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Abstract. The shape optimization of blades is a crucial step within the design cycle

of a whole turbomachine. This paper is a report on a joint project between academia

and industry leading to an e�cient solution software for this problem to be used in

the daily work of concerned engineers. The problem description and solution method,

characterized as a partially reduced SQP method, as well as numerical results are

presented.

1 Introduction

In this paper we report on a joint e�ort to alleviate the labor in designing good blade pro-

�les for turbine and compressor blades between industry and academia within a research

project4 funded by the German ministry for research and education (BMBF).

The interest in this research is focused on the determination of blade cross-sections, which

minimize the overall pressure loss. This problem is similar to the optimization of airfoil

cross-sections, for which there exists a vast body of literature. Concerning the numerical

�ow modeling, we relied on well evaluated existing technology, which is frequently used

in the design process of blades. The aim of the research is to develop a fast and reliable

optimization method based on this �ow model. In an earlier project stage we have used

a multigrid solver for a potential �ow model in [20, 19].

The requirement of a fast solution forbids the use of so-called �black box� approaches,

where an outer optimization loop iterates over the design variables only and an inner

simulation loop iterates over the state variables describing the �ow. The alternative, a si-

multaneous approach, typically requires a close coupling of the optimization aspect of the

overall algorithm with the �ow computation�essentially by incorporating the optimiza-

tion within the �ow computation, which leads to high investments in terms of manpower

for the implementation.

Here we pursue a simultaneous approach to the optimization problem but nevertheless

maintain a high level of modularity within the implementation of the optimization algo-

rithm. This is achieved by the use of a partially reduced SQP approach, which reduces

computational complexity while still being able to cope with the geometry conditions

necessary for practical implementation.

Shape optimization for airfoils has been investigated in many publications, see e.g. [12, 17].

In contrast, the optimization of blades in turbines has received much less attention

(e.g. [2]). CFD-based aerodynamic design methods can be divided into two basic cat-

egories: inverse methods and numerical optimization methods. Inverse methods derive

their name from the fact that they directly invert the goal of the �ow analysis algorithm

(typically the goal is reformulated by a boundary condition). On the one hand this leads

to rather fast algorithms which require the equivalent of 2-10 complete �ow solutions in

order to render a complete design. On the other the range of objectives treatable by this

approach is rather small and the user must be highly experienced in order to be able

to prescribe surface distributions or choose initial geometries which lead to the desired

4Project number 032741A within the funding program Hochtemperaturgasturbine/TURBOTECH,

industrial partners: ABB Mannheim, Germany and MTU Munich, Germany
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aerodynamic properties. Furthermore it is di�cult to formulate inverse methods that can

satisfy desired aerodynamic and geometric constraints.

The alternative approach of numerical optimization methods, which avoids some of the

di�culties of inverse methds, is usually believed to be computationally expensive (see e.g.

[11]). Here, we present a method which is competitive concerning computation time with

inverse methods, but on the other hand is �exible enough to easily incorporate geometric

constraints for the blade design. The partially reduced SQP approach proposed here

reveals several enhancements when compared with the reduced SQP methods suggested in

[9, 13]. Reduced SQP techniques are simultaneous optimization approaches�or methods

within the optimization boundary value problem framework [3, 5, 4], i.e. iterating over all

variables (state and in�uence) in one loop�, but share with �black box� approaches the

property that only reduced Hessians are constructed and used in the algorithm - which

results in computational gains. But other reduced approaches (as mentioned above) are

limited to optimization problems with the �ow equation as the only constraint and thus

are not able to consider additional constraints resulting, e.g., from geometrical design

restrictions. Partially reduced methods, as established in [18, 19], overcome this limitation

by incorporating the geometrical constraints into small quadratic subproblems to be solved

in each iteration. Theoretical convergence proofs for this approach have been presented

in [18]. A similar methodology has been applied to process optimization problems in

chemical engineering in [1, 22, 14].

