lipschitz-constants can be determined

from the estimates

�x
(1)
i � l11�x

(1)
i�1 + l12�x

(2)
i�1 + � � � + l1n�x

(n)
i�1;

�x
(2)
i � l21l11�x

(1)
i + (l21l12 + l22)�x

(2)
i�1 + � � �+ (l21l1n + l2n)�x

(n)
i�1; (11)

::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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where �x
(k)
i = jjx(k)i � x

(k)
i�1jjk.

In the case n = 3, for the Gauss�Seidel iteration

x
(1)
i =>>1(x

(1)
i�1; x

(2)
i�1; x

(3)
i�1) + g1;

x
(2)
i =>>2(x

(1)
i ; x

(2)
i�1; x

(3)
i�1) + g2;

x
(3)
i =>>n(x

(1)
i ; x

(2)
i ; x

(3)
i�1) + g3

(12)

we obtain the matrix ~L

~L =

0
BBBBB@
l11 l12 l13

l21l11 l21l12 + l22 l21l13 + l23

l31l11 + l32l21l11 l31l12 + l32(l21l12 + l22) l31l13 + l33 + l32(l21l13 + l23):

1
CCCCCA :

Thus, %(~L) < 1 implies the convergence of the iteration scheme (12). Consequently,

Theorem 1 can be modi�ed for this iteration scheme as well. General convergence

theorems for iteration methods are also found in standard references, e.g. Zeidler

[46].

Remark 2 Theorem 1 is applicable to operators describing deterministic as well as

stochastic processes. The main problem to be tackled in applying the waveform relax-

ation method to stochastic systems consists of estimating the in�uence of stochastic

terms on the Lipschitz-constants. A �rst approach is presented in the next section.

Remark 3 It is worth noting that system (5) permits the application of multi-pro-

cessor computers (parallel computing) � a fact which renders the waveform algorithm

to be very attractive for numerical solving of large scale systems.

3 Waveform relaxation methods for SDEs

3.1 Notation and main assumptions

Let < :; : >d denote the Euclidean scalar product de�ned by < x; y >d=
Pd

i=1 xiyi

for vectors x; y in IRd, d � 1 the current dimension, and k:kd the Euclidean vector norm
in IRd. Throughout this paper Bd represents the set of all Borel-measurable sets of IRd.

Let (
;F ; IP) be a given complete probability space, and T = [0; T ] a �xed �nite time

interval. Suppose that (Ft)t2T performs a �ltration such that (
;F ;Ft2T ; IP) presents

a complete stochastic basis. In the following we consider only Ft-adapted stochastic

processes (Xt)t2T de�ned on (
;F ;Ft2T ; IP), with �nite p-th absolute moments for

all times t 2 T , where p � 1. Recall that a stochastic process is called �cadlag (a.s.)� if
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and only if all trajectories are continuous from the right side, and left hand limits exist

almost surely (with respect to probability measure IP). For more detailed information

on stochastic calculus, see e.g. Anulova et al. [1].

De�nition 4 The space Ep;d is de�ned to be

Ep;d :=

8>>>>><
>>>>>:
(Xt)0�t�T :

Xt = Xt(!) is a cadlag (a:s:) stochastic process;

Xt(!) : [0; T ]� (
;F ; (Ft)0�t�T ; IP) �! (IRd
;Bd);

Xt is Ft�adapted; IE sup0�t�T kXtkpd < +1

9>>>>>=
>>>>>;

(13)

and the space E0p;d

E0p;d :=

8>>>>><
>>>>>:
(Xt)0�t�T :

Xt = Xt(!) is a continuous (a:s:) stochastic process;

Xt(!) : [0; T ]� (
;F ; (Ft)0�t�T ; IP) �! (IRd
;Bd);

Xt is Ft�adapted; IE max0�t�T kXtkpd < +1

9>>>>>=
>>>>>;
:(14)

Proposition 5 The spaces Ep;d; E0p;d are Banach spaces with respect to the norm

kXkEp;d =

 
IE sup

0�t�T

kXtkpd
!1=p

(15)

for X 2 Ep;d or X 2 E0p;d, respectively.

PROOF. The proofs of this assertion for Ep;d and E0p;d are similar, hence we restrict

ourselves to the case of E0p;d. The fact that E0p;d is a normed linear space follows from

the linearity of IE -operation and properties of real vector norm k:kd in IRd. It remains

to show the completeness of E0p;d. Let (X(n))n2IN be a Cauchy sequence in space E0p;d.
That is, we know that

8" > 0 9n0(") 2 IN 8n;m � n0(") : kX(n) �X
(m)kE0

p;d

< " :

Let X(n) converge to X̂. Then, for all n;m � n0("), it follows that

kX̂ �X
(m)kp

E0
p;d

= IE sup
0�t�T

kX̂t �X
(m)
t kpd

� sup
n�m

 
IE sup

0�t�T

kX(n)
t �X

(m)
t kpd

!
� "

p
:
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Hence, by the Lemma of Fatou (see Bauer [5], p. 92), we get X̂ �X
(m) 2 E0p;d for all

m � n0("). Therefore

X̂ = X̂ � X
(m) + X

(m) 2 E0p;d :

Thus, the proof is completed. �

Remark 6 For p = 2, the function spaces Ep;d; E0p;d form Hilbert spaces endowed with

the naturally induced scalar product. For �xed parameters p; d, one �nds the natural

inclusion E0p;d � Ep;d.

Our goal is to study the class of Itô-interpreted stochastic di�erential equations

(SDEs) in conjunction with convergence of waveform relaxation methods. Let W 1
t ,

W
2
t , :::, W

m
t be m given independent, one-dimensional Wiener processes adapted to

the �ltration Ft. De�ne W
0
t = t for all t 2 [0; T ]. In what follows we consider the

initial value problem for the d-dimensional system of SDEs driven by the Wiener

process Wt = (W 1
t ;W

2
t , :::;W

m
t )

dXt =

mX
j=0

fj(t;Xt) dW
j
t (16)

X0 =x0(!) �xed and F0�measurable; 0 � t � T:

The main emphasis of this paper is to derive conditions on the functions fj in order

to guarantee the convergence of waveform relaxation methods to the unique solution

of (16) within the space E0p;d. For this purpose, we take into account the following

splitting of the d-dimensional system (16) into n interacting subsystems of dimension

dk

dX
(1)
t =

mX
j=0

f1;j(t;X
(1)
t ;X

(2)
t ; :::;X

(n)
t ) dW

j
t ;

dX
(2)
t =

mX
j=0

f2;j(t;X
(1)
t ;X

(2)
t ; :::;X

(n)
t ) dW

j
t ;

:::: : :::::::::::::::::::::::::::::::::::::::::: (17)

dX
(n)
t =

mX
j=0

fn;j(t;X
(1)
t ;X

(2)
t ; :::;X

(n)
t ) dW

j
t ;

(X
(1)
0 ;X

(2)
0 ; :::;X

(n)
0 )= (x

(1)
0 (!); x

(2)
0 (!); :::; x

(n)
0 (!)); 0 � t � T;

where fj = (f1j; f2j; :::; fnj)
T
; j = 0; 1; :::;m, with fkj : [0; T ] � IRd �! IRdk , d =Pn

k=1 dk, k = 1; 2; :::; n. Concerning the functions fj we assume

(A0) fj; j = 0; 1; :::;m are Lebesgue-measurable.

