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ABSTRACT 

This paper is concerned with testing the hypothesis that a conditional median function is 
linear against a nonparametric alternative with unknown smoothness. We develop a test that is 
uniformly consistent against alternatives whose distance from the linear model converges to zero 
at the fastest possible rate. The test accommodates conditional heteroskedasticity of unknown 
form. The numerical performance and usefulness of the test are illustrated by the results of 
Monte Carlo experiments and an empirical example. 
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AN ADAPTIVE, RATE-OPTIMAL TEST OF LINEARITY FOR MEDIAN REGRESSION 
MODELS 

1. INTRODUCTION 

This paper is concerned with testing a linear median-regression model against a 

nonparametric alternative. We develop a test that does not require knowledge of the smoothness 

of the alternative model, achieves the optimal rate of testing uniformly over smooth alternatives, 

and has other desirable power properties that are not shared by existing tests. 

We consider the model 

where 1j E JR is a random variable; {Xi} E JR d is a sequence of distinct, non-stochastic, design 

points; m is an unknown function; and {ei} is a sequence of unobserved, independently but not 

necessarily identically distributed random variables whose medians are zero. The distributions of 

the ei 's satisfy mild regularity conditions but are otherwise unknown. We test the null 

hypothesis, Ho' that there is a constant /3 E ]Rd such that m(Xi) = x;p for all i. xi~ denotes the 

transpose of the column vector Xi. The alternative hypothesis, H1, is that there is no /3 such 

that m (Xi) = x; /3 for all i. The test can be extended to models in which quantile(£ i) = 0 for a 

quantile other than the median, but only the median is treated in this paper. We set the first 

component of each Xi equal to 1. Thus, Xi consists of d -1 "real" variables, and the first 

component of /3 is an intercept. 

Linear quantile regression models are often used in applications. See Buchinsky ( 1994, 

1998), Chamberlain ( 1994 ), Koenker and Geling ( 1999), Manning et al. ( 1995), and Poterba and 

Rueben ( 1994 ), among others. In contrast to mean regression models, quantile regression models 

do not require £i to have moments, are robust to outlying values of 1j, and permit exploration of 

the entire conditional distribution of the dependent variable. However, there has been little 

research on testing the hypothesis of linearity. To our knowledge, only Zheng (1998) and Bierens 

and Ginther (2000) have developed tests of parametric quantile regression models against 

nonparametric alternatives. In contrast, there is a large literature on testing mean regression 

models against nonparametric alternatives. See, for example, Ait-Sahalia, et al. (1994), Andrews 

(1997), Bierens (1982, 1990), Bierens and Ploberger (1997), De Jong (1996), Eubank and 

Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Hardie and Mammen (1993), Hart (1997), 

Hong and White (1995), Horowitz and Spokoiny (2000), Li and Wang (1998), Stute (1997), 

Whang and Andrews (1993), Wooldridge (1992), Yatchew (1992), and Zheng (1996). 



The objective of this paper is to develop a test that has good theoretical and practical 

power properties. The power of a test is often investigated by deriving the asymptotic probability 

that the test rejects a false H0 against a sequence of local alternative models. When Ho is a 

linear median regression model, the form of the local alternative models is 

(1.2) mn(x)=x'fJ+png(x) 

for some f3 E !Rd and function g, where n is the sample size, p,, is a real number, and Pn ~ O as 

n ~ oo. The test of Bierens and Ginther (2000) has non-trivial power (that is, power exceeding 

the probability that a correct H0 is rejected) against local alternatives for which Pn ex: n-112 . 

Zheng's (1998) test has non-trivial power against local alternatives for which Pn ex: n-112+v for 

any v > 0 . However, as is explained in Horowitz and Spokoiny (2000) (hereinafter HS), the 

class of alternative models (1.2) is too small. If Pn ex: n-112 or Pn ex: n-112+v for any sufficiently 

small v > 0, then no test of H0 can have non-trivial power uniformly over reasonable classes of 

functions g (e.g., functions that have two bounded derivatives). In particular, the power of any 

test against the sequence of alternatives mn (x) = x' f3 + n-112+v gn (x) equals the probability that 

the test rejects a correct H0 for some sequence {gn} of (say) twice differentiable functions and all 

sufficiently small v > 0 . The practical consequence of this result is that any test of H0 for which 

Pn ex: n-112+v for sufficiently small v > 0 has low finite-sample power against certain classes of 

smooth alternatives. Section 4 presents examples. Because the class ( 1.2) excludes models of the 

form mn (x) = x' f3 + Pngn (x), it cannot be used to develop tests that have good power against all 

smooth alternatives. 

This paper, like HS, uses the minimax approach to testing H0 • We assume that m 

belongs to a Holder class, B, of differentiable functions on JRd-I. B is separated from the null-

hypothesis set by some distance r,, that converges to zero as n ~ oo. The aim of the minimax 

approach is to find the fastest rate at which r,, can approach zero while permitting consistent 

testing uniformly over B. This rate is called the optimal rate of testing. A test is consistent 

uniformly over B if 

( 1.3) lim inf P(H 0 is rejected against m) = 1 . 
n-too me B 

Thus, the optimal rate of testing is the fastest rate at which r,, can approach zero while 

maintaining ( 1.3). The optimal rate of testing for Holder, Sobolev, or Besov classes of functions 

that have bounded derivatives of known order s ~ (d - 1 )/4 is n·2st(
4
s + d - I) (Ingster 1 ~~2, 1993a, 
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l 993b, l 993c; Guerre and Lavergne 1999). The optimal rate of testing 

( )
2s/(4s+d-l) 

is n- 1.Jloglogn if s~(d-1)/4 is unknown (Spokoiny 1996). If s<(d-1)/4, then 

the optimal rate of testing is n-114 (Guerre and Lavergne 1999). 