A striking feature of the method developed in this paper is that it can be easily generalized

to working range optimization tasks, modeled as multiple setpoint optimization problems,

which are much more important for the practical use of the optimal shapes computed than

the single setpoint results, which are usually computed. The approach provides a very

natural parallelization technique, as well.

The paper is organized in the following way. Section 2 is devoted to the �ow model used.

Section 3 describes the geometry of the problem and in particular geometric constraints.

The optimization problem under investigation is formulated in section 4 together with its

multiple set point variant. A PRSQP approach adapted to the solution of the various

formulations is presented in section 5. Numerical results are given in section 6. Finally,

concluding remarks are given in section 7.

2 The �ow model

The numerical modeling of the �ow is performed by the use of the solver MISES (Mul-

tiple blade Interacting Streamtube Euler Solver) [6, 23]. Considering the state of the

art in computational methods, the most appropriate �ow description would be by three-

dimensional Navier-Stokes equations. However, their solution is still computationally

highly complex and the results are generally considered as di�ering from practical �ow

measurements by approximately the same amount as the results obtained from the compu-

tations as described brie�y below. Although the �ow in axisymmetrical turbomachinery

is three dimensional, a useful and often necessary simpli�cation for design purposes is to

approximate the �ow through a stage as a set of two-dimensional blade-to-blade prob-

lems de�ned on axisymmetrical stream surfaces�examples of them are shown in �gure
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Stream surface of

revolution viewed

along blade axis

Figure 1: Blade-to-blade �ow on a stream surface of revolution

1. Axisymmetrical through-�ow codes are used early in the preliminary design process to

de�ne circumferentially averaged conditions in one or more stages of the machine based on

initial estimates of work and loss. At the next level of design re�nement (pertaining to our

situation), the stream surface radius and spacing can be used to de�ne a set of quasi-3D

blade-to blade design problems for each stage. These allow the designer to select or design

blade pro�les at several radial stations to de�ne the complete three-dimensional rotor or

stator blade. The blade-to-blade technique works very well for most design applications,

limited in e�ectiveness largely by the estimates for boundary layer e�ects on the inner

and outer walls and by three-dimensional e�ects not accounted for with the axisymmetric

assumptions.

Instead of solving the viscous �ow directly, a zonal approach is used, where an equivalent

inviscid �ow in the interior of the computational domain is postulated using a displacement

surface to represent the viscous layer. The inner boundary is displaced outward from the

wall by the boundary layer displacement thickness Æ. The inviscid �ow is modeled by the

steady state Euler equations (here in integral form over a control volume A)Z
@A

� � v>n ds = 0; (mass)

Z
@A

� � v>n � v + p � n ds = �

Z
A

� � f dA; (momentum)

Z
@A

� � v>n �R ds = 0; (energy)

while the boundary layer �ow is modeled by integral boundary layer equations of the form

d�

ds
= F1(�; Æ; ue);

dH(�; Æ; ue)

ds
= F2(�; Æ; ue; C�);

dC�

ds
= F3(�; Æ; ue; C�):
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Here, � denotes the density, v the velocity of the �ow and p its pressure, n the unit normal

and R the stagnation enthalpy. � denotes the momentum thickness, Æ the displacement

thickness, ue the velocity at the boundary layer, C� the shear stress coe�cient and H the

energy thickness shape parameter.

Figure 2: Example for the computational grid for compressor blades.

These basic equations have to be complemented by additional coupling equations and

in�ow/out�ow boundary conditions. A complete and detailed description of the �ow

model and its discretization can be found in [23]. The discretization is performed on a

stream-line aligned structured grid as depicted in �gure 2. The grid sizes one needs for

blade design is case dependent and ranges from about 150� 20 to 300� 40.