(A1) fkj(t; x); j = 0; 1; :::;m; k = 1; 2; :::; n are globally Lipschitz continuous in x ,

uniformly with respect to time t 2 [0; T ], i.e. there are constants L
(i)

k;j 2 IR1

7



(i = 1; 2; :::; n) such that

8(x(1); :::; x(n)); (y(1); :::; y(n)) 2 IRd1 � :::� IRdn

kfk;j(t; x(1); :::; x(n))� fk;j(t; y
(1)
; :::; y

(n))kdk �
nX
i=1

L
(k)
i;j kx(i) � y

(i)kdi

for all times t with 0 � t � T .

(A2) For k = 1; 2; :::; n; and j = 0; 1; :::;m it holds that

sup
0�t�T

inf
y2IRd

kfk;j(t; y)k � KB < +1 :

3.2 An auxiliary result on linear boundedness

In most of the references on SDEs one �nds the extra requirement of at most linear-

polynomial boundedness of their coe�cients. We shall show that this requirement can

be replaced by the much weaker one of (A2) as a consequence of requirement (A1).

For this purpose, the following auxiliary lemma is stated and proved.

Lemma 7 Assume that the function fk : [0; T ]� IRd �! IRdk satis�es the hypotheses

(V1) fk(t; x) is globally Lipschitz continuous in x, uniformly with respect to t 2 [0; T ],

i.e. it holds that

9Lk 2 IR
1 8x; y 2 IR

d kfk(t; x)� fk(t; y)kdk � Lkkx� ykd

for all times t with 0 � t � T .

(V2) sup0�t�T infy2IRd

�
kfk(t; y)k+ Lkkyk

�
< +1 for all indices k.

Then, there exists a nonnegative real constant

c0 = c0(fk) = sup
0�t�T

inf
y2IRd: kfk(t;y)kdk<+1

n
Lkkykd + kfk(t; y)kdk

o

such that

8t 2 [0; T ] 8x 2 IRd : kfk(t; x)kdk � c0(fk) + Lkkxkd:

PROOF. Suppose that the function fk = fk(t; x) satis�es hypotheses (V1) and (V2).

Now, consider any value (t; y) 2 [0; T ]� IRd with kfk(t; y)kdk < +1. One �nds the

estimate

kfk(t; x)kdk � kfk(t; y)kdk � jkfk(t; x)kdk � kfk(t; y)kdk j � kfk(t; x)� fk(t; y)kdk
�Lkkx� ykd � Lk

�
kxkd + kykd

�
;

8



using the inverse triangular inequality and Lipschitz-continuity of function f . By

algebraic rearrangements, and taking in�mum and supremum on the right side, this

implies

8t 2 [0; T ] 8x 2 IRd

kfk(t; x)kdk � sup
0�t�T

inf
y2IRd: kfk(t;y)kd

k
<+1

n
c1kykd + kf(t; y)kd

o
+ c1kxkd

where

c1 = c1(fk) = Lk :

Therefore, there exist nonnegative real constants c1 = c1(fk) and

c0 = c0(fk) = sup
0�t�T

inf
y2IRd:kfk(t;y)kd

k
<+1

n
c1(fk)kykd + kfk(t; y)kdk

o

such that

8t 2 [0; T ] 8x 2 IR
d
: kfk(t; x)kd � c0(fk) + c1(fk)kxkd ;

i.e. the linear-polynomial boundedness of globally Lipschitz continuous functions fk.�

Remark 8 The hypotheses (V1) and (V2) guarantee the linear-polynomial bounded-

ness of functions fj and fkj occurring as coe�cients of considered SDEs. The result

of Lemma 7 is trivial for functions f which are independent of time argument t (then,

(V1) implies (V2)).

3.3 On existence and uniqueness of the solution of (16)

In this subsection we present a constructive proof for the existence and uniqueness

of the solution of the Cauchy problem (16) taking into account the splitting (17). The

goal of this procedure is to extract conditions for the convergence of waveform relax-

ation methods applied to SDEs. For this purpose, we make use of the representation

of the Banach space E0p;d as the product space

E0p;d = E0p;d1 � E0p;d2 � :::� E0p;dn

with d =
Pn

k=1 dk. The spaces E0p;dk are equipped with the norm k:kE0
p;d

k

, hence they are

Banach spaces according to the Proposition 5. Later we shall introduce an appropriate

norm in E0p;d which renders E0p;d to be a Banach space (This new norm is equivalent

to the norm given by (15)).
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We de�ne the random operators >>k; k = 1; 2; :::; n by

[>>k

�
X

(1)
;X

(2)
; :::;X

(n)
�
]t = X

(k)
0 +

mX
j=0

tZ
0

fk;j(s;X
(1)
s ;X

(2)
s ; :::;X

(n)
s ) dW

j
s (18)

for allX(k) 2 E0p;dk , mapping E0p;d into E0p;dk . Then a solution of the initial value problem
(17) is understood as a solution of the system of integral equations

[>>k

�
X

(1)
;X

(2)
; :::;X

(n)
�
]t = X

(k)
t ; k = 1; 2; :::; n: (19)

Introducing the operator >> = (>>1; :::;>>n), a solution of (19) corresponds to a �xed

point of the operator >>. The proof of the following theorem relies on the contractivity

of operator >> in the product Banach space E0p;d.

Theorem 9 Let p � 1. Assume that the given functions fk;j satisfy the conditions

(A0) - (A2), and that IE kX(k)
0 kpdk < +1 for all k = 1; 2; :::; n; j = 0; 1; :::;m.

Then the initial value problem (17) has an unique, Ft-adapted and continuous (a.s.)

solution in the space E0p;d.

PROOF. The proof is carried out in two main steps. First, we shall show that the

decomposed operator >> is a mapping from the Banach space E0p;d into itself. Second,
the operator >> forms a contraction in the Banach space E0p;d with respect to appro-

priately constructed norm. Then Banach's �xed point theorem provides us with the

conclusion of Theorem 9.

Step 1 : We prove that k>>k(X)kE0
p;d

k

< +1 for X 2 E0p;d whenever the functions

fk;j(t; x) ful�ll assumptions (A0) - (A2). Thanks to auxiliary Lemma 7, we know

about the linear-polynomial boundedness of functions fkj with corresponding con-

stants c0(fkj) and c1(fkj), i.e.

8t 2 [0; T ] 8x 2 IRd : kf(t; x)kd � c0(f) + c1(f)kxkd ;

Using the latter fact, we can estimate the norm of images of operators >>k. Remember

Xt = (X
(1)
t ; :::;X

(k)
t ; :::;X

(n)
t ). We obtain

k[>>k(X)]tkpdk �
�
kX(k)

0 kdk + k
tZ

0

fk;0(s;Xs)dskdk +
mX
j=1

k
tZ

0

fk;j(s;Xs)dW
j
s kdk

�p

� (m+ 2)
p�1
�
kX(k)

0 kpdk + k
tZ

0

fk;0(s;Xs)dskpdk +
mX
j=1

k
tZ

0

fk;j(s;Xs)dW
j
s kpdk

�

� (m+ 2)p�1
�
kX(k)

0 kpdk + t
p�1

tZ
0

kfk;0(s;Xs)kpdkds +
mX
j=1

k
tZ

0

fk;j(s;Xs)dW
j
s kpdk

�

10



� (m+ 2)p�1
�
kX(k)

