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Abstract

A spatial branching process is considered in which particles have

a life time law with a tail index smaller than one. Other than

in classical branching particle systems, at the critical dimension

the system does not su�er local extinction when started from

a spatially homogenous initial population. In fact, persistent

convergence to a mixed Poissonian system is shown. The random

limiting intensity is characterized in law by the random density

in a space point of a related age-dependent superprocess at a

�xed time. The proof relies on a re�ned study of the system

starting from asymptotically large but �nite initial populations.

1 Introduction and statement of results

1.1 Motivation and purpose

The study of spatially homogeneous (critical) branching particle systems in

R
d with long living particles has been initiated in [SW93] and [VW99], and

touched in [KS98]. Here `long living' means that the lifetime distribution

of a particle has a tail of index 
 2 (0; 1); implying that the mean life-

time is in�nite. There a new phenomenon has been revealed: Starting from

a homogeneous Poissonian system of particles, in supercritical dimensions

the persistent limit in law is homogeneous Poissonian again, opposed to

the usual non-Poissonian limits of systems of particles with �nite expected

lifetimes. (See also Lemma 3 (b) below.) This has the following intuitive

reason: Due to the long lifetimes, all the siblings of a particle in the limit

population were born so long ago that they moved out of the �nite win-

dow of observation. Therefore, only �completely mixed� populations can be

observed in the limit.

Let us manifest this by some heuristic calculation based on backward

tree considerations. Assume the particles' motion index is � 2 (0; 2]; and
the index of the branching is � 2 (0; 1] (see Hypothesis 1 below). By re-

newal theory ([Fel71, � 11.5 and � 11.3]), the number of branching points

along an ancestral line of a particle, called �ego�, picked at time t �at ran-

dom� is asymptotically in law (as t " 1) of the form �t

 for some random

variable � > 0; and the time between t and any of these earlier branching

time points is of order t (as opposed to the case of exponentially distributed

branching times). Consider such a branching time point. The number j;

say, of particles (additionally) generated at this branching point has moment

generating function 1) �(s) = 1� c (1� s)� (di�erentiate the o�spring gen-

erating function in (3) below). Consider any of these j o�spring. Let q

denote the probability that its descendants at time t populate a (�xed) ball

B around �ego�. The arguments in ([VW99, Lemmas 2 and 3]) yield that q

1) With c we always denote a positive constant which may vary from place to place.
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decays at least with the order t��; where � := (d=�+
)=(1+�): Therefore,
the probability that none of the j particles has an o�spring that populates

B at time t is asymptotically �(1� q) = 1� c q
� � 1� c t

�(d=�+
)�=(1+�)
:

Consequently, the probability that none of the relatives of �ego� populates

a ball around �ego� asymptotically equals

E
�
1� c t

(� d
�
�
) �

1+�

��t

� E exp

�
� c �t


�( d
�
+
) �

1+�

�
= E exp

�
� c �t

(
�d�
�
) 1
1+�

�
: (1)

This indicates that the number dc := 
�=� should be critical for the di-

mension d of space. Indeed, for d > dc ; the expression in (1) converges

to 1, showing that in supercritical dimensions �ego� asymptotically has no

relatives around. In other words, relationships of particles in our observa-

tion window vanish as t " 1; which corresponds to a convergence of the

original populations towards a Poissonian system.

If d < dc instead, then (1) converges to 0. In other words, provided that

t
�� is the correct order of decay of q; then for d < dc each small ball around

�ego� is populated by a relative of �ego� with asymptotic probability one.

This can be taken as an indication for the usual clumping of the original

particle system in subcritical dimensions, and is in fact in line with the local

extinction of the branching particle system for d < dc which was proved in

[VW99] (see also Lemma 3 (a) below).

At the critical dimension dc however, (1) suggests that at late times t

the probability that relatives of �ego� show up in B might be strictly between

0 and 1. Since the latest common ancestor of any of these relatives lived way

back in the past of order t; the spatial correlations of these relatives should

vanish as t " 1: In fact the population should tend to a homogeneous mixed

Poissonian system, where the randomness of the intensity comes from the

randomness of the branching at very early times.

In this paper we prove that such a picture indeed is true, and hereby

essentially strengthen a result of ([VW99]) where it was shown that at the

critical dimension there exist non-trivial limit points. According to our

main result the following convergence statement holds for the process Z =
fZt : t � 0g under consideration. At the critical dimension, Zt converges in

law as t " 1; to a limit Z1 which is again of full intensity (persistence) and

is in fact a mixed homogeneous Poissonian particle system whose random

intensity i1 is non-degenerate. In particular, the limit is not ergodic. (See

Theorem 11 below.)

Note that the picture is reminiscent of the situation in catalytic branch-

ing models (for a recent survey, see [DF00]). From there one knows already

the phenomenon of persistent convergence in critical dimensions: In a su-

perprocess setting, starting from the Lebesgue measure `; the limit in law

of a super-Brownian reactant with a super-Brownian catalyst is a random

multiple i1` of `; where by self-similarity the random factor i1 equals in

law the random density of reactant's mass at time 1 at the origin ([FK99]).
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In the analogous particle model, one has a mixed homogeneous Poissonian

limit instead ([GKW99]), just as already described above for the Z process.

In the particle system we are considering, it is convenient to re�ne the

description by taking into account the residual lifetimes of the particles,

thus arriving at a Markovian description �Z of the model. Under a suitable

mass-time-space rescaling (Lemma 6 below), one can pass to a correspond-

ing superprocess �X; whose spatial component X then is the corresponding

rescaling limit of the process Z. (The process X appears also in a recent

work of Kaj and Sagitov [KS98] under the notion of �projected superpro-

cess�; one should note, however, that X is not Markov and therefore is no

superprocess in the classical sense.) As it turns out, the process X has ab-

solutely continuous states Xt(da) = Xt(a) da in all dimensions d < �=�,

covering the critical dimension dc (Proposition 7 below). This corresponds

to the intuition that the long lifetimes of the in�nitesimal particles could

have some additional smoothing e�ect on the mass distribution (compared

with the case of lifetimes with �nite mean).

At the same time, at the critical dimension dc ; starting from a Lebesgue

initial state, we have a self-similarity property (Proposition 8 (b) below).

For d = dc ; this turns the absolute continuity of states into the existence

of a large time limit X1 ; which is a random multiple i1` of the Lebesgue

measure, and where i1 coincides in law with X1(0); the random density

of X1 at the origin (see Corollary 10 (b) below).

Finally, it is well-known that in the case of exponential lifetimes the

branching particle systems arise from the corresponding superprocesses via

a Poissonization (cf. [GRW90, p.277]). In our case of long living particles,

we will show that (for homogeneous initial states, or even for a large initial

pile of mass concentrated in a remote starting point) this property holds

asymptotically in the long-term limit, which leads to the claimed conver-

gence towards a mixed Poissonian process.

Next we will introduce the mentioned (re�ned) branching particle system
�Z in more detail.

1.2 The (d; �; �; 
)�branching particle system �Z

We are dealing with a model of (critical) branching in R
d which is a spatial

generalization of the so-called age-dependent (critical) branching process or

(critical) Bellman-Harris branching process. It is based on the following

ingredients which, for convenience, we expose as a hypothesis.

