
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Iterative Solution of Systems of Linear Equations in

Microwave Circuits Using a Block Quasi-Minimal

Residual Algorithm

Rainer Schlundt1, Georg Hebermehl1, Friedrich-Karl Hübner1,

Wolfgang Heinrich2, Horst Zscheile2

submitted: 4th December 2000

1 Weierstrass-Institute

for Applied Analysis

and Stochastics

Mohrenstraÿe 39

D - 10117 Berlin

Germany

E-Mail: schlundt@wias-berlin.de

E-Mail: hebermehl@wias-berlin.de

E-Mail: huebner@wias-berlin.de

URL: http://www.wias-berlin.de

2 Ferdinand-Braun-Institut

für Höchstfrequenztechnik

Albert-Einstein-Straÿe 11

D - 12489 Berlin

Germany

E-Mail: w.heinrich@ieee.org

E-Mail: zscheile@fbh-berlin.de

URL: http://www.fbh-berlin.de

Preprint No. 620

Berlin 2000

WIAS
2000 Mathematics Subject Classi�cation. 35Q60, 65F10, 65F15, 65N22.

Key words and phrases. Microwave device simulation, Scattering matrix, Maxwell's equa-

tions, Boundary value problem, Finite integration technique, Eigenvalue problem, System of linear

algebraic equations, Multiple right-hand sides.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

The electrical properties of monolithic microwave integrated circuits that

are connected to transmission lines are described in terms of their scattering

matrix using Maxwell's equations. Using a �nite-volume method the corre-

sponding three-dimensional boundary value problem of Maxwell's equations

in the frequency domain can be solved by means of a two-step procedure. An

eigenvalue problem for non-symmetric matrices yields the wave modes. The

eigenfunctions determine the boundary values at the ports of the transmission

lines for the calculation of the �elds in the three-dimensional structure. The

electromagnetic �elds and the scattering matrix elements are achieved by the

solution of large-scale systems of linear equations with inde�nite complex sym-

metric coe�cient matrices. In many situations, these matrix problems need

to be solved repeatedly for di�erent right-hand sides, but with the same coef-

�cient matrix. The block quasi-minimal residual algorithm is a block Krylov

subspace iterative method that incorporates de�ation to delete linearly and

almost linearly dependent vectors in the underlying block Krylov sequences.
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1 Introduction

The design of monolithic microwave integrated circuits requires e�cient CAD tools

in order to avoid costly and time-consuming redesign cycles. The electromagnetic

characteristics of microwave integrated circuits can be described by equivalent cir-

cuits in terms of voltages and currents. With growing frequencies the voltage and

current de�nitions become ambiguous. Therefore, the description of the electromag-

netic characteristics of microwave circuits by the scattering matrix is more appropi-

ate. As an example, Fig. 1 illustrates the principle structure under investigation.

In order to determine the scattering matrix, the circuit is inserted between trans-
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cross-sectional plane cross-sectional plane 

cross-sectional plane
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Figure 1: Structure under investigation.

mission lines. The scattering matrix describes the structure in terms of wave modes

on these lines, which can be computed from the electromagnetic �eld. A three-

dimensional boundary value problem can be formulated using Maxwell's equations

in frequency domain in order to compute the electromagnetic �eld. Using the �mite-

volume method to the three-dimensional boundary value problem for the Maxwell's
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equations results in the so-called Finite-Di�erence method in the Frequency Domain

(FDFD) (see [1], [2], and [3]). The �eld volume is subdivided into rectangular cells.

The Maxwell's equations in integral formulation are approximated by the method

of �nite integration for each cell.

2 Scattering Matrix

The structure under investigation (see Fig. 1) consists of in�nitly long transmission

lines and a discontinuity. The transmission lines are assumed to be longitudinally

homogeneous. The discontinuity may have an arbitrary structure. The scattering

matrix S describes the energy exchange and phase relation between all outgoing

modes b
(p)
l

and all incoming modes a
(p)
l

on all ports p on the transmission lines (see

[6]):

b�;� =

msX
�=1

S�;�a�;� ; S =

0
BB@

S11 S12 � � � S1ms

S21 S22 � � � S2ms

. . . . . . . . . . . . . . . . . . . . . . .