3 Blade description and geometric constraints

The blade pro�les are de�ned in (m; �) streamsurface coordinates. From cone-coordinates

(r; z; �) for a given streamline r(z) computed by an axisymmetrical through-�ow code

these can be obtained as

m =

zZ
z0

p
(dr(�))2 + (d�)2

r(�)
; � = �� �0:

The o�set �0 is chosen so that � vanishes for the smallest z-coordinate. The streamline is

typically approximated by a straight line

r(z) = a + bz
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with appropriately chosen parameters a and b. The blade pro�les themselves are repre-

sented by quintic B-Splines in both coordinates:

m(t) :=

12X
i=1

piBi(t);

�(t) :=

12X
i=1

pi+12Bi(t);

0 � t � 1:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
B1 B6

B5

B4
B3

B2

B7 B12

B8

B9
B10

B11

t

Figure 3: B-spline basis functions

m

θ

Figure 4: B-spline example pro�le and control points
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The basis functions Bi(t) are plotted in Fig. 3, while Fig. 4 shows an example pro�le

(m(t); �(t)); 0 � t � 1, with its control points (pi; pi+12); i = 1; : : : ; 12. The basis func-

tions are chosen so that the whole spline pro�le is two times continuously di�erentiable

everywhere.

These spline pro�les are subjected to geometric constraints for two reasons:

� On the one hand there are certain geometric requirements resulting, e.g., from the

actual construction process of the blades and the necessity to cool the blades by the

use of inner air pipes.

� On the other hand geometric constraints are used to stabilize the optimization

algorithm, because otherwise intermediate blades could result, which cannot be

treated by MISES, thus aborting the overall program. Fig. 5 shows the results of

missing geometrical constraints.

initial blade

after some steps

leading edges trailing edges

Figure 5: Results of missing geometric constraints.

Some of these geometric constraints are explained in more detail to give a rough impression

on how many and what type of constraints these are.

Curvature

Curvature constraints are imposed over some regions at the leading edge and the suction

side of the blades. The extent of these regions can be chosen by the user of the optimization

program, as well as the lower and upper bounds imposed. Curvature restrictions at the

trailing edge are imposed to counteract undesirable side e�ects of angle conditions.

Trailing edge thickness

Since the blade pro�le computationally exists only as a set of discrete points, the term

�thickness� itself has to be de�ned. A practical de�nition is to de�ne it as the projection of
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a straight line between opposite points onto the normal of the sceleton curve (cf. Fig. 6).

It has turned out to be of special importance to restrict the thickness not only at the

trailing edge but also overall in some region towards the trailing edge.

x(t)

x(t)

∆t = 0.1

Figure 6: Trailing edge thickness.

Area

The area enclosed by the blade pro�le is a measure for the mechanical sti�ness of the

pro�le.

Shift of trailing edge points

In principle the endpoints of the open blade at the trailing edge can be shifted freely. But

this may lead to unrealistic results. Therefore the angle between the line connecting these

points and the normal to the sceleton line is restricted (cf. Fig. 7).

Figure 7: Shift of the trailing edges.
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Leading edge thickness

The leading edge thickness is also not a well de�ned quantity. We consider instead of this

the distance between the two control points at the leading edge. In combination with area

and curvature constraints this has been used with good results.

Blade width

The blade width is de�ned as the distance between minimal and maximal m-coordinate

(cf. Fig. 8).

Figure 8: Blade width.

Aperture angle

The angle of the aperture of the trailing edge is another means to control the shape of the

trailing edge. The quantity restricted is the di�erence between the trailing edge tangent

angle.

There are some more types of geometric restrictions mainly related to criteria which are

rather speci�c for this branch of engineering. They are considered in the optimization

procedure but a detailed discussion of them is beyond the scope of this paper. All of the

above geometric constraints are collected in the inequality

g(p) � 0; g 2 C2(R24
! R

m):

4 The optimization problems

We start out with the problem formulation

min
x;p

f(x; p); f : R
nx+np

! R

s.t. c(x; p) = 0; c : R
nx+np ! R

nx ; cx nonsingular

g(p) � 0; g : R
np ! R

ng ;

(4.1)

where x 2 R
nx ; p 2 R

np . The cost functional f denotes the total pressure loss coe�cient.