Hypothesis 1 (Ingredients of the branching particle system)

(a) (Particle motion process �) Fix � 2 (0; 2]: Consider the symmet-

ric ��stable process (�; Pa ; a 2 R
d) in R

d
; (cf. [Bre68, p.317] and

[Ber96, Ch. VIII]), that is, the (time-homogeneous) Markov process

with generator �� := �(��)�=2; the fractional Laplacian ([Yos74,

p.260]), and with càdlàg paths. Denote by p =
�
pt(b) : t > 0; b 2 R

d
	

the continuous transition densities of this particle motion process �:
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(b) (Particles' lifetime �) Introduce the non-lattice distribution func-

tion G of a random variable � > 0 with tails

P (� > u) = 1�G (u) � cG u
�
 as u " 1 (2)

for some index 
 2 (0; 1) and a constant cG > 0: That is, the lifetime

distribution G of particles is in the normal domain of attraction of

a stable law of index 
: In particular, � has in�nite expectation

E� =1:

(c) (Critical branching mechanism) Fix attention to the o�spring gen-

erating function

f(s) := Es
� = s+ cf (1� s)1+� ; 0 � s � 1; (3)

of the random number � of o�spring of a particle, where � 2 (0; 1]
and cf 2

�
0; 1

1+�

�
: Consequently, E� = 1 (criticality), and we con-

sider a branching mechanism in the normal domain attraction of a

stable law of index 1 + �: Note that E�2 <1 if and only if � = 1:

(d) (Phase space E) A point e = (u; a) 2 E := R+ � R
d describes the

residual lifetime u and the position a of a particle. With the metric

dE(e1; e2) := 1 ^ ju1 � u2j + ja1 � a2j; (4)

ei = (ui ; ai) 2 E; i = 1; 2; we get a Polish space (E; dE).

(e) (Test functions) Fix a number p 2 (d; d + �] (recall that � is the

motion index), and introduce the reference function

�p(a) :=
�
1 + jaj

2
�
�p=2

; a 2 R
d
: (5)

Let �Cp = �Cp(E) denote the set of all continuous functions  : E! R

such that

k k := sup
(u;a)2E

��� (u; a)
�p(a)

��� < 1; (6)

and such that the map

(u; a) 7!
 (u; a)

�p(a)
on E (7)

can continuously be extended to a function on R+� _R
d
; where _R

d is

the one-point compacti�cation of R
d
: Then

�
�Cp ; k � k

�
is a separable

Banach space.

(f) (State space N Æ

p ) Let Mp =Mp(E) denote the set of all p�tempered

measures on E = R+ � R
d
; that is measures � on E such that the

integral

h�; �pi :=

Z
E

�
�
d(u; a)

�
�p(a) (8)
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is �nite. Introduce the weakest topology in Mp such that for each

 2 �Cp the mapping

� 7! h�;  i :=

Z
E

�(de) (e) (9)

is continuous. Note that ��` belongs to Mp for each �nite measure

� on R+ : Write Np = Np(E) for the subset of all those measures �

in Mp with values in f0; 1; :::;1g (counting measures), and N Æ

p =

N Æ

p (E) if additionally �
�
f0g � R

d
�
= 0: We let both sets Np and N Æ

p

inherit the topologies of Mp : The set N
Æ

p will serve as a state space of

our branching particle system. In particular, the Dirac delta measure

Æ(u;a) 2 N
Æ

p describes a single particle having residual lifetime u > 0

and sitting at position a 2 R
d. 3

De�nition 2 (Branching particle system �Z) Abstaining from a more

detailed de�nition, the process �Z =
�
�Zt : t � 0

	
we are interested in can

now be described by the following properties:

� Given a particle Æ(u;a) 2 N Æ

p at time r � 0; its further path in

(0;1) � R
d is t 7!

�
u� (t� r); �t�r

�
; r � t < r + u; where � is

distributed according to Pa :

� If a particle reaches the residual lifetime 0+; it immediate dies, but

still before that it reproduces the random number � of o�spring.

� Newly born particles get independent residual lifetimes, all distributed

as � > 0:

� At time t = 0, we start with a system of particles described by a

measure � 2 N Æ

p .

� Write P� for the law of �Z: It is considered as a measure on the set

D(R+ ;Np) of all Np�valued càdlàg paths ! satisfying additionally

!t 2 N
Æ

p ; t � 0:

For convenience, we call this process ( �Z;P� ; � 2 N Æ

p ) a (d; �; �; 
)�

branching particle system. Note that �Z is a time-homogeneous Markov

process.

Note also that we put maximal independence assumptions in de�ning

the model. The main dependence assumption is that newly born particles

start their evolution from the ancestor's death place.

Integrating out the residual lifetimes, we get back the non-Markovian

process

Zt = �Zt
�
R+ � (�)

�
; t � 0; (10)

already mentioned in Subsection 1.1. 3
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We are interested in the long-term behavior of this (d; �; �; 
)�branching
particle system �Z: For simplicity, we take Poissonian particle systems with

intensity measure 2) i0G(du)`(da) as initial states, where i0 > 0 is a �xed

constant. Note that in this case all the initial residual lifetimes are indepen-

dent copies of the random variable � , which means that all initial particles

are just newly born.

Recall that a random counting measure � on E is called a Poissonian

particle system with intensity measure � 2 Mp ; if it has the log-Laplace

transform

� log E exp h�;� i =


�; 1� e� 

�
;  2 �C +

p ; (11)

[the index + on a set refers to all of its non-negative members, as we

already used R+ = [0;1)]. We write �� for such a Poissonian particle

system with intensity measure �: If � = i0 � � ` with a constant i0 � 0;
a probability law � on (0;1) (and ` the Lebesgue measure on R

d); then
�i0 ��` is a homogeneous Poissonian particle system with intensity i0 and

residual lifetimes distributed according to �: If i0 is additionally random,

then �i0 ��` is said to be a mixed homogeneous Poissonian particle system

with random intensity i0 (�double stochastic� particle system). Analogous

terminology is used for Poissonian particle systems on R
d only.

1.3 Detour: Lifetimes with �nite mean and

the extinction-persistence dichotomy

Let us assume that �Z0 is the homogeneous Poissonian particle system

�i0G�` of intensity i0 > 0 and residual lifetime distributed according to

G (recall that in this case only newly born particles are considered in the

beginning).

First we contrast our model of a (d; �; �; 
)�branching particle system
�Z with the case where the assumption (2) on long tails is replaced by

that of a (non-lattice) lifetime distribution function G with �nite expec-

tation. Then there is a dichotomy between persistent convergence and

local extinction depending on whether d >
�
�

holds or is violated (cf.

[VW99]). This kind of picture is of course known from other variants

of spatially homogeneous (critical) branching processes, see, for instance,

[Lie69, Daw77, Kal77, DF85, Fle88], and [GW91]. An intuitive reason for

this dichotomy is the following: By the critical branching, the o�spring of

any considered �nite subpopulation always goes to extinction. Because of

the smaller mobility in low dimensions, this e�ect leads �nally to a local ex-

tinction of the in�nite population. In large dimensions, however, the higher

mobility allows some of the particles (coming from far away) to enter the

�nite window of observation and thus to show up in the limit population.

Consequently, in low dimensions the local �uctuations (coming from the

2) We do not distinguish in notation between the distribution function G and its

related probability measure G(dt) on (0;1):
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critical branching) prevail, whereas in higher dimensions the e�ect of the

motion is dominating. Altogether, it depends on the dimension of space

and the indices of branching and motion, which of the competing features

(local mass �uctuation or spatial dispersion) wins in the long run.

The same statement holds true for (d; �; �; 
)�branching particle system:

below the critical dimension dc = 
�=� there is local extinction, and above

it there is persistence (see Subsection 1.4 below). However, at the critical

dimension itself, the behavior is completely di�erent from that of systems

with �nite expected lifetime of particles (see Subsection 1.9).

1.4 Long living particles in non-critical dimensions

Let us return to our (d; �; �; 
)�branching particle system �Z according to

De�nition 2. Before coming to our main case, we will brie�y recall the

picture in non-critical dimensions. For this purpose, we take results from

[SW93] and [VW99], where the present extensions to the case with residual

lifetimes included in the description can easily be provided.

Lemma 3 (Long-term behavior in non-critical dimensions) Consi-

der the (d; �; �; 
)�branching particle system �Z starting from a homoge-

neous Poissonian particle system of intensity i0 > 0 and with residual

lifetimes distributed according to G; that is, �Z0 = �i0 G�` : For K > 0;
introduce the time-scaled process �Z(K) :

�Z
(K)
t

�
( � )� ( � )

�
:= �ZKt

�
K
�1( � )� ( � )

�
; t � 0; (12)

and �x t > 0: Then the following statements hold.