0 kpdk + 2p�1(tpc
p
0(fk;0) + t

p�1
c
p
1(fk;0)

tZ
0

kXskpdds)
�

+(m+ 2)p�1
� mX
j=1

k
tZ

0

fk;j(s;Xs)dW
j
s kpdk

�

� (m+ 2)p�1
�
kX(k)

0 kpdk + 2p�1tp(c
p

0(fk;0) + c
p

1(fk;0) max
0�u�t

kXukpd)
�

+(m+ 2)p�1
� mX
j=1

sup
0�u�t

k
uZ
0

fk;j(s;Xs)dW
j
s kpdk

�

� (m+ 2)p�1
�
kX(k)

0 kpdk + 2p�1T p(c
p

0(fk;0) + c
p

1(fk;0) max
0�t�T

kXtkpd)

+(m+ 2)p�1
� mX
j=1

sup
0�t�T

k
tZ

0

fk;j(s;Xs)dW
j
s kpdk

�

with appropriate constants c0(fk;0) and c1(fk;0) (see above). Using the Burkholder�

Davis�Gundy inequality and basic properties of quadratic variation of Itô integrals

with respect to Brownian motions W j
s (see Revuz and Yor [33]), there are constants

cp;k;j such that

IE sup
0�t�T

k
tZ

0

fk;j(s;Xs)dW
j
s kpdk � cp;k;j IE

0
@ TZ

0

kfk;j(s;Xs)k2dkd < W
j
;W

j
>s

1
A
p=2

= cp;k;j IE

0
@ TZ

0

kfk;j(s;Xs)k2dkds
1
A

p=2

where < M;M >s denotes the total quadratic variation of inscribed martingaleM on

[0; s]. In fact, applying the Burkholder inequality as stated in Protter [32, p. 174�175]

to continuous time, local martingales (here represented by stochastic Itô integrals)

and the constants cp;k;j can be chosen universally, e.g.

cp;k;j �
 � p

p� 1

�p  p(p � 1)

2

!! p

2

for p � 2, see also Krylov [22, p. 160�163] for an alternative estimate with p 2
(0;+1). Note that a deterministic T naturally is a Ft-stopping time and that here

fk;j(s;Xs) are bounded in the sense of norm k:kEp;d
k

, thus one has the right to apply

the Burkholder�Davis�Gundy inequality. Using this fact, returning to the estimation

of k[>>k(X)]tkpdk , taking supremum and expectation IE , one receives

k>>k(X)kp
Ep;d

k

= IE sup
0�t�T

k[>>k(X)]tkpdk
� (m+ 2)p�1

�
IE kX(k)

0 kpdk + 2p�1T p(c
p
0(fk;0) + c

p
1(fk;0)kXkpEp;d)

�

11



+(m+ 2)p�12p=2�1
� mX
j=1

cp;k;j IE

0
@ TZ

0

(c20(fk;j) + c
2
1(fk;j)kXsk2d)ds

1
A

p=2 �

� (m+ 2)
p�1
�
IE kX(k)

0 kpdk + 2
p�1

T
p
(c

p
0(fk;0) + c

p
1(fk;0)kXkpE0

p;d

)
�

+(m+ 2)p�12p=2�1T p=2
� mX
j=1

cp;k;j(c
p

0(fk;j) + c
p

1(fk;j)kXkpE0
p;d

)
�

<+1 ;

with appropriate constants c0(fk;j) and c1(fk;j) (see above), since X 2 E0p;d. That is,
the images of operators >>k cannot blow up (a.s.) at �nite times t 2 [0; T ]. Therefore,

and thanks to integral construction of operators >>k, the non-blowing up (a.s.) images

of operators >>k are continuous (a.s.) and Ft-adapted stochastic processes >>k(X) 2
E0p;dk whenever the domain element X to which the operator >>k is applied lies in

the space E0p;d, and the functions fk;j are globally Lipschitz continuous (A1). As a

consequence, the decomposed operator>> = (>>1; :::;>>n) represents a mapping from

the closed space E0p;d into itself.
Step 2 : It remains to show the property of contractivity of the operator >> with

respect to an appropriate norm of the product space E0p;d. Assume that X
(k)
0 = Y

(k)
0

(a.s.), k = 1; 2; :::; n. Set

�>>k(t) := [>>k(X
(1)
; :::;X

(n))�>>k(Y
(1)
; :::; Y

(n))](t)

for all t 2 [0; T ], and

�fk;j(s) := fk;j(s;X
(1)
s ; :::;X

(n)
s )� fk;j(s; Y

(1)
s ; :::; Y

(n)
s )

for all s 2 [0; T ]. For any �xed (X(1)
; :::;X

(n)); (Y (1)
; :::; Y

(n)) 2 E0p;d one has

k�>>k(t)kpdk �
0
@k

tZ
0

�fk;0(s)dskdk +
mX
j=1

k
tZ

0

�fk;j(s)dW
j
s kdk

1
A
p

� (m+ 1)p�1

0
@k

tZ
0

�fk;0(s)dskpdk +
mX
j=1

k
tZ

0

�fk;j(s)dW
j
s kpdk

1
A

� (m+ 1)p�1

0
@tp�1

tZ
0

k�fk;0(s)kpdkds+
mX
j=1

k
tZ

0

�fk;j(s)dW
j
s kpdk

1
A

using the triangle inequality and using the Hölder inequality several times. Recall

that under global Lipschitz-continuity of fk;j it holds that

k�fk;j(s)kpdk � n
p�1

nX
i=1

(L
(k)
i;j )

pkX(i)
s � Y

(i)
s kpdi

for p � 1. Therefore it follows that

12



k�>>k(t)kpdk � (m+ 1)p�1np�1tp
nX
i=1

(L
(k)
i;0 )

p max
0�s�t

kX(i)
s � Y

(i)
s kpdi

+(m+ 1)p�1
mX
j=1

k
tZ

0

�fk;j(s)dW
j
s kpdk

� (m+ 1)p�1np�1T p
nX
i=1

(L
(k)
i;0 )

p max
0�t�T

kX(i)
t � Y

(i)
t kpdi

+(m+ 1)p�1
mX
j=1

sup
0�t�T

k
tZ

0

�fk;j(s)dW
j
s kpdk :

Now, by taking the operation of expectation IE on both sides, this implies

k�>>kkpEp;d
k

= IE sup
0�t�T

k�>>k(t)kpdk

� (m+ 1)p�1np�1T p
nX
i=1

(L
(k)
i;0 )

pkX(i) � Y
(i)kp

E0
p;di

+(m+ 1)p�1
mX
j=1

IE sup
0�t�T

k
tZ

0

�fk;j(s)dW
j
s kpdk :

The herein occurring terms
R t
0 �fk;j(s)dW

j
s form continuous and Ft-adapted martin-

gales started at initial value 0 under the global Lipschitz-continuity (A1) of functions

fk;j and for X(k) 2 E0p;dk , where k = 1; 2; :::; n; j = 1; 2; :::;m. This can be shown in

the same way as in step 1. Using the Burkholder�Davis�Gundy inequality and basic

properties of quadratic variation of Itô integrals with respect to Brownian motions

W
j
s (see Revuz and Yor [33, p. 153]), there are constants Cp;k;j such that

IE sup
0�t�T

k
tZ

0

�fk;j(s)dW
j
s kpdk �Cp;k;j IE

0
@ TZ

0

k�fk;j(s)k2dkd < W
j
;W

j
>s

1
A

p=2

=Cp;k;j IE

0
@ TZ

0

k�fk;j(s)k2dkds
1
A

p=2

where < M;M >s denotes the total quadratic variation of inscribed martingale M

on [0; s]. As already stated, we can �nd an universal estimate of Cp;k;j arising from

the Burkholder inequality (see Protter [32, p. 174�175], as before), e.g. with

Cp;k;j �
 � p

p� 1

�p  p(p � 1)

