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Abstract. The paper contains a brief summary of a macroscopic contin-

uum model for adsorption in porous materials (B. Albers [1], [2]) which

is an extension of the model for porous bodies by K. Wilma«ski [7] on

mass exchange processes. We consider the �ow of a �uid/adsorbate mix-

ture through channels of a solid component. The �uid serves as carrier for

an adsorbate whose mass balance equation contains a source term. Due

to low adsorbate concentration we deal with a physical adsorption process

which means that particles of the adsorbate stick to the skeleton due to

weak van der Waals forces. The model contains two di�erent permeability

parameters whose nature is completely di�erent: The �rst one, the usual

bulk permeability coe�cient, describes the resistance of the skeleton to the

�ow of the �uid/adsorbate mixture. The second one describes the surface

resistance to the out�ow of the mixture from the solid. This work shows

within a simple example the range of these parameters and the dependence

of adsorption/di�usion on them.

1. Introduction

In this paper we brie�y show a continuum mechanical approach on adsorption/di�u-

sion processes in three component porous media. The considered model and possible

practical applications have extensively been shown in Albers [2], [1]. We consider

the �ow of a �uid through channels of the skeleton. The latter serves as a carrier

for an adsorbate whose mass balance contains a source term. This term consists of

two parts: one of them extends Langmuirs theory about possible places for the

adsorbate to settle down on the internal surface, the theory of bare and occupied

sites [6], to non-equilibrium processes. The other one takes into account changes of

the internal surface and couples them with the source of porosity which is a part of

a balance equation for the scalar �eld of porosity (see: Wilma«ski [7]).

The intention of this work is to show the dependence of the �elds and the adsorption

rate on model parameters. The two most important of them are the permeability

coe�cient � and the surface permeability �: These two permeability parameters

possess a completely di�erent nature. The �rst one is an element of the �eld equa-

tions and re�ects properties of the material. It has been shown in [1] that the two

component continuum model can be simpli�ed to the so-called reaction-di�usion

models widespread among mathematicians (for example Knabner [5]) if one en-

tirely neglects the motion of the skeleton, and the acceleration of the �uid. From

two momentum balance equations there remains solely the Darcy law. If we do so

we see that the permeability parameter � of the two component model is related to

a coe�cient of the Darcy law which contains the true viscosity of the �uid. This

implies the importance of the permeability parameter: it describes the resistance of

the skeleton to the �ow of the �uid as well as the true viscosity of the �uid.

In this work we study the parameters within a one-dimensional example. In this

case the permeability parameter is a constant scalar. But for multidimensional

investigations it is conceivable that it could be tensorial.
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The other permeability coe�cient, the surface resistance �; enters the model due

to the boundary conditions of third type and, consequently, accounts for properties

of the surface. Boundary conditions for porous media are strongly related to �ow

conditions in the vicinity of the boundary. Generally there arises a boundary layer:

a thin layer where friction forces play an important role because the �uid sticks to

the body. But especially for dull bodies this boundary layer can come o� the body if

the pressure in �ow direction increases rapidly which means that there arise whirls

if the �uid arives at the end of the body. That is what happens if the body enters

the surface of the porous media and �ows through and against the channels of the

skeleton. The parameter � is the leading quantity for the �uid velocity. Therefore

we show at the end a very important feature, namely a maximum in the dependence

of the adsorption rate on di�usion.

2. Adsorption/diffusion model

We consider a process in a three component porous medium. A �uid-adsorbate

mixture �ows through channels of a porous medium. Particles of adsorbate settle

down on the internal surface of the skeleton.

Mass balances (in terms of mass densities)

Then the mass balance equations have the form

@�
S

@t
+ div

�
�
SvS

�
= ��̂A;

@�
F

@t
+ div

�
�
FvF

�
= 0;(1)

@�
A

@t
+ div

�
�
AvF

�
= �̂

A
;

where �
S
; �

F and �
A are the mass densities of the components, vF is the common

velocity of �uid and adsorbate before the adsorbate settles down and its velocity

changes to that of the skeleton vS: �̂A denotes the intensity of the mass source. Of

course, it appears with opposite signs in the balances for skeleton and adsorbate, as

the total conservation of mass must be ful�lled.