(a) (Local extinction in subcritical dimensions) ([VW99]) If d < �
�
;

then �Z
(K)
t su�ers local extinction as K " 1; that is, �Z

(K)
t ! 0 in

probability.

(b) (Persistent convergence in supercritical dimensions) ([SW93,

VW99]) On the other hand, if d >

�
�
, then �Z

(K)
t converges in law

as K " 1 to a homogeneous Poissonian limit population �Z
(1)
t =

�i0 Gt
1
�` of full intensity i0 and with residual lifetimes distributed

according to

G
t
1
(du) :=

sin�


�

t

 du

u
 (t+ u)
; u > 0; (13)

(for the occurrence of G
t
1
; see [Fel71, Theorem in �14.3]).

As pointed out already in Subsection 1.1, the striking new feature rela-

tive to the case of a lifetime distribution with �nite mean (Subsection 1.3)

is that in supercritical dimensions the local dependencies between relatives
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are lost in the limit. This is caused by the heavily tailed lifetime distribution

of the particles � siblings are too fare away in the long run.

According to a result of [VW99], at the critical dimension dc = 
�=�

local extinction does not hold (recall our discussion in Subsection 1.1). Our

purpose is to enlighten this situation. In order to describe this in detail,

we �rst need to introduce a superprocess variant �X of the (d; �; �; 
)�
branching particle system �Z; since the detailed description of the long-term

behavior of �Z depends on a quantity derived from �X:

1.5 The (d; �; �; 
)�superprocess �X

Since [Fel51], it is common to ask also for di�usion type approximations

of branching particle systems. For our present (d; �; �; 
)�model, at least

starting with a �nite initial system, such approximation had been provided

by [KS98], who dropped, however, the residual lifetimes from the descrip-

tion. In this way one looses the Markov property, in fact in both the particle

systems as well as in its high density limits (despite the independence as-

sumptions between motion and aging). In other words, one never will end

up with a Markov superprocess (not even with a time-inhomogeneous one,

contrasting a statement on p.149 in [KS98]). This is the reason why we insist

in keeping the residual lifetimes in our description also in the superprocess

limits.

In order to introduce the limiting (d; �; �; 
)�superprocess �X; we �rst

need to describe the basic �motion� process for this superprocess.

Recall that we are working with the phase space E = R+ � R
d
: In

the R
d�component, we are keeping the particles' ��stable motion process

(�; Pa ; a 2 R
d): Additionally we need an independent (limiting) residual

lifetime process t 7! #t : To introduce it, for our 0 < 
 < 1; we start

from an independent 
�stable subordinator � = f�t : t � 0g in R+ which

is a càdlàg time-homogeneous Markov process with stationary independent

increments having log-Laplace transition function

� logE
�
exp [���t]

�� �0 = u
	
= u� + c� t �



; �; t; u � 0; (14)

where it is convenient for us to normalize the constant c� > 0 to

c� := 1=�(1 + 
): (15)

From this we deduce two other processes, the process

kt := inf fs > 0 : �s > tg; t � 0; (16)

inverse to �; and the (limiting) residual lifetime process

#t := inf f�s � t : �s > t; s � 0g = �kt � t; t � 0: (17)

Note that # is a càdlàg time-homogeneous Markov process, and that dkt is
a continuous and time-homogeneous additive functional of #: (See [Ber96,
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p.123] for background.) Also recall that in the special case 
 = 1
2 the

process t 7! k�0+t is just the local time at 0 of a Brownian motion started

at 0; and # describes the residual lifetimes of the Brownian excursions

from 0:
We pass now to the pair �� := (#; �) of independent processes whose

laws we denote by �Pe ; e 2 E; thus arriving at a càdlàg time-homogeneous

Markov process (��; �Pe ; e 2 E) in E = R+ � R
d
: This �� will serve as the

�motion� process of an intrinsic particle in the superprocess �X we now will

introduce. The time-homogeneous continuous additive functional dkt of ��
will moreover serve as the branching functional for �X:

Recall that D = D(R+ ;Mp) denotes the set of all càdlàg measure-

valued paths ! : R+ !Mp =Mp(E) endowed with the Skorohod topology.

Write P for the set of all probability laws on D furnished with the topology

of weak convergence.

Lemma 4 (Unique existence of the (d; �; �; 
)�superprocess �X) Fix

constants

0 < � � 2; 0 < � � 1; 0 < 
 < 1; and % > 0: (18)

To each measure � 2 Mp ; there is a unique law P� 2 P of a time-

homogeneous Markov process �X with log-Laplace transition functional

� log E� exp


�Xt ;� 

�
=



�; �Vt 

�
; t � 0;  2 �C +

p ; (19)

where the function �v = �V  =
�
�Vt (e) : t � 0; e 2 E

	
� 0 uniquely solves

the integral equation

�vt(e) = �Ee

�
 (��t) � %

Z t

0

dks �v
1+�
t�s (

��s)

�
; t � 0; e 2 E: (20)

We call ( �X; P� ; � 2 Mp) the (d; �; �; 
)�superprocess with branching

rate %: The construction of such a process is nowadays standard and we

will abstain from this (see [Sch99]).

A good interpretation of this measure-valued process �X is provided by

the particle system approximation worked out in the next subsection.

Note that �X is critical:

E�


�Xt ;  

�
=

Z
E

�(de) �Ee (��t); � 2Mp ; t � 0;  2 �C +
p : (21)

Remark 5 (Decoupling) Note that the integral in (20) can be rewritten

as Z t

0

dks �v
1+�
t�s (0; �s) (22)

since Z
1

0

dks 1f#s > 0g = 0; �Pe�a.s., e 2 E; (23)
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which follows just from the de�nitions of the processes k and #: But k

and � are independent, hence from

�Eeks = Euks = 1[u;1)(s) (s� u)
 ; e = (u; a); s � 0; (24)

we conclude that (20) can be rewritten as 3)

�vt(e) =
�
�Ee (��t)

�
� %

Z t

u^t

ds(s� u)
 Ea �v
1+�
t�s (0; �s); (25)

t � 0; e = (u; a) 2 E: 3

1.6 Approximation of �X by particle systems

As already indicated, �X arises from the (d; �; �; 
)�branching particle sys-

tem �Z via a di�usion type approximation, which we now want to make

precise (the proof follows the lines in [KS98] with the obvious changes in-

corporating the residual lifetimes):

Lemma 6 (Approximation of �X by particle systems) For n � 1; let
�Z(n) denote a (d; �; �; 
)�branching particle system but with lifetime dis-

tribution function G of Hypothesis 1 (b) replaced by G
(n) :

G
(n)(u) := G

�
n
�=


u
�
; u � 0: (26)

Moreover, assume that the �Z(n) start with (deterministic) initial populations
�Z
(n)
0 2 N Æ

p satisfying

1

n

�Z
(n)
0 �!

n"1
� in Mp : (27)

Then
1

n

�Z(n) =)
n"1

�X in law, (28)

where �X is the (d; �; �; 
)�superprocess from Lemma 4 starting from �;

and with special branching rate

% =
sin�


�

cf

cG
(29)

with cf from (3) and cG from (2).

In simple terms, if in the (d; �; �; 
)�branching particle system �Z the

particles' lifetimes � are replaced by the rescaled (and smaller) lifetimes

n
��=


�; if their unit masses are replaced by the small masses 1
n
; and if the

initial populations �Z
(n)
0 are chosen such that the rescaled measures 1

n
�Z
(n)
0

converge as in (27), then the whole rescaled branching particle systems
1
n
�Z(n) tend to the (d; �; �; 
)�superprocess �X of Lemma 4 with special

branching rate % as de�ned in (29).