2

!! p

2

for p � 2, which still depends on p. Note that a deterministic T naturally is a Ft-

stopping time, and �fk;j(s) are bounded in the sense of norm k:kEp;d
k

, thus one has the

right to apply the Burkholder�Davis�Gundy inequality. Using the last observations

and returning to the estimation of k�>>kkpEp;dk , we have

13



k�>>kkpEp;dk
� (m+ 1)p�1np�1T p

nX
i=1

(L
(k)
i;0 )

pkX(i) � Y
(i)kp

E0
p;di

+(m+ 1)p�1
mX
j=1

Cp;k;j IE

0
@ TZ

0

k�fk;j(s)k2dkds
1
A

p=2

� (m+ 1)p�1np�1T p
nX
i=1

(L
(k)
i;0 )

pkX(i) � Y
(i)kp

E0
p;d

i

+(m+ 1)p�1np=2
mX
j=1

Cp;k;j IE

0
@ nX

i=1

(L
(k)
i;j )

2

TZ
0

kX(i)
s � Y

(i)
s k2dids

1
A
p=2

� (m+ 1)p�1np�1T p
nX
i=1

(L
(k)
i;0 )

pkX(i) � Y
(i)kp

E0
p;di

+(m+ 1)p�1(nT )p=2
mX
j=1

Cp;k;j IE

 
nX
i=1

(L
(k)
i;j )

2 sup
0�t�T

kX(i)
t � Y

(i)
t k2di

!p=2

� (m+ 1)p�1np�1T p
nX
i=1

(L
(k)
i;0 )

pkX(i) � Y
(i)kp

E0
p;di

+(m+ 1)p�1np�1T p=2
mX
j=1

Cp;k;j

nX
i=1

(L
(k)
i;j )

pkX(i) � Y
(i)kp

E0
p;di

under Lipschitz-continuity of fk;j . Hence, by taking the p-th root, we have

k�>>kkEp;d
k

� (m+ 1)(p�1)=pn(p�1)=p
p
T

nX
i=1

ki;kkX(i) � Y
(i)kE0

p;di

where the coe�cients ki;k are given by

ki;k =
p
TL

(k)
i;0 +

mX
j=1

(Cp;k;j)
1=p
L
(k)
i;j :

Summarizing, we have the relation

0
BBBBBBBB@

k�>>1kE0
p;d1

k�>>2kE0
p;d2

::::::::

k�>>nkE0
p;dn

1
CCCCCCCCA
� (m+ 1)(p�1)=pn(p�1)=p

p
T K

0
BBBBBBBB@

kX(1) � Y
(1)kE0

p;d1

kX(2) � Y
(2)kE0

p;d2

::::::::

kX(n) � Y
(n)kE0

p;dn

1
CCCCCCCCA
;

for anyX(k)
; Y

(k) 2 E0p;dk with X
(k)
0 = Y

(k)
0 (a.s.), where the inequality sign � is under-

stood componentwise, and where K is the n� n-matrix de�ned by K = (ki;l)1�i;l�n.

Under the assumption that T is su�ciently small we can conclude that the spectral

radius %(L) of the matrix L := (m + 1)(p�1)=pn(p�1)=p
p
T K is lesser than one. Thus,
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%(L) is an eigenvalue of L to which an eigenvector (e1; :::; en) with strictly positive

components ei corresponds. Now we introduce the norm

jjjXjjjE0
p;d

:=

 
nX

k=1

ekkX(k)kp
Ep;d

k

!1=p

(20)

in the Banach space E0p;d. Then the vector-valued operator >> mapping the closed set

E0 into itself is strictly contractive with the contraction constant %(L). Consequently,

the sequence generated by iterative application of operator >> converges with respect

to norm jjj:jjjE0
p;d

of E0p;d to an unique element of E0p;d which is a solution of original

system (17). Since the norm jjj:jjjE0
p;d

of E0p;d is equivalent to the original norm k:kE0
p;d

of E0p;d, we know that the solution of system (17) also lies in the original Banach space

E0p;d.

We have seen that the operator >> is contractive in E0p;d for su�ciently small T . To

get the result for any T we have to divide the interval [0; T ] in a �nite number of

su�ciently small subintervals and to repeat the stated proof-steps successively. Thus,

the proof is completed. �

Remark 10 For p = 2, thanks to Doob's maximum inequality (see Revuz and Yor

[33]), we can choose

c2;k;j = C2;k;j = 4

in the estimation above. Following Protter [32, p. 174�175] we may apply the Burk-

holder inequality to continuous time, local martingales (here represented by stochastic

Itô integrals), and the universal estimation

max(cp;k;j; Cp;k;j) �
 � p

p� 1

�p  p(p � 1)

2

!! p

2

(21)

is established for p � 2. Krylov [22] and Mao [26] have also proved some estimates

for p 2 (0;+1).

Remark 11 To get rid of dividing the interval [0; T ] in su�ciently small subintervals

one may take weighted random norms on Banach spaces. One easily veri�es that the

appropriately weighted random norms are equivalent to the original norm (note that

we make use of deterministic weights!).

Remark 12 In the case m = 0 (i.e. no stochastic terms) with p = 1, Theorem 9

yields a convergence criterion for the case of ordinary di�erential equations (here

there is no dependence on the splitting parameter n).
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3.4 Convergence of waveform relaxation methods

The proof of Theorem 9 is based on general contraction principles and can be used

to derive a su�cient condition for the convergence of the waveform relaxation method.

If we consider the block Picard iteration as a special waveform relaxation technique

for the �xed point problem (18), then we get the following su�cient condition for its

convergence from the proof of Theorem 9.

Theorem 13 Assume the hypotheses of Theorem 9 hold. De�ne L = (lik) by

lik := (m+ 1)
(p�1)=p

n
(p�1)=p

p
T

�p
TL

(k)
i;0 +

mX
j=1

(Cp)
1=p
L
(k)
i;j

�

with corresponding universal constants Cp occurring at the right hand side of the

Burkholder�Davis�Gundy inequality (or substituted by estimates as in (21)).

Then %(L) < 0 implies the convergence of the waveform relaxation algorithm based

on the block Picard iterations (6) for the initial value problem (16) in the Banach

space U = U1 � U2 � � � � � Un with norm jjj � jjj de�ned by (20), where Uk = E0p;dk .
If we modify this algorithm with Gauss�Seidel iterations (10) applied to the initial

value problem (16), then the condition %(~L) < 0 implies its convergence with respect

to corresponding norm jjj � jjj.

PROOF. For the completion of the proof, it only remains to determine the matrix

of Lipschitz-constants L. These constants can be extracted from the last steps of the

proof of previous Theorem 9 directly. Finally, one applies Theorem 1 to establish the

claimed convergence with respect to the speci�cally constructed norm of U . �

4 The case of one-sided Lipschitz continuous and anticoercive drift

The conditions for convergence of waveform relaxation methods can be relaxed as

follows. The global Lipschitz-continuity of drift coe�cients of SDEs is replaced by

local one, but, additionally, the one-sided Lipschitz-continuity and anticoercivity of

the drift is required. We shall combine the idea of monotonicity of coe�cients of SDEs,

as indicated by Krylov [21, 22] for the analytical solution, and as used by Bremer [6]

for the convergence of waveform relaxation methods for ODEs.