Sms1 Sms2 � � � Smsms

1
CCA = (S�;�); (1)

�; �; � = 1; : : : ;ms; ms =

�pX
p=1

m(p); � = l+

p�1X
q=1

m(q); l = 1; : : : ;m(p): (2)

�p is the number of ports. m(p) is the number of modes on the port p. The scattering

matrix can be extracted from the orthogonal decomposition of the electric �eld at

a pair of two neighboring cross-sectional planes p and p + �p (see Fig. 1) on each

waveguide.

3 Boundary Value Problem

We use the integral form of the Maxwell's equations in the frequency domain:

H
@


~E � d~s = �j!
R


~B � d~
;

H


~B � d~
 = 0

H
@


1
[�]
~B � d~s = j!

R

[�]

~E � d~
;
H

[�]

~E � d~
 = 0

(3)

taking into account the constitutive relations

~B = [�] ~H; ~D = [�] ~E; [�] = diag(�x; �y; �z); [�] = diag(�x; �y; �z): (4)

The electric and magnetic �eld intensities ~E and ~H and the electric and magnetic �ux

densities ~D and ~B are complex functions of the spatial coordinates. The quantities

[�] and [�] are diagonal tensors of dielectric permittivity and magnetic permeability,

respectively. @
 is the boundary of the open surface 
.
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At the port p the transverse electric �eld ~Et(zp) is given by superposing all trans-

mission line modes ~Et;l(zp) with weighted mode-amplitude sums wl(zp):

~Et(zp) =

m
(p)X

l=1

wl(zp) ~Et;l(zp): (5)

The transverse electric mode �elds ~Et;l(zp) are computed using an eigenvalue prob-

lem for transmission lines (see [7] and [8]). The boundary conditions at all other

parts of the enclosure are ~Etang = 0 and ~Htang = 0, respectively.

4 Maxwell's Grid Equations

The integrals in (3) are applied to rectangular blocks using the following relations:I
@


~f � d~s!
X
i

(�fisi) and

Z



~f � d
! fi
i; (6)

where fi is a center value associated with the ith cell. We use staggered grids (see

[11]). Note that the discrete electric �eld is located at the center of an edge and the

discrete magnetic �ux density is normal to the center of the face. The electric �eld

components form a primary grid and the magnetic �ux density a dual grid. The

discretized form of (3) results in an equation for each �eld component. Presenting

each equation using matrices provides a compact form:

CDs~e = �j!DA
~b; SDA

~b = 0;

~CD~s=~�
~b = j!�0�0D ~A~�~e;

~SD ~A~�~e = 0:

(7)

The diagonal matrices D~s=~�, D ~A~�, Ds, and DA represent all cell quantities. The

so-called curl (C; ~C) and source matrices (S; ~S) describe the topology of the two

grids with the following properties (see [10]):

SC = 0; ~S ~C = 0; C = ~CT : (8)

5 System of Linear Algebraic Equations

Using (8), eliminating the components of the magnetic �ux density (~b) in (7), and

multiplying by D
1=2
s yields a symmetric form of linear algebraic equations:

�AE(D
1=2
s
~e) = 0; �AE = D1=2

s
CTD~s=~�D

�1
A
CD1=2

s
� k20D ~A~�; (9)

where k0 = !
p
�0�0 . The gradient of the electric-�eld divergence

[�]r([�]�2r � [�] ~E) = 0 (10)
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is equivalent to the matrix equation (symmetric form by multiplying by D
1=2
s )

�BD(D
1=2
s
~e) = 0; �BD = D�1=2

s
D ~A~�

~STD�1
~V ~�~�

~SD ~A~�D
�1=2
s

: (11)

The diagonal matrix D~V ~�~� is a volume matrix for the 8 partial volumes of the dual

elementary cell.