3) Here ds indicates that the Stieltjes integral is formed with respect to the variable

s [of the monotone function s 7! (s� u)
 ]:
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1.7 The marginal measure process X

The residual lifetime process #; starting from a non-zero state, is deter-

ministic until it reaches the state 0: Thus, the �motion� process �� does

not have transition densities, hence the superprocess �X will also not have

�smooth� states. But integrating out the residual lifetimes, that is, passing

to

Xt(�) := �Xt

�
R+ � (�)

�
; t � 0; (30)

the situation changes, and this will be enough for our description for the

long-term behavior of �Z: In fact, in dimensions d < �
�
; the measure states

Xt are absolutely continuous. This we will verify by modifying of a general

criterion in [Kle00]. For convenience, we expose this as a proposition, 4) the

proof is postponed to Subsection 2.2.

For this purpose, we need to introduce further notation. If F is a

function or a generalized function on R
d
; we denote by �F the �constant

extension� from R
d to E = R+ � R

d :

�F (e) := F (a); e = (u; a) 2 E: (31)

We apply this in particular to the constantly extended Æ�functions Æa : As

a non-negative generalized function can be identi�ed with a measure, for

a 2 R
d �xed, Æa can be identi�ed with the measure

B 7! 1fBa 6= ;g; Borel set B � E; (32)

on E; where Ba denotes the section of B at a 2 R
d
: Note that the

random density Xt(a) = hXt ; Æai at a 2 R
d
; if it makes sense, coincides

with h �Xt ; Æai: Finally, let � � 0 denote a bounded continuous function on

R
d with h`; �i = 1; and consider the regularization

�"(a) := "
�d
�("�1a); a 2 R

d
; " > 0; " # 0; (33)

of the Æ�function Æ0 on R
d
:

Proposition 7 (Marginal measure process X) Let d <
�
�
; and �x

t > 0. Consider the marginal process X = �X
�
R+ � (�)

�
of the (d; �; �; 
)�

superprocess �X with law P� ; � 2Mp(E):

(a) (Random density at a point) For all a 2 R
d
; the limit in law

lim
"#0

hXt ; Æa � �"i =: Xt(a) = hXt ; Æai (34)

exists. Moreover, the random density Xt(a) of Xt at site a has the

log-Laplace transform

� log E� exp
�
��Xt(a)

�
=



�; �Vt(�Æa )

�
; � � 0; (35)

4) In [Kle00], Achim Klenke invited to think about interesting new examples meeting

his criterion. In a sense, our proposition can be counted as such an example.
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where (for � � 0 and a 2 R
d �xed)

�v = �V (�Æa ) =
�
�Vt(�Æa ) (e

0) : t > 0; e0 = (u0; a0) 2 E
	
� 0 (36)

uniquely solves equation (20) with  replaced by �Æa ; that is,

�vt(e
0) = � pt(a� a

0) � % �Ee0

Z t

0

dks �v
1+�
t�s (0; �s); (37)

t > 0; e0 = (u0; a0) 2 E:

(b) (Absolutely continuous measure states) P��almost surely, Xt is

absolutely continuous.

Note that the index 
 does not enter into the dimension restriction

d <
�
�
of this proposition. Roughly speaking, the enlargement of the lifetime

of an �intrinsic particle� in the superprocess does not have an e�ect to the

local issue of smoothness of the marginal measure states Xt . In particular,

concerning absolute continuity of the states, there is no di�erence between

the �classical� case corresponding to 
 = 1 and our cases 
 < 1: Of course,
one expects singularity of the marginal measure states if d � �

�
:

We introduced the random densities Xt(a); since in some special cases

they will enter into the description of some mixed homogeneous Poisso-

nian particle systems occurring in our main result (Theorem 11 below).

But before returning to particle systems, we expose some other interesting

properties of the superprocess �X: In particular, the long-term behavior of
�X will be �parallel� to our branching particle system case.

1.8 Scaling properties of �X at the critical dimension

The next property follows from the log-Laplace representation in Lemma 4

by standard arguments (we skip the details).

Proposition 8 (Scaling properties) Let d = 
�
�
: Then the (d; �; �; 
)�

superprocess has the following properties.

(a) (Scaling for �nite initial masses) For each a 2 R
d and K > 0;

the process��
K
�d=� �XKt

�
K
�1( � )�K

1=�( � )
��
t�0

��� �X0 = Æ(0;a)

�
(38)

coincides in law with the processn
�X
��� �X0 = K

�d=�
Æ(0;K�1=�a)

o
: (39)

(b) (Self-similarity) If instead �X0 = i0 Æ0 � `; then �X is self-similar:n
K
�d=� �XKt

�
K
�1( � )�K

1=�( � )
�
: t � 0

o
L

= �X; K > 0: (40)
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Scaling properties are often a very useful tool. In the present case, we

may combine them with Proposition 7, in order to get immediately the

following result. De�ne �X(K) just as we introduced �Z(K) in (12). Recall

the limiting residual lifetime distribution G
t
1

introduced in (13).

Corollary 9 (Limiting scaling behavior of �X) Let d = 
�
�
; and �x

t > 0: Then the (d; �; �; 
)�superprocess �X has the following limiting scal-

ing behavior.

(a) (Asymptotics of �X(K) for �nite initial masses) Fix a 2 R
d
: As-

sume that �X0 = K
d=�

Æ(0;K1=�a) : Then

�X
(K)
t =)

K"1
X
0

t(0)G
t
1
� ` in law, (41)

where �X 0 is the (d; �; �; 
)�superprocess starting from �X 0

0 = Æ(0;a) ;

and X
0

t(0) is the random density at time t at the origin from the

marginal process X 0 := �X 0
�
R+ � ( � )

�
according to Proposition 7 (a).

(b) (Persistent convergence of �X(K)) If instead �X0 = i0 Æ0 � ` for

i0 > 0; then
�X
(K)
t =)

K"1
Xt(0)G

t
1
� ` in law, (42)

where Xt(0) is again the random density at time t at 0 of the

marginal process X = �X
�
R+ � (�)

�
:

Specifying �rst to t = 1 and then to K = t in the previous corollary

and paying attention only to the spatial marginal measures leads to the

following result.

Corollary 10 (Long-term behavior of X) Let d = 
�
�
: The marginal

X of the (d; �; �; 
)�superprocess �X has the following long-term behavior.

(a) (Asymptotics of Xt for t�dependent �nite initial masses) Con-

sider a whole family ft �X : t � 0g of (d; �; �; 
)�superprocesses start-

ing from t �X0 = t
d=�

Æ(0;t1=�a) ; a 2 R
d
: Then for the spatial marginal

processes t
X := t �X

�
R+ � ( � )

�
we have

t
Xt =)

t"1
X
0

1(0) ` in law, (43)

where X
0

1(0) is the random density at time 1 at the origin from the

marginal process X
0 := �X 0

�
R+ � ( � )

�
according to Proposition 7 (a)

of the (d; �; �; 
)�superprocess �X 0 starting from �X 0

0 = Æ(0;a) :

(b) (Persistent convergence of Xt) If instead �X0 = i0 Æ0 � `; i0 > 0;
then

Xt =)
t"1

X
0

1(0) ` in law, (44)

where X
0

1(0) is as in (a) but with �X 0

0 = i0 Æ0 � `.
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Note that in the superprocess setting with �X0 = i0 Æ0 � ` as in (b) it is

easy to understand why in the critical dimension mixed Lebesgue measures

occur in the spatial component in the limit as K " 1; instead of the zero

measure in the �classical� case of a (d; �; �)�superprocess. This behavior

is caused by the coincidence that one has nice scaling properties and the

existence of absolutely continuous states. While (d; �; �)�superprocesses
have singular states at their critical dimension dc = �

�
; in contrast the

spatial projections of (d; �; �; 
)�superprocesses have absolutely continuous

states at their critical dimension dc =
�

�

(< �
�
).

Recall also that the statement in Corollary 10 (b) is quite analogous to

a result on the super-Brownian reactant with a super-Brownian catalyst at

the critical dimension d = 2, see [FK99]. (Note that also there an analog of

part (a) of Corollary 10 can be established.)