Mass source

This mass transfer rate from the liquid to the solid phase per unit time is given by

the relation

(2) �̂
A = �

m
A

V

d (� fint)

dt
= �

m
A

V

�
fint

d�

dt
+ �

d fint

dt

�
;

whose derivation is based on the classical Langmuir adsorption theory about oc-

cupied (�) and bare (1� �) sites (see [6] where the existence of possible places for

adsorption on a surface is mainly explained by the landscape of the interaction

energy with their quasiperiodic distribution of maxima for crystalline skeletons).
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Another important factor for the extent of adsorption is the internal surface area

of the solid fint. V is the representative elementary volume REV which is small

in comparison with the volume of the whole �ow regime but big against volumes of

single pores of the skeleton. The mass of adsorbate per unit of the internal surface

area is denoted by mA:

The �rst contribution on the right-hand side of (2) describes the change of the

fraction of occupied sites. It is speci�ed by the Langmuir evolution equation

(3)
d�

dt
= a (1� �) pA � b�e

�

E
b

kT ;

where pA is the partial pressure of the adsorbate in the �uid phase and a and b are

material parameters. The energy barrier Eb for particles adsorbed on the skeleton

is assumed to be constant. Furthermore k denotes the Boltzmann constant and T

is the absolute temperature.

The right hand side of (3) again consists of two terms: the adsorption rate (�rst

term) and the desorption rate (second term). In full phase equilibrium they are

equal so that the time change of occupied sites is equal to zero. In this case we get

from (3) the well-known Langmuir isotherm of occupied sites

(4) �L =

pA

p0

1 +
pA

p0

; with p0 :=
b

a
e
�

Eb

kT :

The other part of (2) describes the change of the internal surface. We assume

that this change is coupled with relaxation of the porosity n; which is described

by the balance equation of porosity. Motivated by elementary considerations about

changes of the internal surface and of the porosity in a porous medium yielding �lm

adsorption (see [1]) we assume

(5)
1

fint

d fint

dt
/

n̂

n
:

Finally we arrive at

(6) �̂
A = ��Aad

��
(1� �)

cp
L

p0

� �

�
1

�ad

� �
�

�
�

�
;

where �ad denotes the characteristic time of adsorption, p0 is a reference pressure of

adsorption de�ned in (4), � is a proportionality factor and �
A
ad :=

mAfint
V

:

Mass balances (in terms of concentration)

It is common to use a form of mass balances containing quantities related to the

concentration c:
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@�
S

@t
+ div

�
�
SvS

�
= ��

L
ĉ;

@�
L

@t
+ div

�
�
LvF

�
= �

L
ĉ;(7)

@c

@t
+ vF � gradc = (1� c) ĉ:

For the transformation we have used the following de�nitions

(8) �
L := �

F + �
A
; c :=

�
A

�L
; ĉ :=

�̂
A

�L
;

where �
L denotes the mass density of liquid phases, c is the concentration and ĉ is

the concentration source.

Momentum balances

We want to account for the deformations of the skeleton which means that we also

need momentum balance equations to describe the problem. Due to the common

velocity of �uid and adsorbate we are left with two of them

@�
SvS

@t
+ div

�
�
SvS 
 vS �TS

�
= p̂;(9)

@�
LvF

@t
+ div

�
�
LvF 
 vF + p

L1
�
= �p̂;

where the partial pressure in the liquid phase p
L (i.e. in the �uid and adsorbate

phases together) is the sum of the partial pressures in the �uid p
F , and in the

adsorbate pA. For small adsorbate concentration as assumed in our case we expect

according to Dalton's law that pA �= cp
L
: FurthermoreTS denotes the partial Cauchy

stress tensor in the skeleton, and p̂ =�

�
vF � vS

�
� �

L
ĉvF is the momentum source

in the liquid where � denotes the permeability coe�cient.