Taking into account the boundary conditions the two equations (9) and (11) are

transformed in
�AEx = 0 �! AEx = b; (12)

�BDx = 0 �! BDx = 0; (13)

where x = D
1=2
s ~e.

The e�ect of the addition of the two equations (12) and (13) can be interpreted as

preconditioning with the preconditioner (I +BDA
�1
E
)�1 for the system (12):

(I +BDA
�1
E
)AEx = (I +BDA

�1
E
)b ! Ax = (AE +BD)x = b; (14)

where A is symmetric, inde�nite, and complex. Fig. 2 shows the typical structure

of the system matrix A. Due to the structure of the matrices C, ~C, ~S, and ~ST

Figure 2: Structure of the system matrix A.

the diagonal entries of A are nonzero and su�ciently large compared with the o�-

diagonal entries.

5.1 Independent Set Ordering

A commonly used approach for solving large sparse linear systems (14) is to �nd

sets of unknowns which are independent (see [9]). A set of such unknowns is called

an independent set. Independent set orderings are permutations Pi to transform the

matrix Ai with A0 = A (14) in the form

Ai �! PiAiP
T

i
=

�
Di ET

i

Ei Hi

�
; (15)
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where Di is a diagonal, Ei, and Hi are sparse matrices. The unknows of the inde-

pendent set Di are eliminated to get the next reduced matrix

Ai+1 = Hi � EiD
�1
i
ET

i
: (16)

We get a system of linear equations

PiAiP
T

i
Pixi = Pibi (17)

with yi = Pixi = (yi;1; yi;2)
T and ci = Pibi = (ci;1; ci;2)

T and have to solve the reduced

system of linear equations

Ai+1xi+1 = bi+1; xi+1 = yi;2; bi+1 = ci;2 � EiD
�1
i
ci;1 (18)

for yi;2, and then we get

yi;1 = D�1
i
(ci;1 � ET

i
yi;2): (19)

Then we have to permute the solution vector yi back to the vector xi.

5.2 Preconditioning

Let DA the diagonal matrix of A, where A � Ai+1. Using x � xi+1 and b � bi+1

then we set M1 = M2 = D
1=2
A

and apply the Jacobi preconditioning

Ax = b �! Âx̂ = D
�1=2
A

AD
�1=2
A

D
1=2
A

x = D
�1=2
A

b = b̂ : (20)

The SSOR preconditioner matrices for the matrix Â parametrized by ! are de�ned

as

Â = L+ I + LT �! M̂1 = (I + !L); M̂2 = M̂T

1 ; 0 < ! < 2; (21)

where L is the strictly lower triangular part of Â. The optimal value of the ! param-

eter reduces the number of iterations to a lower order (Table 3). The matrix vector

products r = (M̂�1
1 ÂM̂�1

2 )v can be computed very e�ciently by using Eisenstat's

trick (see [4]) for any vector v:

r = (M̂�1
1 ÂM̂�1

2 )v

= 1
!
[(I + !LT )�1v + (I + !L)�1(v � (2 � !)(I + !LT )�1v)]:

(22)

The result r = (M̂�1
1 ÂM̂�1

2 )v can be obtained as follows:

1. Solve (I + !LT )t = v for t.

2. Set ~t = v � (2� !)t.

3. Solve (I + !L)t̂ = ~t for t̂.

4. Set r = 1
!
(t+ t̂).
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5.3 Block Quasi-Minimal Residual Algorithm

We �rst describe the general block Krylov subspace method. Then, we describe

a J -symmetric variant of the block Krylov method, which includes the complex

symmetric form as a special case.