1.9 Persistent convergence of Z at the critical

dimension

Now we return to our marginal branching particle system Z = �Z
�
R+ � (�)

�
:

First we state the analog of Corollary 10 (b). Note that the following theo-

rem deepens the statement in [VW99] that non-trivial limit points exist.

Theorem 11 (Persistent convergence to a mixed Poisson system)

Consider the (d; �; �; 
)�branching particle system �Z with �Z0 = �i0G�` :

Assume that d = 
�
�
. Then

Zt =)
t"1

�X1(0) ` in law, (45)

where X1(0) is the random density at time 1 at 0 of the marginal process

X = �X
�
R+ � (�)

�
of the (d; �; �; 
)�superprocess �X with �X0 = i0 Æ0 � `:

In other words, the limit population is mixed homogeneous Poisson,

and its random intensity is just X1(0), the random density at time 1 at the
origin of the marginal process X of the (d; �; �; 
)�superprocess �X starting

from i0 Æ0 � ` .

Theorem 11 will actually be derived from our next theorem, and this

will be provided in the end of the next subsection.

1.10 Re�ned asymptotics

The progress relative to [VW99], exhibited in Theorem 11, was possible

by revealing a re�ned asymptotics as K " 1 for the marginal Z(K) :=
�Z(K)

�
R+ � (�)

�
of the rescaled (d; �; �; 
)�branching particle system �Z(K)

starting from �nite and asymptotically large initial populations [the particle

analog of Corollary 9 (a)], which we now want to deal with.

For this purpose, we need to introduce further notation. Let Cp = Cp(R
d)

denote the set of all continuous functions ' : Rd ! R such that j'j � c' �p
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for some constant c' and such that '=�p can continuously extended to

a function on the one-point compacti�cation _R
d
: Note that the �constant

extension� �' of ' 2 Cp belongs to �Cp :
For ' 2 C+p ; set

5)

Qt' (a) := 1�EÆ(�;a) exp


�Zt ;� �'

�
= 1�EÆ(�;a) exp hZt ;�'i; (46)

t � 0; a 2 R
d
: Note that Qt' (a) occurs in the log-Laplace functional of

the state �Zt of the (d; �; �; 
)�branching particle system starting from the

homogeneous Poissonian particle system �Z0 = �i0 G�` :

� logE�i0 G�` exp


�Zt ;� �'

�
= hi0 `;Qt'i: (47)

Applied to the rescaled process �Z(K) introduced in (12) we get

� logE�i0 G�` exp


�Z
(K)
t ;� �'

�
= � logE�i0 G�` exp



Z
(K)
t ;�'

�
= i0

Z
Rd

da Kd=�
QKt' (K1=�

a): (48)

The asymptotics we are interested in concerns the quantity

V
(K)
t ' (a) := K

d=�
QKt' (K1=�

a) (49)

occurring in the integrand in (48). Here is our key result :

Theorem 12 (Re�ned asymptotics) Assume that d = 
�
�

. Then, for

each ' 2 C +
p ; t > 0; and a 2 R

d
;

V
(K)
t ' (a) �!

K"1

�Vt
�
�(')Æ0

�
(0; a) =: vt(a); (50)

where

�(') :=

Z
Rd

db
�
1� e�'(b)

�
; (51)

and �V
�
�(')Æ0

�
is the unique solution to equation (37) in the case � = �(')

and a = 0; and with special % as in (29). Consequently, writing

vt(a) := �Vt
�
�(')Æ0

�
(0; a); t > 0; a 2 R

d
; (52)

then v = fvt(a) : t > 0; a 2 R
dg � 0 solves

vt(a) = �(') pt(a) � %

Z t

0

d(s
) Eav
1+�
t�s (�s) (53)

t > 0; a 2 R
d
:

5) By an abuse of notation, PÆ(�;a)
denotes the (deterministic) law

R
1

0
dG(u)PÆ(u;a)

of �Z started from a single particle with position a and residual life time � distributed

by G: Also in other cases of �mixed� initial states we will use such type of notation.
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The proof of this theorem will be given in Subsection 2.6 below, after

preparations in the Subsections 2.3 � 2.5.

We mention that a re�ned asymptotics for some Markov branching mod-

els (concerning exponential lifetimes) with in�nite variance was recently also

given by [Kle98].

Now we want to explain how Theorem 12 is related to the mentioned

asymptotics for the case of large but �nite initial populations.

Corollary 13 (Asymptotics starting from large �nite populations)

Let d = 
�
�
: Assume 6) �Z0 = [Kd=�]Æ(�;K1=�a) with a 2 R

d
: Then for the

marginal rescaled processes Z(K) := �Z(K)
�
R+ � (�)

�
and t > 0 we have

Z
(K)
t =)

K"1
�Xt(0) ` in law, (54)

where Xt(0) is the random density at time t at 0 of the marginal process

X of the (d; �; �; 
)�superprocess �X with �X0 = Æ(0;a) .

Clearly, the previous corollary can be restated in terms of a long-term

behavior analogously to Corollary 10 (a).

Proof of Corollary 13 Fix t > 0; a 2 R
d
; and ' 2 C+

p : By the

branching property and the de�nition (12) of rescaling, for K > 0;

logE[Kd=�]Æ
(�;K1=�a)

e�hZ
(K)

t ;'i = [Kd=�] logEÆ
(�;K1=�a)

e�hZKt;'i: (55)

Using the de�nition (46) of Q'; the limit as K " 1 of the right hand side

of the latter equation equals

lim
K"1

[Kd=�] log
�
1�QKt' (K1=�

a)
�
= � lim

K"1
V
(K)
t ' (a) = �vt(a); (56)

where we used notation (49) and Theorem 12. But by the de�nition (50) of

vt(a); the log-Laplace formula (35) in Proposition 7,

�vt(a) = log EÆ(0;a) exp
�
��(')Xt(0)

�
: (57)

However by formula (51), this is the log-Laplace transform of the mixed

homogeneous Poissonian particle system �Xt(0)` as desired. This �nishes

the proof (based on Theorem 12).

Proof of Theorem 11 We need to combine (48) and (50) to conclude

for

� logE�i0 G�` exp hZt ;�'i �!t"1
i0

Z
Rd

da �V1
�
�(')Æ0

�
(0; a) (58)

6) [z] denotes the integer part of z:
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with ' 2 C +
p and �(') as in (51), since the right hand side in (58) equals

the log-Laplace transform of the mixed homogeneous Poissonian particle

system �X1(0)` : For this we only have to justify that in

Z
Rd

da td=�Qt' (t1=�a) (59)

from (48) the limit can be provided under the integral. In fact, by the

de�nition (46) of Q;

Qt' (a) � EÆ(�;a) hZt ; 'i = Ea'(�t); (60)

where we used the criticality of the process Z [see (86) below]. Hence

t
d=�

Qt' (t1=�a) � t
d=�

Z
Rd

db pt(b� t
1=�

a)'(b): (61)

But by the self-similarity

K
d=� pKs(K

1=�
b) = ps(b); K; s > 0; b 2 R

d
; (62)

of the stable transition densities of Hypothesis 1 (a), the right hand side of

(61) can be rewritten as

Z
Rd

db p1(t
�1=�

b� a)'(b) (63)

which converges to

p1(a)

Z
Rd

db '(b) =: p1(a) k'k1 (64)

as t " 1 (where we also used the symmetry of ps): Finally, integrating the
expressions in (63) and (64) with respect to da we get identically k'k1 :

Thus, we can apply the extended dominated convergence theorem to justify

that the limit in (59) can be provided under the integral. This �nishes the

proof (based on Theorem 12).

2 Remaining proofs

After some preparation, we will demonstrate in Subsection 2.2 that X has

random densities in each point. The main purpose however is to prove the

re�ned asymptotics Theorem 12, which is done in the Subsections 2.3 � 2.6.