Porosity balance

According to the works of K. Wilma«ski (see e.g. [7]) we have an additional

balance equation for the scalar �eld of porosity

(10)
@n

@t
+ vS � gradn + nEdiv

�
vF � vS

�
= n̂ = �

�

�
:

Here � = n � nE is the deviation of the porosity n from its equilibrium value nE

and � is the relaxation time of porosity. The above shape of the source of porosity

n̂ is based on assumptions on small deviations from thermodynamic equilibrium. In

this work we consider a linear model in which nE = const:
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3. One-dimensional example

We are interested in the in�uence of the two per-

meability coe�cients � and � on the �ow of a

�uid-adsorbate mixture through soils. Therefore

we solve the following one-dimensional example:

Fig. 1: Flow through porous body

Due to a di�erence of the external pressure, with pl at x = 0 being larger than pr

at x = l (see: Fig. 1); the mixture �ows along the direction x through the porous

body: The low concentrated adsorbate is carried by the �uid and has therefore the

same velocity v
F . Then the isothermal process is described by the �elds

(11)
�
�
S
; �

L
; c; v

F
; v

S
; e

S
;�; �; fint

	
;

where the last three unknowns are the above introduced additional microstructural

�elds describing changes of porosity and mass exchange processes.

For simpli�cation we make the following assumptions:

� the skeleton does not move, i.e. vS � 0;

� the inertia forces are small i.e. the acceleration terms in the momentum

balances can be neglected,

� small changes in time of the velocity gradient, i.e. the porosity balance

reduces to the algebraic relation � ' �nE�
@vF

@x
:

Governing set of equations and constitutive relations

Under these assumptions the balance equations for the example have the following

form

@�
L

@t
+

@�
L
v
F

@x
= ��Aad

��
cp

L

p0

�

�
1 +

cp
L

p0

�
�

�
1

�ad

� �
�

�
�

�
;

@c

@t
+ v

F @c

@x
= � (1� c)

�
A
ad

�L

��
cp

L

p0

�

�
1 +

cp
L

p0

�
�

�
1

�ad

� �
�

�
�

�
;(12)

@p
L

@x
+ �v

F = 0; nE

@v
F

@x
= �

�

�
;

@�

@t
=

�
(1� �)

cp
L

p0

� �

�
1

�ad

:

The constitutive relation for the pressure in the liquid phase p
L is assumed to be

linear

(13) p
L = p

L
0 + �

�
�
L
� �

L
0

�
+ ��;
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where pL0 and �
L
0 are initial values of the pressure and the mass density for the liquid

phase: � denotes the constant compressibility coe�cient and � is a constant material

coupling parameter.

Boundary conditions

The boundary conditions are assumed to be of third type. They express the �ow

through the boundary of the body in dependence on the di�erence of the partial

pressure in the liquid and the part of the external pressure which acts on the �uid,

as well as on the permeability � of the surface. The latter is one of the permeability

coe�cients whose in�uence we want to determine furtheron. Hence

x = 0 : ��
L
v
F
= �

�
p
L
� npl

�
;

x = l : �
L
v
F = �

�
p
L
� npr

�
:(14)

Solution method

We use a regular perturbation method to �nd an approximate solution of the prob-

lem. We make the following linear ansatz

�
L = �

L
0 + "�

L
1 ; v

F = "v
F
1 ; � = "�1;

c = c0 + "c1; � = �L + "�1; " =
pl � pr

pr

;(15)

where �L0 ; c0 and �L are the initial values of the corresponding �elds. Initial values of

�uid/adsorbate velocity and the change of porosity are zero. The expansions which

depend on a small parameter " are truncated after �rst order contributions. The

de�nition of " is based on the assumption that the pressure di�erence between the

left and the right boundary is small.

We use Laplace transforms to �nd an analytical solution of the linear problem and

to get numerical solutions for the inverse Laplace transform we use a FORTRAN-

solver. For a detailed illustration of the solution and a discussion of the results for

the �elds see [1], [2].