The system of linear equations (14) is solved repeatedly with the same coe�cient

matrix A, but ms di�erent right-hand sides, i.e., we have linear systems

Ax(j) = b(j); j = 1; 2; : : : ;m = ms �! AX = B; (23)

where A 2 C n�n , B 2 C n�m , and X 2 C n�m . An iterative scheme for solving

(23) is said to be a block Krylov subspace method if it generates block iterates

Xl 2 C
n�m ; l = 1; 2; : : : , with x

(j)
l
2 x

(j)
0 + Kdl

l
(A;R); j = 1; 2; : : : ;m : The block

Krylov subspace Kdl

l
(A;R) is spanned by the �rst l linearly independent vectors in

the block Krylov sequence

R;AR;A2R; : : : ; Ak�1R; : : : ; R = B �AX0 : (24)

All linearly dependent or almost linearly dependent vectors on previous vectors are

deleted by scanning the block Krylov sequence from left to right. We obtain the

de�ated block Krylov sequence

R(1); AR(2); A2R(3); : : : ; Ak�1R(k); : : : ; R(0) = R; (25)

whereR(k) is a submatrix ofR(k�1). The Lanczos-type algorithm described in [5] gen-

erates a sequence of basis vectors v1; v2; : : : for the block Krylov subspaces Kdl

j
(A;R)

and a sequence of basis vectors w1; w2; : : : for the block Krylov subspaces Kdl

j
(AT ; L)

with L 2 C
n�m . The vectors in the v and w sequences are constructed to be biorthog-

onal, i.e., wT

i
vk = Æik. Thus, all block iterates Xl can be represented in the form

Xl = X0 + V (l)Z; V (l) = [v1; v2; : : : ; vl]; Z 2 C
l�m : (26)

The recursions for constructing the �rst � basis vectors v1; v2; : : : ; v� can be sum-

marized in matrix formulation as follows:

AV (l) = V (�)T (l) + V
(l)
dl

; l = � �mcr > 0; (27)

wheremcr denotes the reduced size of the current block in the block Krylov sequence.

The matrix T (l) 2 C ��l contains coe�cients of the recursions in the Lanczos-type

algorithm and the matrix V
(l)
dl
2 C n�l consists of mostly zero column vectors and at

most m�mcr nonzero column vectors corresponding to the de�ated v vectors. The

recurrences for the initial block of Lanczos vectors v1; v2; : : : ; vm1 can be stated as

V (m1)T (0)
+ V

(0)
dl

= R0; (28)

where T (0) 2 Cm1�m and V
(0)
dl

2 C n�m . After each de�ation in the v sequence, the

size of the current block R(k) in the corresponding de�ated block Krylov sequence

7



(25) decreases by one. Let Xcr

l
2 C n�mcr denote the current block iterate after each

de�ation, then we can rewrite (26) for Xcr

l
as

Xcr

l
= Xcr

0 + V (l)Zcr; Zcr 2 C
l�mcr ; mcr < m; and AXcr

= Bcr (29)

is the subset of linear systems in (23) that correspond to the current active block

iterate Xcr

l
. Using (27), (28), and (29), the residual block Rcr

l
corresponding to Xcr

l

satis�es:
Rcr

l
= Bcr �AXcr

l

= Bcr �A(Xcr

0 + V (l)Zcr)

= Rcr

0 �AV (l)Zcr

= Rcr

0 � V (�)T (l)Zcr � V
(l)
dl
Zcr

= V (m1)T (0) + V
(0)
dl
� V (�)T (l)Zcr � V

(l)
dl
Zcr

= V (�)

��
T (0)

0

�
� T (l)Zcr

�
� V

(l)
dl
Zcr:

(30)

We would like to choose the free parameter matrix Zcr in (30) such that kRcr

l
k is

minimal. In general, V (�) is not unitary and V
(l)
dl

has some nonzero columns. Thus,

we will minimize the Euclidean norm of the bracketed term in (30). Therefore, the

block iterates Xl are characterized by a quasi-minimization of the residuals. For

further implementation details of the block-QMR method see [5].