For a detailed de�nition see [23]. The equality constraint c summarizes the discretized
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�ow equations as discussed in section 2 for the �ow state variables x and the pro�le

parameters p. The condition, cx nonsingular, re�ects the fact that we assume that the

�ow equations can always be solved�which actually is an assumption, for which one has

to take care of in order to be justi�ed, as we have indicated in section 2.

That is the problem formulation for given working conditions and for one stream-surface-

wise cross section of the blade. In general turbomachine industry is much more interested

in having optimal blades for a whole range of working conditions (e.g. varying in�ow angle)

and also cross sectional shapes for various �heights� of the blade are searched for, which

are not undulating too much when put together�i.e. which possess a certain smoothness

in the third dimension. Fig. 9 shows a typical scalar curve of importance !(�) > 0 for

w

�
�̂

Figure 9: Working range weight distribution.

working conditions characterized by a vector (or a scalar) � 2 A within a range A. The

point �̂ represents the working condition in the design optimization like above. This

curve arises from empirical observations. Thus an in�nite form of the working range

optimization problem can be derived for the one-parameter family x(�) as

min
x(�);p

Z
A

!(�)f(x(�); p;�)d�;

s.t. c(x(�); p;�) = 0; 8� 2 A;

g(p) � 0:

(4.2)

After choosing an appropriate quadrature formula for the integral in equation (4.2) with

wights fwig
N
i=1 at locations f�ig

N
i=1 indicated by the bullets in �g. 9, we formulate a

corrsponding multiple setpoint problem of the form

min
x1;:::;xN ;p

NX
i=1

wif(xi; p;�i);

s.t. c(x1; p;�1) = 0;
...

c(xN ; p;�N) = 0;

g(p) � 0;

(4.3)

where now appear several state vectors xi corresponding to the working conditions �i,

but only one pro�le vector p. Note that the �i are not part of the optimization variables.
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If in addition we are interested in a stack of blade cross sections fpjg
M
j=1 , where each

pj 2 R
24 , corresponding to di�erent stream surfaces and thus stacked ontop of each other

and have a mathematical description of 3D-smoothness in the form of inequalities

h(p1; : : : ; pM) � 0; h : RM�np
! R

nh

then we come to an optimization problem formulation re�ecting the complexity and struc-

ture of the overall optimization task:

min
ffxijg

N

i=1
;pjg

M

j=1

MX
j=1

NX
i=1

wijf(xij; pj;�ij);

s.t. c(xij; pj;�ij) = 0; 8i = 1; : : : ; N; 8j = 1; : : : ;M

gj(pj) � 0; 8j = 1; : : : ;M

h(p1; : : : ; pM) � 0;

(4.4)

where everything has got an additional index j for the stream surface level.

5 The PRSQP approach

In the presentation of the partially reduced SQP method (PRSQP) used for the solution

of the optimization problems �rst we focus on problem formulation (4.1). There is a huge

di�erence in the number of state variables x correlated to the �ow and the number of

design variables p. Therefore, without the constraints g, the solution method of choice

would be a reduced SQP method within the separability framework [9, 13]. The idea of

reduced SQP methods in contrast to usual SQP methods is to use only an approximation

of the projected Hessian of the Lagrangian onto the kernel of the linearized constraint

c, instead of an approximation of the full Hessian of the Lagrangian. In order to apply

these methods, one must have a global parameterization of the kernel of all active con-

straints. In the presence of additional equality and inequality constraints, g, such a global

parameterization is hard to determine, possibly resulting in instabilities.

The partial reduction concept used here and introduced in [18, 19] is meant to overcome

these di�culties without sacri�cing the advantages of the reduction of the Hessian of the

Lagrangian. On the one hand, one uses the possible reduction in complexity by exploiting

the Null space structure of some equality constraints, but on the other hand one allows

for a convenient treatment of inequality constraints and other equality constraints. The

reduced SQP method is formulated only w.r.t. those constraints which allow for a straight

forward parameterization (c). The remaining constraints (g) are treated in the same way

as in usual SQP, but reduced on the kernel of the above constraints.