2.1 Preliminaries: Some notation

With c we will always denote a positive constant which might vary from

place to place. A c with some additional mark (as cf or cG) will however
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denote a speci�c constant. A constant of the form c(#) means, this constant

�rst occurred related to formula line (#).
Recall that p denotes the stable transition density function from Hy-

pothesis 1 (a). From the self-similarity (62) we immediately get the following

simple estimate

pr(a) � c(65) r
�d=�

; r > 0; a 2 R
d
: (65)

On the other hand, we also have

pr(a) � c(66) r jaj
�d��

; r > 0; a 2 R
d
; (66)

see, for instance, [FG86, formula (A.8)].

We denote by �S =
�
�St : t � 0

	
the semigroup of the Markov process ��:

Recall also that the boldface letter P is related to a law of a particle

system, the blackboard letter P to superprocesses, and the italics P to a

law of a �basic� random object as �; �; �: Corresponding expectations are

expressed as E; E ; E; respectively.

2.2 Absolutely continuous measure states of X

(proof of Proposition 7)

Here we will prove Proposition 7. It will be based on some modi�cation

of a general criterion for absolutely continuous measure states of catalytic

superprocesses given in [Kle00]. Recall that d < �
�
: Fix � 2 Mp(E) and

t > 0.

1Æ (Absolutely continuous expectation) By the expectation formula (21),

the measure E�Xt on R
d is absolutely continuous with continuous density

function

a 7!

Z
E

�
�
d(u; b)

�
pt(b� a) =: � � pt (a): (67)

2Æ (Absolutely continuous states) Assume for the moment, that

lim
"#0

�
� log E� exp



Xt ; �� Æa � �"

��
=: w(a; �) (68)

exists for each a 2 R
d and � > 0; and that

@

@�
w(a; �)

��
�=0+

= � � pt (a); a 2 R
d
: (69)

Then, for each a 2 R
d
; the random density Xt(a) = hXt ; Æai exists as

claimed in (34), has log-Laplace transform

� log E� exp
�
��Xt(a)

�
= w(a; �); � > 0; (70)

and �full� expectation

E�Xt(a) = � � pt (a): (71)
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Hence, combined with step 1Æ; we recognize that the singular measure com-

ponent of the random measure Xt must disappear a.s., that is, we get the

absolute continuity claim (b) (see, for instance, [Kle00, Lemma 2.2] for a

more careful formulation).

3Æ (Uniform regularity) To attack the proof of (68) and (69), we go back

from the marginal measure Xt = �Xt

�
R+ � (�)

�
to �Xt ; and use the log-

Laplace representation (19). This means we have to study the log-Laplace

equation (20) with the function  replaced by

(u; b) 7! � Æa � �"(b) =: � Æa
"
(u; b); (72)

which is constant in the �rst coordinate of (u; b) 2 E; and we have to let

" # 0: Note that Æa
"

approaches the �constantly extended Æ�function� Æa

on E; which of course does not belong to the set �C+p of test functions

occurring in the log-Laplace equation (20), so we have to justify its usage

in order to come to equation (37).

First we show that the family
�
Æa : a 2 R

d
	

of measures (generalized

functions) on E has the following regularity property, uniformly in space:

For all u � 0 and 0 � r � t;

sup
a;b2Rd

�E(u;b)

Z t

r

dks
�
�St�sÆa (��s)

�1+�
(73)

� c(74) t
�d=�

Z
fu_r� s� tg

ds(s� u)
 (t� s)��d=� < 1: (74)

In fact,
�St�sÆa (��s) = Æa � pt�s (�s) = pt�s(�s � a); (75)

and, since k and � are independent, by using (24), the expectation expres-

sion in (73) is bounded from above by

%

Z
fu_r� s� tg

ds(s� u)
 Eb p
1+�
t�s (�s � a)

� c t
�d=�

Z
fu_r� s� tg

ds(s� u)
 (t� s)��d=�; (76)

where we �rst applied the simple estimate (65) to p� ; then Chapman-

Kolmogorov to the expectation on p; and �nally again (65). But the integral
in (76) is �nite since 
 and �d=� belong to (0; 1): Consequently, (74) is
true.

4Æ (Uniform integrability in the regularization) Next we verify that for

u � 0 and a; b 2 R
d
;

lim
r"t

lim sup
"#0

�E(u;b)

Z t

r

dks
�
�St�sÆa

"
(��s)

�1+�
= 0 (77)
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[recall notation (72)]. Indeed, by Jensen's inequality,

�
�St�sÆa

"
(��s)

�1+�
�

Z
Rd

da0 �"(a
0)
�
�St�sÆa+a0 (��s)

�1+�
: (78)

Therefore, the expectation expression in (77) can be bounded from above

by

sup
a0;b2Rd

�E(u;b)

Z t

r

dks
�
�St�sÆa0 (��s)

�1+�
(79)

which does not dependent on " and, moreover, tends to 0 as s " t by the

estimate in (74). This gives (77).

5Æ (Conclusions) Since according to step 3Æ; for a in R
d �xed, Æa is a

regular measure on E; then, by [Kle00, Proposition 1.2], equation (20) with

 replaced by �Æa where 0 < � � 1, that is equation (37), has exactly one

solution �v = �V (�Æa ); and

@

@�
�vt(e

0)
��
�=0+

= pt (a� a
0); e

0 = (u0; a0) 2 E: (80)

Moreover, as in the proof of formula line (2.12) in [Kle00],

�Vt
�
� Æa

" �
(e0) �!

"#0

�Vt(�Æa )(e
0); e

0
2 E: (81)

Hence, from the general domination formula

0 � �Vt (e) � �Ee (��t); t � 0; e 2 E;  2 �C +
p ; (82)

and dominated convergence, we obtain



�; �Vt(� Æa

"
)
�
�!
"#0



�; �Vt(�Æa )

�
:

But this gives the needed statements (68) and (69) in step 2Æ with w(a; �) =

�; �Vt(�Æa )

�
; and at the same time claims (35) � (37), �nishing the proof of

Proposition 7.

2.3 Renewal type equation and its scaling

Our starting point for the asymptotic properties of V (K)
' as needed for

Theorem 12 is the fact, that it satis�es an integral equation (Lemma 15

below). For this we need �rst some further notation.

Recall that � with law G denotes the lifetime of a newly born particle in

our branching particle system �Z: Let �1 ; �2 ; ::: denote independent copies
of �; and set �n :=

P
1�i�n �i ; n � 0: With

gt :=
X
n�1

1f�n � tg ; t � 0; (83)
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Figure 2: Residual lifetime process #Æ

we get the �generation number process� (see Figure 1), and with

#
Æ

t := �gt+1 � t; t � 0; (84)

the residual lifetime process related to a single particle in our branching

particle system (see Figure 2). Recalling that � denotes the particles' mo-

tion process, we pass now to the pair ��Æ := (#Æ; �) of independent processes

which laws we denote by �P Æ

e ; e 2 E: Note that (��Æ; �P Æ

e ; e 2 E) is a càdlàg

time-homogeneous Markov process in E = R+ �R
d
; and that the laws �P Æ

e ;

e 2 E; describe the renewal process � and the generation number process

g as well. Recall the notation Q' introduced in (46).
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Lemma 14 (Renewal type equation) Fix ' 2 C +
p : Then

Qt' (a) = Ea

�
1� e�'(�t)

�
� cf

�EÆ

(�;a)

Z
(0;t]

dgs
�
Qt�s' (�s)

�1+�
; (85)

t � 0; a 2 R
d
:

Proof Follow the proof of [KS98, Lemma 3] with the obvious changes

to adapt to our setting with the residual lifetimes in the description. In

particular, �rst distinguish between � � t and � < t; then, in the latter

case further iterate.

Consequently, despite the lifetime distribution is not exponential, one

can exploit the renewal in the time points of death of a particle, and some

invariance properties related to these points.