5.3.1 Symmetric Systems

The classical Lanczos process can be simpli�ed when A is a J -symmetric matrix by

choosing appropriate left starting vectors, i.e.,

ATJ = JA; L = JR �! wl = �lJvl; �l 2 C ; �l 6= 0; l = 1; 2; : : : : (31)

We consider the solution of the complex symmetric block system (23), where A itself

is complex symmetric, i.e., A = AT . We want to use the matrix M 2 C n�n with

M = M1M2 = MT

2 M
T

1 =MT (32)

as a preconditioner for the system (23). The two-sided preconditioned block system

ÂX̂ = B̂; Â = M�1
1 AM�1

2 ; X̂ = M2X; B̂ = M�1
1 B (33)

is J -symmetric using J = MT

1 M
�1
2 .

6 Numerical Results

The reduction of the iteration number is demonstrated calculating the systems of

linear algebraic equations of a structure under investigation (two coupled rectangular

waveguides with di�erent diameters).

8



The order of the system of linear algebraic equations is 86 016. The number of

stored nonzeros amounts to 593 141. We apply an independent set ordering to

obtain the reduced matrix. In general, for a linear system arising in the design of

monolithic microwave integrated circuits one reduction is more e�cient than no,

two, or more reductions. In addition the preprocessing cost for independent set

ordering with one level of reduction is modest. The order of the reduced system of

linear equations is 62 542, the number of stored nonzeros amounts to 1 017 395. The

stopping criterion was a reduction of the norm of the residual for the preconditioned

system by 10�8, i.e., kr(j)
l
k � 10�8 � kr(j)0 k for j = 1; 2; : : : ;mcr. In Table 1, we

compare cumulative iteration counts required to individually solve each of the m

linear systems using QMR with the number of block-QMR iterations required to

solve all the m systems simultaneously. Table 2 shows the corresponding cumulative

Table 1: Comparison of block-QMR with individual solution of each right-hand side

using QMR with ! = 1:66.

Number of RHS (m) 1 2 3 4 5

Cumulative QMR iterations 176 351 525 699 874

Block-QMR iterations 176 261 318 381 441

Block-QMR iter./RHS 176 131 106 96 89

Number of RHS (m) 6 7 8 9 10

Cumulative QMR iterations 1052 1232 1412 1595 1776

Block-QMR iterations 511 610 671 693 709

Block-QMR iter./RHS 86 88 84 77 71

execution times using QMR and the execution times of block-QMR. Furthermore,

Table 2: Comparison of execution times of block-QMR with individual solution of

each right-hand side using QMR with ! = 1:66.

Number of RHS (m) 1 2 3 4 5

Cumulative QMR iter. time (s) 98 196 293 389 487

Block-QMR iter. time (s) 109 172 219 278 331

Block-QMR iter. time/RHS (s) 109 86 73 70 66

Number of RHS (m) 6 7 8 9 10

Cumulative QMR iter. time (s) 587 687 787 889 990

Block-QMR iter. time (s) 396 491 557 608 630

Block-QMR iter. time/RHS (s) 66 70 70 68 63

Table 3 shows the number of block-QMR iterations for di�erent values of ! for one

right-hand side. The choice of ! a�ects the performance of preconditioner for the

class of problems considered here.
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Table 3: Number of block-QMR iterations for di�erent values of !.

! 0.1 0.3 0.5 0.7 0.9 1.0 1.1 1.3

Iterations 733 600 485 391 313 279 249 201

! 1.4 1.5 1.57 1.6 1.66 1.7 1.8 1.9

Iterations 186 182 178 179 176 177 193 250

Concluding Remarks. We have considered the iterative solution of systems of

linear equations with multiple right-hand sides. We used a J -symmetric variant of

the block-QMR method. The block-QMR method constructs basis vectors for block

Krylov subspaces. The block iterates are characterized by a quasi-minimal residual

property. The choice of ! a�ects the performance of the SSOR preconditioner.

Furthermore, Eisenstat's trick reduces the time for the iteration algorithm.
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