In order to clarify the presentation we �rst consider the steps of a (full) SQP method. In

each iteration of an SQP method the following QP subproblems have to be solved:

min
�xk;�pk

1
2

�
�xk;�pk

�>
Hk
�
�xk;�pk

�
+r(fk)>

�
�xk;�pk

�
s.t. Ck

�
�xk;�pk

�
+ ck = 0

Gk�pk + gk � 0;

(5.1)

10



where Hk := @2Lk=@(x; p)2 denotes the Hessian of the Lagrangian of the optimization

problem (4.1)

L := f(x; p)� c(x; p)>�� g(p)>�

and capital letters C;G denote the derivatives of the constraints c; g at the k-th iterate.

We de�ne

T :=

�
�C�1

x Cp

I

�
as a basis of the kernel of C =

�
Cx Cp

�
so that each solution of the �rst constraint equation in (5.1) satis�es

�xk = �xkR + T k�xk; (5.2)

where �xkR = �(Ck
x)
�1ck. The relationship (5.2) is now used to formally eliminate �xk

from (5.1). In the manner of typical RSQP methods we set the cross-term Hk�y
R
k to zero,

thus leaving (T k)>
�
@2Lk=@(x; p)2

�
T k as the only part of the Hessian to be considered in

the algorithm. This is so-called reduced Hessian is approximated by a matrixBk
2 R

np�np.

A conceptual PRSQP method is sketched in Fig. 10. As before, indices k mean evaluation

Compute adjoints and

reduced gradient

�k = (Ck
x)
�>
rxf

k


k = rpf
k
� (Ck

p )
>�k Determine approximation Bk

and solve QP

min
�pk

1
2
(�pk)>Bk�pk + (
k)>�pk

s.t. Gk
p�p

k + gk � 0
Compute step

�xk = �(Ck
x)
�1(Ck

p�p
k + ck)

PPPPPPPPPq

���������)

6


k

�pk

x
k+1

:= x
k
+ ��x

k

p
k+1

:= p
k
+ ��p

k

k++

Figure 10: Sketch of a PRSQP method.

at the k-th iterate.

Remark: The PRSQP algorithm requires the solution of a QP-subproblem. During this

whole presentation we assume that it has a nonempty feasible set. Otherwise we might

apply well known remedies (cf. e.g. [10]) for quadratic subproblems of SQP methods. For

a nonempty feasible set the solvability of the QP is guaranteed, if v>Bkv > 0 for all v in

the kernel of all active constraints. As we will see below, we always use reduced Hessian

approximations Bk which are positive de�nite and thus satisfy this requirement.

In Fig. 10 there appears a vertical dashed line. It indicates the basic interface between the

�ow computation modul MISES and the pure optimization part of the algorithm. Thus,

although the optimization method is one of the simultaneous type with all its bene�ts,

the modularity is rather high and there is no need to update the optimization part of the

algorithm, every time there comes up a new release of the �ow computation modul.
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The strength of the PRSQP method arises from the fact that the reduced Hessian can

be approximated by Bk and thereby computationally expensive applications of T and T>

can be avoided. The approximation of the reduced Hessian Bk has to be performed in a

su�ciently accurate way in order to provide local convergence properties which are better

than linear. For this approximation, one can employ, e.g., the BFGS update formula

(cf. [8]):

Bk+1 := Bk + UBFGS(Bk; z; w);

where UBFGS(B; z; w) := ww>

z>w
�

(Bz)(Bz)>

z>Bz
:

(5.3)

The key property of this formula (which it shares with all other members of the convex

Broyden class) is the secant condition Bkz = w. The intention of this kind of update is to

collect second order information from �rst order magnitudes available in each iteration.