De�nition 14 A function f0 : [0; T ]� IRd �! IRd
is said to be (uniformly) one-sided

Lipschitz continuous if for the splitting f0 = (f1;0; :::; fk;0; :::; fn;0)
T
there are constants

L̂
(k)
i;0 2 IR1(i; k = 1; 2; :::; n) such that

(A3) 8x = (x(1); :::; x(n)); y = (y(1); :::; y(n)) 2 IRd1 � :::� IRdn

< fk;0(t; x
(1)
; :::; x

(n)) � fk;0(t; y
(1)
; :::; y

(n)); x(k) � y
(k)

>dk�
nX
i=1

L̂
(k)
i;0 kx(i) � y

(i)k2di
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for all t 2 [0; T ]. A function f : [0; T ]� IRd �! IRd
is called (uniformly) anticoercive

if it satis�es

(A4) 9ca 2 IR1 8t 2 [0; T ] 8x 2 IRd : < f(t; x); x >d � ca

�
1 + kxk2d

�
:

4.1 On existence and uniqueness of the solution of (16)

One encounters the following result. Assume measurebility (A0) of all coe�cients

fj.

Theorem 15 Fix an exponent p � 2. Let the drift function f0 = f0(t; x) be local and

uniformly one-sided Lipschitz continuous (i.e. (A3) holds), and the di�usion functions

fk;j = fk;j(t; x); j = 1; 2; :::;m; k = 1; 2; :::; n satisfy the conditions (A1) of global

Lipschitz-continuity and boundedness (A2). Additionally, assume that f0 possesses

the property (A4) of uniform anticoercivity, and IE kX(k)
0 kpdk < +1; k = 1; 2; :::; n.

Then the initial value problem (16) has an unique, Ft-adapted and continuous (a.s.)

solution in the space E0p;d.

PROOF. Again, the proof is carried out in two main steps. First, we shall show

that the decomposed operator >> is a mapping from the Banach space E0p;d into itself.
Second, the operator >> forms a contraction in the Banach space Ep;d with respect to

an appropriately constructed norm. Then standard �xed point principles provide us

with the conclusion of Theorem 15.

Step 1 : Obviously, the existence of the unique solution of system (17) in any ball of

IRd with �nite radius r > 0 follows from the proof of Theorem 9 while assuming local

Lipschitz-continuity of the components of f0. That is that we can justify the unique

solvability of the stopped system

dX
r
t = �fsup0�s�t kX

r
skd<rg

(t)

mX
j=0

fj(t;X
r
t ) dW

j
t (22)

in the space E0p;d, where �f:g(t) represents the characteristic function of the subscribed

set f:g evaluated at time t. HereXr
t denotes the solution of the system (22) truncating

the system (16) such that the solutions Xr
t of (22) and Xt of (16) coincide up to the

�rst exit time from the ball of radius r. It remains to show an aposterori estimate of

the sequence (Xr)r>0 of local and continuous (a.s.) solutions Xr of truncated system

(22) such that its uniform limit uniquely exists in E0p;d as the radius r tends to in�nity.
Using the well-known Itô formula, the local Lipschitz-continuity and anticoercivity

(A4) of drift coe�cient f0 and the Lipschitz-continuity (A1) of di�usion coe�cients

fk;j of the considered system of SDEs (17), one recognizes that the stopped solution

processes Xr
t must satisfy

kXr
t kpd = kXr

0kpd +
mX
j=0

tZ
0

Lj
�
kXr

skpd
�
dW

j
s
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with the operators Lj originating from the Itô formula. Thus, we have

L0
�
kxkpd

�
= p g(x)kxkp�2d ;

g(x)=< f0(t; x); x >d +
1

2

mX
j=1

kfj(t; x)k2d +
p � 2

2

mX
j=1

< fj(t; x); x >
2
d

kxk2d

� < f0(t; x); x >d +
p� 1

2

mX
j=1

kfj(t; x)k2d ;

Lj
�
kxkpd

�
= p < fj(t; x); x >d kxkp�2d � p kfj(t; x)kdkxkp�1d

where x 2 IRd and j = 1; 2; :::;m. For technical reasons, at �rst assume that we

have IE jjXr
0 jj2pEp;d < +1. Taking the supremum, taking into account the uniform anti-

coercivity (A4) of drift f0 and the linear-polynomial boundedness of globally Lipschitz

continuous di�usion functions fj(j = 1; 2; :::;m) under condition (A2), and using the

elementary inequality

(c0 + c1kxk2)kxkp�2 � c0 + (c0 + c1)kxkp

(a slightly more e�cient estimate by application of the Hölder inequality would also

be applicable here with (c0 + c1kxk2)kxkp�2 � c0
2
p
+ (c0

p�2

p
+ c1)kxkp) implies that

kXrkpEp;d � IE kXr
0kpd + p IE sup

0�t�T

tZ
0

�
ca(f0)(1 + kXr

sk2d) +

+
p� 1

2

mX
j=1

(c0(fj) + c1(fj)kXr
skd)2

�
kXr

skp�2d ds

+

mX
j=1

IE sup
0�t�T

tZ
0

Lj(kXr
skpd)dW j

s

� IE kXr
0kpd + pT

�
ca(f0) + (p� 1)

mX
j=1

c
2
0(fj)

�

+p
�
ca(f0) + (p� 1)

mX
j=1

(c20(fj) + c
2
1(fj))

� TZ
0

IE kXr
t kpddt

+p2
p
2

mX
j=1

0
@ IE

TZ
0

(c20(fj) + c
2
1(fj)kXr

t k2d)kXr
t k2p�2dt

1
A

1=2

� IE kXr
0kpd + pT

�
ca(f0) + (p� 1)

mX
j=1

c
2
0(fj)

�

+p
�
ca(f0) + (p� 1)

mX
j=1

(c20(fj) + c
2
1(fj))

� TZ
0

IE kXr
t kpddt
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+p2
p
2

mX
j=1

0
@pTc0(fj) + (c0(fj) + c1(fj))

� TZ
0

IE kXr
t k2pdt

�1=21A

for all radii r > 0, where we have also applied Doob's maximum inequality to the

occurring stochastic integrals (as in the proof above). Note that ca(f0) represents the

constant of anticoercivity (A4) of drift function f0 and c0(fj); c1(fj) the constants

of linear-polynomial growth of globally Lipschitz continuous di�usion functions fj,

respectively. Now, one can show that

TZ
0

IE kXr
t kpdt � T sup

r>0

sup
0�t�T

IE kXr
t kp < +1

and

TZ
0

IE kXr
t k2pdt � T sup

r>0

sup
0�t�T

IE kXr
t k2p < +1

by applying Dynkin's formula (see Dynkin [9] or Khas'minskij [15]) to the functionals

IE kXr
t kpd and IE kXr

t k2pd , respectively, while supr>0 IE kXr
0k2pd < +1. After that step

and using Gronwall�Bellman inequality, one �nds

lim
r!+1

kXrkEp;d � sup
r>0

kXrkEp;d < +1 :

Now, by use of standard localization procedures, one may relax the assumption

IE jjXr
0 jj2p < +1 to the weaker requirement IE jjXr

0jjp < +1.