Note that (85) yields the expectation formula

EÆ(�;a)



�Zt ; �'

�
= Ea'(�t); a 2 R

d
; t � 0; ' 2 C

+
p ; (86)

(replace, for instance, ' by �' and di�erentiate with respect to � > 0 at

� = 0+):

Recall that we are interested in the rescaled quantity V
(K)

' (where

K > 0 and ' 2 C +
p ) introduced in (49). For t � 0 and a 2 R

d
; put

W
(K)
t ' (a) := K

d=�
EK1=�a

�
1� exp

�
�'(�Kt)

��
; (87)

and introduce the (right-continuous) renewal function N corresponding to

the lifetime distribution function G :

Ns := Egs =

1X
k=1

G
�k(s); s � 0; (88)

[recall notation (83)]. Note that by assumption (2) in Hypothesis 1 (b),

NK � DK

 as K " 1 (89)

with the constant

D :=
sin�


�

1

cG
: (90)

Lemma 15 (Scaled equation) Fix K > 0 and ' 2 C +
p : The functional

V
(K)

' de�ned in (49) satis�es the integral equation

V
(K)
t ' (a) = W

(K)
t ' (a)� cf

Z
(0;t]

dsNKs
K


Ea

�
V
(K)
t�s ' (�s)

�1+�
; (91)

t � 0; a 2 R
d
:
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Proof Scaling (85) as in (49), the left hand side of (85) changes to

V
(K)
t ' (a); and the �rst part of the right hand side of (85) changes to the

W
(K)�term as in (91). For the remaining part, exploit the independence of

the generation number process g and the motion process �; and apply the

de�nition (88) of N to get

� cf K
d=�

EK1=�a

Z
(0;Kt]

dNs
�
QKt�s' (�s)

�1+�
(92)

= �cf K
d=�

Z
(0;t]

dsNKs EK1=�a

�
QK(t�s)' (�Ks)

�1+�
: (93)

Then by the self-similarity of the stable process �; that is,

EK1=�a

�
K
�1=�

�Ks 2 �
�
= Ea (�s 2 � ); (94)

a 2 R
d
; s � 0; K > 0; and the assumed critical parameter constellation

d�=� = 
; using once more (49), also the remaining term of (91) occurs,

�nishing the proof.

2.4 Convergence to the limiting equation

Our next task is to let K " 1 in the integral equation (91), provided

that t > 0: For this purpose, we �rst note that by the self-similarity as

formulated in (94), W (K) de�ned in (87) can be written as

W
(K)
t ' (a) =

Z
Rd

db pt
�
K
�1=�

b� a
��
1� e�'(b)

�
: (95)

By dominated convergence, this implies

W
(K)
t ' (a) �!

K"1
�(') pt(a); t > 0; a 2 R

d
; (96)

with �(') from (51). On the other hand, by (89), for T > 0 �xed,

NKs

NK
�!
K"1

s


; uniformly in s 2 [0; T ]: (97)

In fact, take " 2 (0; T ) and deal with s � " and " < s � T separately.

Then from (89) and (97),

NKs

K

=

NK

K


NKs

NK
�!
K"1

Ds

 uniformly in s 2 [0; T ]: (98)

Inserting (96) and (98) into (91) by using the fact that

cfD = % (99)
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[recall (90) and (29)], we expect that

V
(K)
t ' (a) �!

K"1
vt(a) (100)

where v solves equation (53).

We start with showing (100) in some uniform L
1 =

�
L
1(da); k � k1

�
sense. For some later analytic extension argument, we introduce an addi-

tional factor � � 0 in front of '; and write

v
(�)
t (a) := �Vt

�
�(�')Æ0

�
(0; a); t > 0; a 2 R

d
; (101)

instead of vt(a): Then (53) changes to

v
(�)
t (a) = �(�') pt(a) � %

Z t

0

d(s
) Ea
�
v
(�)
t�s(�s)

�1+�
; (102)

t > 0; a 2 R
d
:

Lemma 16 (Uniform L
1�convergence for small �) Fix 0 < L < T

and ' 2 C +
p : There exists a constant � = �(T; ') > 0 such that for

V
(K)(�') de�ned in (49) we have

lim
K"1

sup
L� t�T

sup
�2 [0;�]




V (K)
t (�') � v

(�)
t





1
= 0; (103)

where v
(�) � 0 solves (102) with the constant % = cfD:

To prepare for the proof of this lemma, by using equations (91) (with '

replaced by �') and (102), we can estimate the L1�norm expression in the

claim (103):


V (K)
t (�') � v

(�)
t





1
� A1 + cf A2 + cf A3 + cf A4 + cfDA5 : (104)

Here, by using the identityZ
Rd

da EaF (�s) = kFk1 ; measurable F � 0; s � 0; (105)

for �xed t > 0 and � � 0;

A1 :=



W (K)

t (�') � �(�') pt





1
; (106a)

A2 :=

Z
(0;t)

dsNKs
K





�V (K)
t�s (�')

�1+�
�
�
v
(�)
t�s

�1+�



1
; (106b)

A3 :=
(NKt �NKt�)

K





�V (K)
0 (�')

�1+�



1
; (106c)

A4 :=
���NK
K


�D

���




Z
(0;t)

dsNKs
NK

�
v
(�)
t�s

�1+�



1
; (106d)

A5 :=

����
Z
(0;t)

� dsNKs
NK

� d(s
)
�


�v(�)t�s

�1+�



1

����: (106e)
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2.5 Uniform L1�convergence (proof of Lemma 16)

Here we prove Lemma 16. We proceed in several steps.

1Æ (Error term A1) First of all, we consider any constant � > 0 and all

� 2 [0;�]: By (95),

A1 �

Z
Rd

da

Z
Rd

db
���pt�K�1=�

b� a
�
� pt(a)

��� �1� e��'(b)
�

(107)

� c'�

Z
Rd

db �p(b)

Z
Rd

da
���pt�K�1=�

b� a
�
� pt(a)

��� : (108)

For " > 0; there exists a constant C = C(") such that

Z
jbj�C

db �p(b) � "; (109)

whereas the internal integral in (108) is bounded by 2 since the ps are

probability density functions. On the other hand, by the uniform continuity

of the stable transition density functions p on [L; T ] � R
d, for jbj � C

the internal integral in (108) is smaller then " for K su�ciently large

(depending on C). This shows that

lim
K"1

sup
L� t�T;

�2 [0;�]

A1 = 0: (110)

2Æ (Error term A3) Use the simply bound




�V (K)
0 (�')

�1+�



1
� K

�d=�
�k'k1 ; (111)

which follows from

V
(K)
0 (�') (a) � �K

d=�
'(K1=�

a) (112)

[by (91) and (87)], criticality �d=� = 
; and

lim
K"1

sup
L�t�T

(NKt �NKt�) = 0; (113)

(see, e.g., [Fel71, (9.1.9)]), in order to see that

lim
K"1

sup
L� t�T;

�2 [0;�]

A3 = 0; (114)

too.

3Æ (Error term A4) From (102), by domination, for s > 0;

0 � v
(�)
s (a) � �(�') ps(a) � � k'k1 ps(a): (115)
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Hence, using the simple estimate (65) and the identity d�=� = 
; we get

0 �
�
v
(�)
s (a)

�1+�
� c

�
� k'k1

�1+� ps(a)

s

: (116)

However, the ps are probability density functions. Therefore

A4 � c
�
� k'k1

�1+� ���NK
K


�D

���
Z
(0;t)

dsNKs
NK

1

(t� s)

: (117)

But by substitution, for 0 � r < t;

Z t

r

d(s
) (t� s)�
 � 
 t
1�


Z 1

r=t

ds

s1�
 (1� s)

< 1: (118)

Thus, from (97), uniformly in 0 � r < t � T;

Z
[r;t)

dsNKs
NK

1

(t� s)

�!
K"1




Z 1

r=t

ds

s1�
 (1� s)

� 
 B(
; 
 + 1) (119)

with B denoting the Beta function. Indeed, approximate the integral by

sums, use monotonicity in time and continuity of the limit in (97). Thus,

by (98),

lim
K"1

sup
0<t�T;

�2 [0;�]

A4 = 0: (120)

4Æ (Error term A5) Let " 2 (0; 1): We split the integral in A5 concerning

the cases (1 � ")t � s < t and 0 � s � (1 � ")t: In the �rst case, we

pass from the di�erence to the sum and use the estimate (116). Then apply

(119) with r = (1 � ")t to see that we end up with an "�term, uniformly

in t; �; and K: In the second case, we use that the map

s 7!