Therefore z is formed by the di�erences of p-variable values, z := �pk� pk and w is formed

by the resulting di�erence of reduced gradients of the Lagrangian

w := �
k � 
k �
�
( �Gk)> � (Gk)>

�
�k; (5.4)

where a bar over a symbol means evaluation at an intermediate point. The intermediate

point may be chosen to be (xk+1; pk+1), which de�nes an update strategy in the spirit of

[15], or

(�yk; �wk) = (yk; wk) + (T1;k�wk;�wk); (5.5)

which de�nes an asymptotically correct update strategy. A proof for the resulting local 2-

step-superlinear convergence of the algorithm can be found in [18]. For implementational

ease we chose the former alternative together with a Han-Powell-modi�cation [16] of the

update formula in order to maintain positive de�niteness and with a limited memory

strategy to avoid blow up of the condition number.

The line-search parameter � in the algorithm is determined by the use of a weighted sum

of the objective function and the norm of the �ow residual as merit function. In addition

there is a safeguard strategy implemented projecting the iterate back in the direction of

the feasible manifold (i.e. setting �pk := 0), when necessary. The termination of the

algorithm is controled by the following criteria:

� either the norm of the reduced gradient is below a certain tolerance

� or the actual change of the blade, i.e.Z
blade

����pk(t)� pk�1(t)
�>

npk(t)
��� dt;

where p(t) 2 R
2 means the whole spline curve determined by the spline coe�cients

p 2 R
24 and npk(t) 2 R

2 means the unit normal to this curve. So the program

stops also, if the spline curve is only more or less changed tangentially without

changing the shape itself. This may happen due to the non-uniqueness of the B-

spline parameterization.

The solution of the linear systems arising in multiplications with (Ck
x)
�1 and (Ck

x)
�> are

performed by a block-sparse factorization. In a previous pilot project, reported on in
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[20, 19, 7], we had to use a multigrid iterative technique for that purpose. The details of

the resulting multigrid technique are described in these references.

The algorithmic variants of the basic algorithm above for the problem formulations (4.3)

and (4.4) now reveal the full modularity potential of the PRSQP approach. First we focus

on problem (4.3). If we identify x in the algorithm 10 with the collection of all xi from
problem (4.3) and identify c(:; :) := (c(:; :;�1); : : : ; c(:; :;�N))

>, we immediately see that

Cx possesses the block diagonal structure

Cx(x; p) =

2
64
@c(x1;p;�1)

@x1
0

. . .

0
@c(xN ;p;�N )

@xN

3
75

By de�ning

�ki :=

�
@c(xki ; p

k;�i)

@xi

��>
rxif

k(xki ; p
k;�i)


ki := rpf
k(xki ; p

k;�i)�

�
@c(xki ; p

k;�i)

@p

�>
�ki

�xki := �

�
@c(xki ; p

k;�i)

@xi

��1�
@c(xki ; p

k;�i)

@p
�pk + c(xki ; p

k;�i)

�

we obtain the following observation formulated in lemma 5.1.

Lemma 5.1


k =

NX
i=1

wi

k
i :

Therefore, we obtain the following algorithmic variant depicted in �g. 11. In this algorithm

the linear forward and adjoint problems can be solved completely independently (indicated

by the dashed lines) for the di�erent setpoints of the working range. This supports a

parallel implementation very well.

For problem formulation (4.4), also the linear quadratic subproblems reveal additional

structure. The linear quadratic subproblems to be solved in an analogous algorithm are

of the form

min
f�pk

j
gM
j=1

1

2

0
B@

�pk1
...

�pkM

1
CA
>

Bk

0
B@

�pk1
...

�pkM

1
CA+

0
B@

k1
...


kM

1
CA
>0
B@

�pk1
...

�pkM

1
CA

s.t.
@gkj
@pj

�pkj + gkj � 0; 8j = 1; : : : ;M

MX
j=1

@hk

@pj
�pkj + hk � 0;

(5.6)
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k1 
k2 . . . 
kN
Determine approximation Bk

and solve QP

min
�pk

1
2
(�pk)>Bk�pk + (
k)>�pk

s.t. Gk
p�p

k + gk � 0

�xk1 �xk2 . . . �xkN

?