Parameters

To illustrate the above presented example and to study the permeability parameters

we choose the following values



7

Length of the body l 1 m Coupling constant � 1 GPa

Initial mass density �
L
0 2:3 � 102

kg

m3 Equilibrium porosity nE 0:23

Initial concentration c0 10�3 Initial pressure p
L
0 23 kPa

Langmuir pressure p0 10 kPa Pressure on right h.s. pr 100 kPa

Proportionality factor � 10 Compressibility � 2:25 � 106 m2

s2

Permeability of solid � 109
kg

m3s
Permeability of surface � 4 � 10�8 s

m

Relaxation time � 10�3 s Charact. time of adsorp. �ad 1 s

Fraction of occupied mass density of adsorbate

sites in equilibrium �L 2:3 � 10�2 on internal surface �
A
ad 40

kg

m3

Mass density and porosity have been chosen to have typical values for rocks and

soils. The values for material parameters � and � have been chosen on the basis

of estimates of the attenuation of acoustic waves. The in�uence of permeability is

expressed by two constants � and �. The �rst one describes the resistance of the

skeleton to the �ow of the �uid/adsorbate mixture. The second one describes the

surface resistance to the out�ow of the mixture from the solid. Its appearance is

connected with a boundary layer between the porous body and the external world.

4. Parameter analysis

In this section we investigate the in�uence of several model parameters on the be-

havior of the �elds and the adsorption rate (negative value of the source of concen-

tration).

Special attention is paid to permeability coe�cients � and �. Physically they de-

scribe the resistance of the skeleton to the �ow of �uid but they arise from di�erent

microstructural properties of the system. While � represents the resistance of the

skeleton against the �ow of the liquid in the inner part of the porous body, �

describes the surface resistance against in- and out�ow of the liquid into and out of

the body. The latter parameter is coupled with the appearance of a boundary layer

in the transition zone between the porous body and the external world (see [2]).

First we consider the in�uence of the bulk permeability parameter �. Some results

connected to variations of this parameter are already shown in earlier works without

mass exchange [3],[2]. There we have studied the radial �ow through a cylinder under

small and large deformations.

The role played by this coe�cient in the present case is illustrated in above �gures

(Fig. 2) where the �elds (11) of our example are shown in dependence on � for three

di�erent times (at the beginning, t
�ad

= 1, curve 1 in the Figures, at an intermediate

instance, t
�ad

= 5, curve 2, and for the large time lapse of the process, t
�ad

= 10,

curve 3). For � we have chosen between 108 and 1010 kg

m3s
. The value � = 109

kg

m3s
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Fig. 2: In�uence of the permeability parameter � on several �elds and the

concentration source.
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used in former works lies in the middle of this region. A further reduction of �

beneath 108 kg

m3s
, i.e. for a more permeable material, the relative velocity becomes

so big that the mass exchange cannot appear, and, consequently, all �elds become

independent of the bulk permeability. On the other hand, for values bigger than

1010 kg

m3s
the numerical inverse Laplace transformation cannot be performed by the

code used in this work (huge exponents). In this part of the analysis we use, as in

the earlier works, the value of the surface permeabiltity parameter � = 4 � 10�8 s

m
.

As we see in Fig. 2 (the upper left diagram) the change of the mass density of

the liquid increases with decreasing permeability parameter � (i.e. with increasing

permeability of the material) at any instant of time. However for advanced times

this change is much better pronounced. The velocity of the liquid increases with

decreasing permeability coe�cient (the upper right diagram). Essential changes

of the velocity appear solely in the middle region of the permeability coe�cient.