�v(�)t�s

�1+�



1

on
�
0; (1� ")t

�
(121)

is bounded and continuous, and the weak convergence

dsNKs
NK

�!
K"1


 ds

s1�

(122)

on the same interval, uniformly in t: Putting both together, we get

lim
K"1

sup
L� t�T;

�2 [0;�]

A5 = 0: (123)

5Æ (A bound for A2) Using the elementary inequality

��x1+� � y
1+�

�� � (1 + �) jx� yj
�
x
� + y

�
�
; x; y � 0; (124)
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the domination

0 � V
(K)
t (�') (a) � W

(K)
t (�') (a) (125)

[by (91)] implying

0 � V
(K)
t (�') (a) � c� k'k1 t

�d=� (126)

[recall (95) and (65)], as well as dominations (115) and (65), we see that,

for 0 � s < t; the L1�norm in A2 is bounded by

c
�
� k'k1

��
(t� s)�




V (K)
t�s (�') � v

(�)
t�s




1
: (127)

Thus,

A2 � c
�
� k'k1

�� Z
(0;t)

dsNKs
K




V (K)
t�s (�') � v

(�)
t�s




1

(t� s)

: (128)

6Æ (A Gronwall type inequality) Inserting (110), (114), (120), (123), and

the bound (128) into the estimate (104) gives the following statement (recall

that � > 0 is �xed and not yet speci�ed): For each " > 0; there is a

constant K0 = K0(";�) > 0 such that



V (K)
t (�')� v

(�)
t




1
� "

+ c(129)

�
� k'k1

�� Z
(0;t)

dsNKs
K




V (K)
t�s (�')� v

(�)
t�s




1

(t� s)


(129)

for all K � K0 and t 2 [L; T ]; as well as � 2 [0;�]: From the domination

formulas (125) and (115) as well as the representation (95) of W (K) we

obtain 

V (K)
t�s (�')� v

(�)
t�s




1
� 2� k'k1 ; (130)

uniformly in K > 0; s < t and � 2 [0;�]: Hence,

�D
(K)
t := sup

s2 [0;t);

�2 [0;�]



V (K)
t�s (�')� v

(�)
t�s




1

(131)

is bounded in K > 0 and t > 0: Then from the Gronwall type inequality

in (129) we get

�D
(K)
t � " + c(129)

�
� k'k1

�� �D
(K)
t

NK

K


Z
(0;t)

dsNKs
NK

1

(t� s)

; (132)

for all K � K0 and t 2 [L; T ]: But by the convergence and boundedness

in (119),

lim sup
K"1

sup
0< t�T

Z
(0;t)

dsNKs
NK

1

(t� s)

:= c(133) < 1: (133)
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Thus, introducing the �nite number

�D := lim sup
K"1

sup
L� t�T

�D
(K)
t ; (134)

from (132) and asymptotics (89) we obtain

�D � " + c(129)

�
� k'k1

�� �DD c(133): (135)

Since " is arbitrary, we arrive at

�D � c(136)

�
� k'k1

�� �D: (136)

Choosing now � > 0 so small that

c(136)

�
� k'k1

��
< 1; (137)

we obtain �D = 0: Hence the claim (103) is true. This �nishes the proof of

Lemma 16.

2.6 Pointwise convergence (proof of Theorem 12)

The L1�convergence implies actually pointwise convergence:

Corollary 17 (Pointwise convergence for small �) Fix T > 0; ' in

C +
p ; and take � = �(T; ') > 0 as in Lemma 16. Then for each � 2 [0;�];

V
(K)
t (�') (a) �!

K"1
v
(�)
t (a); t 2 (0; T ]; a 2 R

d
: (138)

Proof The proof is very similar to the one of Lemma 16 in the previous

subsection, so we skip some details. In analogy to (104), for �xed t 2 (0; T ];
a 2 R

d
; and � 2

�
0;�(T; ')

�
we have

���V (K)
t (�') (a) � v

(�)
t (a)

��� � A
0

1 + cf [A
0

2 +A
0

3 +A
0

4 +DA
0

5]; (139)

where

A
0

1 :=
���W (K)

t (�') (a) � �(�') pt(a)
���;

A
0

2 :=

Z
(0;t)

dsNKs
K


Z
Rd

db ps(b� a)
����V (K)

t�s (�') (b)
�1+�

�
�
v
(�)
t�s(b)

�1+����;

A
0

3 :=
(NKt �NKt�)

K


Z
Rd

db pt(b� a)
�
V
(K)
0 (�') (b)

�1+�
;

A
0

4 :=
���NK
K


�D

���
Z
(0;t)

dsNKs
NK

Z
Rd

db ps(b� a)
�
v
(�)
t�s(b)

�1+�
;

A
0

5 :=

����
Z
(0;t)

� dsNKs
NK

� d(s
)
�Z

Rd

db ps(b� a)
�
v
(�)
t�s(b)

�1+�����:
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Clearly, A01 ! 0 and A
0

5 ! 0 as K " 1; by dominated convergence. The

same is true for A04 : In fact, use (116) and Chapman-Kolmogorov to get

A
0

4 � c
�
� k'k1

�1+� ���NK
K


�D

��� pt(a)
Z
(0;t)

dsNKs
NK

1

(t� s)

; (141)

so we may continue as after (117). Also A
0

3 will disappear as K " 1:

Indeed, use (112), dominated convergence, criticality, and (113).

It remains to deal with the main term A
0

2 : Similar to the derivation of

the estimate (128),

A
0

2 � c
�
� k'k1

��
�Z

(0;t)

dsNKs
K
 (t� s)


Z
Rd

db ps(b� a)
��V (K)
t�s (�') (b) � v

(�)
t�s(b)

��: (142)

For 0 < " < 1; we split the integral on (0; t) in three parts:

0 < s < "t; "t � s � (1� ")t; and (1� ")t < s < t: (143)

In the �rst and last case, we pass from di�erences to sums in the integrands,

use dominations (125) and (115), as well as (95), Chapman-Kolmogorov, and

the estimate (65) to see that the internal integral of (142) is bounded in s

and K: But by (98),

lim
"#0

lim sup
K"1

Z
(0;"t)[ ((1�")t;t)

dsNKs
K
 (t� s)


= 0: (144)

So it remains to deal with the integral in (142) restricted to
�
"t; (1� ")t

�
;

for �xed 0 < " < 1: Here ps(b� a) � c; and we are back to the L1�norm

V (K)
t�s (�') � v

(�)
t�s




1
� sup

u2 ["t; (1�")t]



V (K)
u (�') � v

(�)
u




1

(145)

which by Lemma 16 converges to 0 as K " 1: But by (98),

lim sup
K"1

Z
(0;t)

dsNKs
K
 (t� s)


< 1; (146)

and we veri�ed (138), �nishing the proof of Corollary 17.

Completion of the proof of Theorem 12 Fix '; t; a as in the theorem,

and let � � 0: By (101) and (35),

v
(�)
t (a) = � log EÆ(0;a) exp[��(�')Xt(a)] (147)

with �(�') from (51). On the other hand, by (49) and (46),

V
(K)
t (�') = K

d=�
h
1 � EÆ

(�;K1=�a)
exphZKt ;��'i

i
: (148)

Note that the expressions in (147) and (148) are analytic functions in � > 0
(or <� > 0): then from the convergence in Corollary 17 for small � we get

the desired convergence for all � � 0: This �nishes the proof.
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