P

6 6 6

6 6 6

�pk

Figure 11: Sketch of the PRSQP method for problem (4.3).

where


kj :=

NX
i=1

rpf
k(xkij; p

k
j ;�ij)�

 
@c(xkij ; p

k
j ;�ij)

@p

!>
�kij; 8j;

and

�kij :=

 
@c(xkij ; p

k
j ;�ij)

@xij

!�>
rxijf

k(xkij; p
k
j ;�ij):

Consequently, the state variable increments are to be computed as in lemma 5.2.

Lemma 5.2

�xkij = �

 
@c(xkij ; p

k
j ;�ij)

@xij

!�1 
@c(xkij ; p

k
j ;�ij)

@pj
�pkj + c(xkij; p

k
j ;�ij)

!
:

The reduced Hessian in QP (5.6)�to be approximated by Bk�obviously possesses block-

diagonal form, which can be exploited by the application of partitioned block-updates as

presented in [5] for full SQP methods and in [18, 14] for the reduced case.

6 Numerical results

Here we show examples for the e�cacy of the optimization algorithm. In Fig. 12 the result

of the optimization for a turbine blade at a speci�c working range set point�indicated by

the downward arrow on the right hand side of this �gure�is shown. This single set point

problem corresponds to the formulation (4.1). Although the e�ect of the optimization

might seem not much when comparing the initial blade with the optimized, the gain in

the objective criterion (pressure loss) is approximately 14% and thus considerable. Here
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Figure 12: Turbine blade, optimized at set point and over the working range, respectively.

13000 state variables are involved in the discretized �ow description and 15 PRSQP it-

erations are needed for convergence. The overall computing time, however, has been on

an IBM workstation of type RS6000/900 only 3 cpu minutes, which corresponds to 4 for-

ward �ow equation solutions (which takes each 45 seconds). Thus, here the simultaneous

optimization approach really pays o�, although modularity of the implementation is still

maintained. The lower curve on the right hand side shows the objective functional over

the whole working range (nevertheless the blade is optimal only for the one set point). One

can see the optimized blade leads to good results all over in the working range (Fig. 12).

However, the situation is completely di�erent in the case of compressor blades, as it is

shown in �gure 13. On the left hand side two pairs of blades are plotted, where in each

pair the initial blade before optimization and the results of the optimization is shown. The

upper pair is for a single set point optimization for the set point (in�ow angle) indicated

on the right hand side by an arrow. This single set point optimization took 15 cpu minutes

on Pentium II/400 based Linux system, which again corresponds to 4 forward solution

sweeps.

Looking at the whole working range for the in�ow angle, one recognizes that near the

boundary of the working range the pressure loss is increasing dramatically for the blade

optimized for a single set point. That surely is not what turbomachine engineers think

of as an �optimal� blade. On the other hand, the working range formulation (4.3) leads

to blades, which are better all over in the working range, where the pressure loss shows

reasonable behavior. But, as it can be expected, the blade optimized over the whole

working range behaves slightly worse at the speci�c set point considered above.
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Figure 13: Compressor blade, optimized at set point and over the working range, respec-

tively.

7 Conclusions

The determination of optimal blade shapes is an important and usually time-consuming

stage within the design-cycles of turbines and compressors for aircrafts and power plants.

The large amount of time necessary in practice up to now is related to the fact, that is

task is primarily performed manually by interactive control of several simulation runs.

To perform this task automatically, two ingredients are necessary: a well posed problem

description, so that the optimization routine does not lead to physically irrelevant solu-

tions and, on the other hand, a fast optimization algorithm, which is able to incorporate

simulation strategies which are well tested.

In this paper both important steps are explained. We have formulated basic geometric

constraints, which limit the con�guration space, so that blades are not determined which

go beyond the capabilities of the �ow model. Also, we have constructed a new and

fast optimization method which consumes computation time of the same order as a pure

simulation run. In addition, we have shown, how working range formulations, which are

of high practical importance, can be treated e�ciently.
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