These changes are nonmonotonous in time (there exists a local minimum!). This

is di�erent in the case of changes of porosity (the middle left diagram). Changes

of porosity have a similar time dependence for di�erent permeabilities with a rapid

growth in an initial time interval, and a subsequent decay for large times. The value

of the maximum change of porosity appearing between these two regions is decaying

with growing permeability coe�cient with a simultaneous shift to larger times. In

the Figure we can see solely a projection of this behavior for a chosen interval of

time. Obviously for small permeabilities we observe already a large time behavior

(a monotonous decay from curve 1 to curve 3) while for large permeabilities we see

still the behavior in the initial interval of time (a monotonous growth from curve 1

to curve 3). The absolute values of changes of the adsorbate concentration in the

�uid (the middle right diagram) react on changes in permeability in the same way

as these of the mass density of liquid: at the beginning changes are small but with

increasing time they become larger. Changes for larger values of � are higher than

for small ones. The change of the fraction of occupied sites (the lower left diagram)

is coupled with the change of concentration. This means that for small values of

the permeability the fraction of occupied sites also does not change much. But in

time it decreases in the same way as the concentration increases. The change of the

rate of adsorption (the lower right diagram) shows a similar behavior to the change

of porosity. At the beginning of the process the permeability has a big in�uence.

Later the rate changes mainly for big values of �:

Now we show the in�uence of the surface permeability parameter �. In Fig. 3 again

changes of �elds �
L
; v

F
;�; c; � and of the concentration source ĉ are given for the

same three instants of time which we used before, this time, however, depending on

� with values in the interval 10�9 s

m
to 10�5 s

m
. The value � = 4 � 10�8 s

m
which has

been used in earlier works lies within this interval.

It follows from Fig. 3 that outside of the above mentioned region � which means

towards the limiting values of � � the �elds do not react any more on changes of �.

The limit � = 0 means that the boundary of the porous medium is impermeable.
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Fig. 3: In�uence of the permeability parameter � on several �elds and the

concentration source.
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�!1 yields a behavior similar to composites with a proportional (constant) load

distribution between the components.

For the calculations we have used the value of 109 kg

m3s
of the permeability coe�cient

�.

Changes of the mass density of the liquid increase with increasing surface perme-

ability (the upper left diagram). The sensitivity of these changes on changes of �

is di�erent in di�erent time intervals. Namely, in our example, in an initial interval

these changes react on changes of � in the range 10�8 s

m
to 10�5 s

m
, while in later

intervals it reduces to a region 10�8 s

m
to 10�6 s

m
: Simultaneously changes become

considerably bigger in these reduced regions of in�uence. Changes of velocity of the

liquid (the upper right diagram) show a similar behavior to changes of the mass den-

sity but di�erences for di�erent times are not so strongly developed as for the mass

density. They are smaller at the beginning than for later times, and they become

nearly identical in this large time limit. Also for this �eld the region of in�uence is

between 10�8 s

m
and 10�5 s

m
:

Changes of porosity have a very interesting behavior (the middle left diagram). For

any instant of time there exists a value of � for which the change of porosity as

a function of � reaches a maximum. With increasing time this maximum shifts

to smaller values of �, and its value decreases. The absolute value of changes of

concentration (the middle right diagram) behaves in similar manner to changes of

the mass density. At the beginning of the process the surface permeability has much

bigger in�uence on changes of concentration than for larger times. Simultaneously

for each time the change of concentration as a function of � decreases. The change

of fraction of occupied sites (the lower left diagram) also changes similar to the

mass density. It increases with increasing surface permeability. In a small region of

in�uence changes are very rapid. The behavior of the source of concentration (the

lower right diagram) is similar to changes of porosity. Also for this quantity there

arises an extremum. At the beginning of the process changes are much bigger than

for larger times.

Another important parameter of the model is the equilibrium value of porosity

nE: Its role in the model is still not fully understood. For instance, in [3] we had

mentioned that for the nonlinear example without mass exchange arose problems

with values of nE & 0:6: For higher values of porosity the deformations exceeded

100%, and most likely the mechanical behavior of the model should be unstable. We

know as well that in many processes of practical bearing the equilibrium porosity

cannot be assumed to be constant but it should rather ful�l a constitutive relation

of its own. It is easy to check that such models must be nonlinear.

These questions do not arise in the present model with adsorption. The reason is

that we consider linear deviations from an initial state, and, consequently, small

deformations, and a linear dependence on nE in constitutive quantities. The initial

porosity itself is a constant material parameter rather than a constitutive quantity.