Thus, from uniform anticoercivity (A4) of functions fj and IE kXr
0kpd < +1, we

know that uniform limit of continuous (a.s.) stochastic processes Xr as the radius r

tends to in�nity must exist with �nite norm k:kEp;d. Therefore, by the completeness

of space E0p;d, the limit process limr!+1X
r which also solves the original system

(16) must exist, be continuous (a.s.), be Ft-adapted and have a �nite norm k:kEp;d.
Consequently, the decomposed operator >> is a mapping from Banach space E0p;d into
itself.

Step 2 : Contractivity of operator >> on the space E0p;d. Assume that X
(k)
0 = Y

(k)
0 (a.s.).

Take �X
(k)
s = X

(k)
s � Y

(k)
s for k = 1; 2; :::; n, and �Xs = Xs � Ys. Set

�>>k(t) := [>>k(X
(1)
; :::;X

(n))�>>k(Y
(1)
; :::; Y

(n))](t)

for all t 2 [0; T ], and

�fk;j(s) := fk;j(s;X
(1)
s ; :::;X

(n)
s )� fk;j(s; Y

(1)
s ; :::; Y

(n)
s )

for all s 2 [0; T ]. Fix any (X(1)
; :::;X

(n)); (Y (1)
; :::; Y

(n)) 2 E0p;d, where X
(k) 6= Y

(k)

(a.s.). De�ne
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gk(x; y) :=< fk;0(t; x)� fk;0(t; y); x
(k)� y

(k)
>dk +

1

2

mX
j=1

kfk;j(t; x)� fk;j(t; y)k2dk

+
p � 2

2

mX
j=1

< fk;j(t; x)� fk;j(t; y); x
(k) � y

(k)
>

2
dk

kx� yk2dk

� < fk;0(t; x)� fk;0(t; y); x
(k)� y

(k)
>dk +

p � 1

2

mX
j=1

kfk;j(t; x)� fk;j(t; y)k2dk

where x = (x(1); :::; x(k); :::; x(n))T ; y = (y(1); :::; y(k); :::; y(n))T 2 IRd. In the following

let [:]+ denote the nonnegative part of the inscribed expression. Then one has

k�>>k(t)kpdk =

tZ
0

L0
�
k�X

(k)
s kpdk

�
ds +

mX
j=1

tZ
0

Lj
�
k�X

(k)
s kpdk

�
dW

j
s

= p

tZ
0

gk(Xs; Ys)k�X
(k)
s kp�2dk

ds

+p

mX
j=1

tZ
0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s

� p

tZ
0

� nX
i=1

L̂
(k)
i;0 k�X

(i)
s k2di +

p� 1

2

mX
j=1

(

nX
l=1

L
(k)

l;j k�X
(l)
s k)2

�
k�X

(k)
s kp�2dk

ds

+p

mX
j=1

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

� p

tZ
0

� nX
i=1

(L̂
(k)
i;0 + n

p� 1

2

mX
j=1

(L
(k)
i;j )

2)k�X
(i)
s k2di

�
k�X

(k)
s kp�2dk

ds (23)

+p

mX
j=1

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

� p

tZ
0

� nX
l=1

[L̂
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2]+

� nX
i=1

k�X
(i)
s kpdids

+p

mX
j=1

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

� pt

� nX
l=1

[L̂
(k)

l;0 + n
p� 1

2

mX
j=1

(L
(k)

l;j )
2]+

� nX
i=1

sup
0�s�t

k�X
(i)
s kpdi

+p

mX
j=1

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

� pT

� nX
l=1

[L̂
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2]+

� nX
i=1

sup
0�t�T

k�X
(i)
t kpdi
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+p

mX
j=1

sup
0�t�T

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

using the Itô lemma applied to k�Xskpdk , triangle inequality, the Hölder inequality,

and the Lipschitz conditions (A1) and (A3), respectively. Note that the operators L0

and Lj are those operators arising at the application of Itô formula. Now, by taking

the operation of expectation IE on both sides, this implies

k�>>kkpEp;dk = IE max
0�t�T

k�>>k(t)kpdk

� pT

� nX
l=1

[L̂
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2]+

� nX
i=1

k�X
(i)kpEp;d

i

+p

0
@ mX

j=1

IE max
0�t�T

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j
1
A :

The occurring terms
R t
0 < �fk;j(s);�X

(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s form continuous and

Ft-adapted martingales started at initial value 0 under the global Lipschitz-continuity

(A1) of di�usion functions fk;j and forX
(k) 2 Ep;dk , where k = 1; 2; :::; n; j = 1; 2; :::;m.

As in proof of Theorem 9, using the Burkholder�Davis�Gundy inequality and basic

properties of quadratic variation of Itô integrals with respect to Brownian motions

W
j
s , there are constants Ĉp;k;j such that

IE max
0�t�T

j
tZ

0

< �fk;j(s);�X
(k)
s >dk k�X

(k)
s kp�2dk

dW
j
s j

� Ĉp;k;j IE

0
@ TZ

0

j < �fk;j(s);�X
(k)
s >dk j2�X

(k)
s k2(p�2)dk

d < W
j
;W

j
>s

1
A

1=2

= Ĉp;k;j IE

0
@ TZ

0

j < �fk;j(s);�X
(k)
s >dk j2k�X

(k)
s k2(p�2)dk

ds

1
A

1=2

� Ĉp;k;j IE

0
@ TZ

0

k�fk;j(s)k2k�X
(k)
s k2p�2dk

ds

1
A

1=2

� Ĉp;k;j IE

0
@ TZ

0

(

nX
i=1

L
(k)
i;j k�X

(i)
s kdi)2k�X

(k)
s k2p�2dk

ds

1
A

1=2

� Ĉp;k;j

p
n IE

0
@ TZ

0

nX
i=1

(L
(k)
i;j )

2k�X
(i)
s k2dik�X

(k)
s k2p�2dk

ds

1
A

1=2

(24)

� Ĉp;k;j

vuutn(

nX
i=1

(L
(k)
i;j )

2) IE

0
@ TZ

0

nX
i=1

k�X
(i)
s k2pdi ds

1
A

1=2
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� Ĉp;k;j

vuutnT (

nX
i=1

(L
(k)
i;j )

2) IE

 
nX
i=1

max
0�t�T

k�X
(i)
t k2pdi

!1=2

� Ĉp;k;j

vuutnT (

nX
i=1

(L
(k)
i;j )

2)

nX
i=1

IE max
0�t�T

k�X
(i)
t kpdi

= Ĉp;k;j

vuutnT (

nX
i=1

(L
(k)
i;j )

2)

nX
i=1

k�X
(i)kp

Ep;di
:

Using the last estimate and returning to the estimation of k�>>kkpEp;d
k

, we have

k�>>kkpEp;d
k

� pT

� nX
l=1

[L̂
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2
]+

� nX
i=1

k�X
(i)kpEp;di

+p

0
@ mX

j=1

Ĉp;k;j

vuutnT (

nX
i=1

(L
(k)
i;j )

2)

nX
i=1

k�X
(i)kpEp;di

1
A

under one-sided Lipschitz-continuity (A3) of fk;0. Hence, one �nds

k�>>kkEp;d
k

� p

p
p

2p
p
T

nX
i=1

k̂i;kk�X
(i)kEp;di

by taking the p-th root, where the coe�cients k̂i;k are given by

k̂i;k =
2p
p
T

nX
l=1

[L̂
(k)

l;0 + n
p� 1

2

mX
j=1

(L
(k)

l;j )
2]
1=p
+ +

mX
j=1

(Ĉp;k;j)
1=p 2p

vuutn(

nX
l=1

(L
(k)

l;j )
2) :

Summarizing the main result, we have shown the relation

0
BBBBBBBB@

k�>>1kEp;d1
k�>>2kEp;d2

::::::::

k�>>nkEp;dn

1
CCCCCCCCA
� p
p
p

2p
p
T K̂

0
BBBBBBBB@

kX(1) � Y
(1)kEp;d1

kX(2) � Y
(2)kEp;d2

::::::::

kX(n) � Y
(n)kEp;dn

1
CCCCCCCCA
;

for all X(k)
; Y

(k) 2 Ep;dk with X
(k)
0 = Y

(k)
0 (a.s.), where the inequality sign � is un-

derstood componentwise, and where the n�n-matrix K̂ is given by K̂ = (k̂i;l)1�i;l�n.