Therefore we can admit a bigger range of nE (0.1� nE � 0:9): Certainly solutions
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for �elds may depend parametrically on the initial porosity in a nonlinear manner.

In our model all �elds but one are linear with respect to nE. This is the �eld of

velocity v
F . Also the source of concentration depends in a nonlinear way on nE. We

have:

Fig. 4: In�uence of the equilibrium porosity nE on liquid velocity and concentration

source.

The liquid velocity is, of course, zero for nE = 0. For porosities in the range 0 .
nE . 0:5 it increases rapidly with increasing porosity. The source of concentration as

a function of time jumps at the initial interval of time to high values for small initial

porosities, and subsequently relaxes towards a constant value. A similar behavior

with a smaller initial jump is visible also for bigger equilibrium porosities, but the

behavior is not monotonous. For high porosities the jump does not appear at all.

The model contains another new parameter, namely the coupling parameter �: In

problems of wave propagation it has high in�uence (see e.g. K. Wilma«ski [8]).
Therefore it was very interesting to see that this coe�cient did not have any in�uence

in these adsorption problems.

5. Coupling of adsorption and diffusion

The most important result of the adsorption model is the form of coupling of ad-

sorption and di�usion. It is shown how the amount adsorbed (absolute value of the

concentration source) depends on the relative velocity of the components. In Fig. 5

the source of concentration over the �uid/adsorbate velocity is shown. Due to the

assumption that the skeleton does not move the �uid/adsorbat velocity in our case

stands for the relative velocity of the components. As follows from the boundary

conditions this quantity is mainly driven by the surface permeability parameter �.
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According to (14) holds at the boundary

(16) v
F
= �

�

�
p
L
� npl=r

�
�L

:

This yields solutions for the �uid/adsorbate velocity dependent parametrically on

� [1]. Therefore for calculation of the source of concentration in dependence on the

velocity we choose the permeability coe�cient � as a control parameter. This is

done for x = 0:5 m, i.e. in the middle of the region.

According to the initial conditions the source starts with the value zero for both

(vF � v
S
; t = 0), and

�
v
F
� v

S = 0; t
�
. Of course, the source of concentration is a

negative value because the adsorbate sticks to the skeleton and the concentration in

the liquid becomes lower than the initial value.

Fig. 5: In�uence of di�usion

The results shown in Fig. 5 are twofold: �rstly one can see the characteristic time

behavior of the intensity of adsorption. The concentration source decreases after

a jump at the beginning of the process until it reaches a value of approximately

�3:5 � 10�5. The duration of the initial jump is not clearly visible in this Figure but

probably it is of the order of the relaxation time of porosity � of 10�3 s (see: Section

3, Table with material parameters). We recall that the source of concentration

consists of two contributions: the Langmuir part, and the change of the internal

surface due to changes of porosity. After the initial jump (the in�uence of the

second contribution) values increase � �rst rapidly and then more and more slowly

(the �rst contribution) � until they reach an asymptotic value of nearly �1:5 � 10�6:
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The other important feature is the dependence on the relative velocity. This also

depends on the progress of the process. At the beginning the source of concentration

decreases for every velocity and approaches an asymptotic value. However after

a certain time lapse the curves possess a minimum with respect to the velocity

dependence, and it lies in the range of relatively small velocities. With increasing

time this minimum becomes stronger pronounced.

This behavior though expected can be used in practical applications to control rates

of adsorption processes by changing di�usion velocities. For instance processes run-

ning along maxima would be most e�ective in procedures of settling the pollutants

on solid �lters.

6. Final Remarks

The present work on adsorption/di�usion is restricted to isothermal processes. How-

ever, it is obvious that, at least in some practically relevant mass exchange processes,

it is necessary to extend the model by accounting also for chemical reactions. This

requires the presence of thermal e�ects, and it shall be the subject of the forthcom-

ing work. Another restriction is, that only small adsorbate concentration is allowed

because we use the Langmuir theory which accounts for monolayer adsorption. If

we want to describe transport processes with any concentration we have to consider

multilayer adsorption which should be a further possible extension of the model.
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