Under the assumption that T is su�ciently small, we can conclude that the spectral

radius %(L̂) of the matrix L̂ := p
p
p

2p
p
T K̂ is less than one. Thus, %(L̂) is an eigenvalue

of L̂ to which an eigenvector with strictly positive components (e1; :::; en) corresponds.

Now we introduce the norm

jjjXjjjE0
p;d

:=

 
nX

k=1

ekkX(k)kp
Ep;dk

!1=p

(25)
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in the Banach space E0p;d. Then the vector-valued operator >> mapping the closed set

E0p;d into itself is strictly contractive with the contraction constant %(L̂). Consequently,
the sequence generated by iterative application of operator >> converges with respect

to norm jjj:jjjE0
p;d

of E0p;d to an unique element of E0p;d which is a solution of the original

system (17). Since the norm jjj:jjjE0
p;d

of E0p;d is equivalent to the original norm k:kE0
p;d

of E0p;d, we know that the solution of system (17) also lies in the original Banach space

E0p;d.

We have seen that the operator >> is contractive in E0p;d for su�ciently small T . To

get the result for any T we have to divide the interval [0; T ] in a �nite number of

su�ciently small subintervals and to repeat the stated proof-steps successively. Thus,

the proof is completed. �

4.2 Convergence of waveform relaxation methods

The contractivity of operator >> can be used to establish a theorem on the conver-

gence of waveform relaxation methods. Analogous to Theorem 13 we have

Theorem 16 Assume the hypotheses of Theorem 15 are valid. De�ne L̂ = (l̂ik) by

l̂ik :=

0
@ppT

2
4pT nX

l=1

[L̂
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2]+ +

mX
j=1

Ĉp

vuutn(

nX
l=1

(L
(k)

l;j )
2)

3
5
1
A

1=p

with corresponding universal constants Cp occurring at the right hand side of the

Burkholder�Davis�Gundy inequality (or substituted by estimates as in (21)).

Then %(L̂) < 0 implies the convergence of the waveform relaxation algorithm based

on the block Picard iterations (6) for the initial value problem (16) in the Banach

space U = U1 � U2 � � � � � Un with norm jjj � jjj de�ned by (25), where Uk = E0p;dk .
If we modify this algorithm with Gauss�Seidel iterations (10) applied to the initial

value problem (16), then the condition %(
~̂
L) < 0 implies its convergence with respect

to corresponding norm jjj � jjj.

The proof of Theorem 16 is omitted since the conclusion can be extracted immediately

from the proof of Theorem 15.

4.3 Further remarks

One could think of slight improvements in the estimation of the coe�cients k̂ik from

the proof of Theorem 15 and l̂ik from the Theorem 16. For this purpose one returns

to inequalities (23) and (24), respectively. Now one can make use of the elementary

23



inequalities

nX
i=1

cik xi x
p�1
k � 1

p

nX
i=1

i6=k

cik x
p
i +

0
B@p� 1

p

nX
i=1

i6=k

cik + ckk

1
CA x

p

k

with p � 1 and

nX
i=1

cik x
2
i x

p�2
k � 2

p

nX
i=1

i6=k

cik x
p

i +

0
B@p� 2

p

nX
i=1

i6=k

cik + ckk

1
CA x

p

k

with p � 2, where cik; xi; xk are nonnegative numbers. In passing note that these

inequalities are obtained by the application of the well-known Young's inequality. Let

[:]+ denote the nonnegative part of the inscribed expression. So one would arrive at

coe�cients

(k̂ik)
p =

p
T

h�2
p

�1�Æi;k
[L

(k)
i;0 + n

p� 1

2

mX
j=1

(L
(k)
i;j )

2]+ +

+Æi;k
p � 2

2

nX
l=1

l6=k

[L
(k)

l;0 + n
p � 1

2

mX
j=1

(L
(k)

l;j )
2]+

i
+

+
p
n

h
(1 � Æi;k)

s
1

p

mX
j=1

Ĉp;k;jL
(k)
i;j + Æi;k

mX
j=1

Ĉp;k;j

�sp� 1

p

nX
l=1

l 6=k

L
(k)

l;j + L
(k)

k;j

�i

occurring at

k�>>kkEp;d
k

� (p
p
T )1=p

nX
i=1

k̂i;k k�X
(i)kEp;di ;

where Æi;k represents the Kronecker symbol. However, the evaluation of this result

leads to more complex expressions for the spectral radius of the matrix L̂ = (l̂ik) with

l̂ik = (p
p
T )1=p k̂i;k

controlling the convergence of the waveform iterations for SDEs with one-sided Lip-

schitz continuous drift part. This is the reason why we preferred to use the more

elementary estimates

nX
i=1

cik x
2
i x

p�2
k �

nX
l=1

clk �
nX
i=1

x
p
i
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with p � 2 after the inequality (23), and

nX
i=1

cik xi x
p�1
k �

nX
l=1

clk �
nX
i=1

x
p

i

with p � 1 after the inequality (24), where cik; xi; xk � 0.

The assertions of Theorems 15, 16 remain valid in case 1 � p < 2. In that case one

needs slight modi�cations in some estimations of corresponding proof-steps.

The crucial point in all generalizations with locally Lipschitz continuous coe�-

cients is to �nd an appropriate aposteriori estimation such that the limit process

limr!+1X
r, where X

r = (Xr;(1)
; :::;X

r;(n))T represents the solution of the corre-

sponding truncated system (22), cannot blow up (a.s) at �nite times. However, gener-

ically, the solutions do not lie in the original Banach space Ep;d anymore.

As a by-product, we have shown that any solution of system (16) also possesses the

property

sup
0�t�T

IE kXtk2pd < +1

under the assumptions of Theorem 15 and with initial condition IE kX0k2p < +1.

Similar assertions as in Theorem 15 can be formulated under the assumptions of

nonlinear Lipschitz-type conditions, like the Osgood�Bihari-type requirement.

De�nition 17 A drift function f0 : [0; T ] � IRd �! IRd
is said to be (uniformly)

one-sided OB-Lipschitz-continuous if there exist Lebesgue-measurable, piecewise in z

monotone functions wi : [0; T ]� IR+ �! IR (i = 1; 2; :::; n) with wi(t; z) = 0 for z = 0

and t 2 [0; T ], and for the splitting f0(t; x) = (f1;0(t; x); :::; fk;0(t; x); :::; fn;0(t; x))
T

there are constants L̂
(i)

k;0 2 IR1(i; k = 1; 2; :::; n) such that for t 2 [0; T ]

(A5) 8x = (x(1); :::; x(k); :::; x(n)); y = (y(1); :::; y(k); :::; y(n)) 2 IRd1 � :::� IRdn

< fk;0(t; x
(1)
; :::; x

(n))� fk;0(t; y
(1)
; :::; y

(n)); x(k) � y
(k)

>dk

�
nX
i=1

L̂
(k)
i;0wi(t; kx(i)� y

(i)k2di) :

A function f : [0; T ] � IRd �! IRd
is called uniformly w-anticoercive if there is a

Lebesgue-measurable, piecewise in z monotone function w : [0; T ]� IR+ �! IR with

w = w(t; z) satisfying

(A6) 9ca 2 IR
1 8t 2 [0; T ] 8x 2 IR

d
: < f(t; x); x >d � ca + w(t; kxk2d) :

Then corresponding assertions of Theorem 15 can be found and proved under the ad-

ditional assumptions of OB-Lipschitz-continuous and w-anticoercive drift functions a
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with respect to concave and Lebesgue-integrable functions wi; w, and Lipschitz contin-

uous di�usion parts bj. However, the proof is somewhat delicate and is omitted (Note

that the concavity is needed to control the stochastic terms by Jensen's inequality.).

5 An illustrative example with di�erent time scales

There are a lot of real-life processes containing several time scales. For example, a

rich class is given by biochemical processes. The presence of fast and slow variables

can be expressed by singularly perturbed di�erential equations of the type

dx

ds
= f(x; y; s);

"
dy

ds
= g(x; y; s):

(26)

By introducing the fast time t = s=" we get the system

dx

dt
= " f(x; y; "t);

dy

dt
= g(x; y; "t):

(27)

In what follows, we suppose that system (27) is randomly perturbed in its �rst com-

ponent by a stochastic term
p
"h(x; y; "t)dWt where W = (Wt)t2[0;T="] is a standard

Brownian motion. The system we obtain, which is to be understood in integral sense,

is represented in the form

dXt = "f(Xt; Yt; "t) dt+
p
"h(Xt; Yt; "t) dWt;

dYt = g(Xt; Yt; "t) dt :
(28)

The singularly perturbed di�erential equations (28) with their naturally inherited

splitting into slowly and fastly varying components form a suitable class for an applica-

tion of waveform iteration techniques. The (stochastic) waveform iteration technique

can be applied to approximate the solution of the initial value problem to (28) as

follows. First, �x some initial guess X
(0)
t for Xt, e.g. X

(0)
t = X0. Second, we compute

an approximation for the solution Y = (Yt)t2[0;T="] of the initial value problem of

dY
(k)
t = g(X

(k�1)
t ; Y

(k)
t ; "t) dt

while freezing the �rst component, for example, pathwise by deterministic numerical

methods. Afterwards, by plugging the obtained result Y
(k)
t into the �rst equation one
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solves the system

dX
(k)
t = "f(X

(k)
t ; Y

(k)
t ; "t) dt +

p
"h(X

(k)
t ; Y

(k)
t ; "t) dWt

by stochastic-numerical methods. This procedure will be repeated iteratively until a

required accuracy has been reached.

To guarantee the convergence of the waveform algorithm applied to systems (28)

one has to check the spectral radius criterion of corresponding matrix of Lipschitz-

coe�cients. Concerning the functions f; g and h, we assume that they are continuous

and globally Lipschitz continuous in x and y uniformly with respect to t, i.e.

kf(x; y; t)� f(�x; �y; t)k1�L
1
1;0kx� �xk1 + L

1
2;0ky � �yk2;

kg(x; y; t)� g(�x; �y; t)k2�L
2
1;0kx� �xk1 + L

2
2;0ky � �yk2; (29)

kh(x; y; t)� h(�x; �y; t)k1�L
1
1;1kx� �xk1 + L

1
2;1ky � �yk2

for all x; �x 2 IRd1; y; �y 2 IRd2; t 2 [0; T ], where k:ki represents the Euclidean norm in

IRdi. Taking into account L2
1;1 = L

2
2;1 = 0 we arrive at the 2 � 2 matrix L = (li;k) of

Lipschitz-constants

L = 4(p�1)=p
p
T

0
B@ ("

p
TL

1
1;0 +

p
" C

1=p
p L

1
1;1) ("

p
TL

1
2;0 +

p
"C

1=p
p L

1
2;1)p

TL
2
1;0

p
TL

2
2;0

1
CA (30)

as found at the end of the proof of Theorem 9. Recall that the constant Cp arises as

the constant on the right side of the well-known Burkholder�Davis�Gundy inequality

and can be replaced by any of their majorants, e.g.

~Cp = Cp

1

p �
vuut� p

p� 1

�p  p(p � 1)

2

!

where p � 1. Finally, the condition %(L) < 1 on the spectral radius %(L) controls

the convergence of corresponding Picard iterations. Correspondingly, the condition

%(~L) < 1 on the spectral radius %(~L) of matrix

~L =

0
B@ l11 l12

l21l11 l21l12 + l22

1
CA

guarantees the convergence of the waveform method based on Gauss�Seidel iteration

(cf. matrix ~L belonging to (12)).

We omit more detailed numerical experiments here, and leave them to the future. In

passing we note that the obtained random model is quite natural due to uncertainties

of modeling and random environmental behavior which may result from the nature
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of random vibrations. The form of factor
p
" in the random terms can be justi�ed

by physical arguments (use Dissipation-Fluctuation Theorem of Theoretical Physics)

and understood best with one-sided Lipschitz continuous and anticoercive drift terms.

6 Conclusions and remarks

This paper is an continuation of our works [35] - [41] concerning the approxima-

tion of the solution of initial value problems for systems of explicit di�erential equa-

tions. Here, we extended the standard idea of waveform iteration method to nonlinear

stochastic di�erential equations (SDEs) driven by standard Wiener processes. It turns

out that the Lipschitz-continuity of the coe�cients of SDEs is crucial to establish the

convergence of waveform relaxation methods. In particular, the Lipschitz-coe�cients

determine the length of integration intervals to which the waveform iterations are

applied (windowing techniques).

Waveform iteration methods provide an alternative approach to approximating the

solution of a system of stochastic di�erential equations. Compared with the traditional

time-incremental methods as described in [20], [29] or [43], the waveform relaxation

technique forms a global iteration scheme on a given time interval. Its e�ciency

depends on an appropriate decomposition of the large original system into weakly

interacting subsystems. These methods are particularly designed to treat very large

scale systems by parallel computations.

We have presented only some �rst theoretical foundations of waveform relaxation

methods applied to systems of SDEs. Many directions of further investigation are

possible. For example, waveform relaxation methods for some classes of stochastic

partial di�erential equations or di�erential-algebraic systems where we expect more

complicated expressions for the control of waveform iterations. An extended testing

of computational e�ciency, windowing techniques and practical implementation of

waveform relaxation methods applied to SDEs should follow our considerations. We

have not touched either the questions of numerical stability and contractivity of arising

stochastic algorithms (for a recent monograph on basic aspects of stochastic-numerical

stability theory, see [39]) nor their convergence along given functionals. Any extensions

of deterministic numerical algorithms and approximations have to be done according

to the main principles of approximation theory of stochastic processes on Banach

spaces (e.g. see [41]). For a more recent survey on numerical analysis of (ordinary)

stochastic di�erential equations, see [40].
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