A test that achieves the optimal rate of testing has the advantage of being sensitive to 

alternatives uniformly over a smoothness class whose distance from the null hypothesis 

converges to zero at the fastest possible rate. Such a class contains sequences of alternative 

models against which the tests of Bierens and Ginther (2000) and Zheng ( 1998) are inconsistent. 

In practice, this means that there are smooth alternatives against which these tests have much 

lower finite-sample power than does a test that achieves the optimal rate of testing. 

This paper describes a test of H0 that has the optimal rate of testing uniformly over 

Holder classes and does not require knowledge of s or the (possibly non-identical) distributions of 

the £i's in (1.1). The test is called adaptive and rate-optimal because it adapts to the unknowns 

and has the optimal rate of testing for the case of an unknowns. HS developed an adaptive, rate-

optimal test of a parametric mean regression model against a nonparametric alternative. Fan and 

Huang (2000) developed an adaptive, rate-optimal test of a normal, linear mean-regression 

model. See, also, Ledwina ( 1994) and Fan (1996). This paper extends the test of HS to median 

regression models. Although there are similarities between the test presented here and that of HS, 

the properties of median and mean regression models are sufficiently different to make the 

extension non-trivial and to require separate treatments of median and mean regressions. 

A test that achieves the optimal rate of testing uniformly over a smoothness class is 

necessarily oriented toward the alternatives that are hardest to detect. Such a test may have low 

power against functions that are less extreme. To provide some protection against this possibility, 

we show that our test is consistent against alternatives of the form ( 1.2) whenever 

Pn ~ Cn-112 ~loglogn for some finite C > 0. Consistency of the tests of Bierens and Ginther 

(2000) and Zheng ( 1998) against alternatives of the form ( 1.2) requires Pn ~ 0 more slowly than 

n -I 12 • Thus, in terms of consistency against such alternatives, there is essentially no penalty paid 

for the adaptiveness and rate optimality of our test. 

The test is described in Section 2. Theorems giving properties of the test under H0 and 

various alternative hypotheses are presented in Section 3. Section 4 presents the results of a 

Monte Carlo investigation of the test's finite-sample behavior. Section 5 presents an empirical 

example of the test's use. Section 6 presents concluding comments. The proofs of theorems are 

in the Appendix, which is Section 7. 
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2. THE TEST 

Section 2.1 presents an informal description of the test statistic. Section 2.2 describes a 

method for obtaining critical values for the test. 

2.1 The Test Statistic 

We assume that d ~ 2 and that the first component of Xi is Xn = 1 . If H0 is true, then 

1f = X[/3 + si and P(si::; 0) = 0.5 for each i = 1,2, ... and some /3 E lRd. Let bn denote the least 

absolute deviations (LAD) estimator of /3. Thus, 

n 

bn =argmi~LI 1{-X;bJ. 
be!R i=l 

If H0 is true, then bn ~P /3 as n ~ 00 (Koenker and Bassett 1978). If H0 is false, then f3 is 

undefined. However, it follows from Proposition 1 in the Appendix that bn = f!* +OP (n- 112 ), 

where /3* solves 

n 
(2.1) LXi {P[si::; X[b- m(Xi )]-1/ 2} = 0. 

i=l 

Define /Jo= /3 if H0 is true, /30 = /3 * if H0 is false, and i;i = 1(1{ - Xi/Jo::; 0)-1/ 2, where 1 is 

the indicator function. 

Under H0 , the qi 's are Bernoulli random variables with E(qi) = 0. If H0 is false, then 

E(qi) = P[si ::; X[/30 - m(Xi )]-1I2 :;z: 0 for at least one i. Thus, a test of H0 is equivalent to a 

test of H0: E(qi) = 0 for all i. If /Jo were known such a test could be based on the distance from 

0 of a nonparametric estimator of the vector [E(q1), ... ,E(qn)]'. We obtain a feasible test by 

replacing /Jo with bn. Define ~i=l(lf-Xibn::;0)-112. Ourtestisbasedon {~i:i=l, ... ,n}. 

To obtain the test statistic, suppose for the moment that /30 and, therefore, the qi 's were 

known. Let K denote a kernel function (in the sense of nonparametric density estimation) of a 

d -1 dimensional argument. For vE IRd-I and bandwidth h > 0, let Kh (v) = K(v I h). For 

i,j = I, ... ,n, define 

Kh(Xi -Xj) 
wij,h = n 

LKh(Xi-Xk) 
k=i 

and a1;; h = """' n wki h wkj h . Define 
"' .L.k=I ' • 
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2 
n n n n 

c2.2) sh*= I. I. wij.h;1 =I. L.au.h;i;1 . 
i=l J=I i=I j=I 

Observe that L~=I wij,hqJ is a kernel nonparametric estimator of E(q1). Therefore, Sh* is the 

1! 2 distance from zero of the kernel estimator of [E(q1), ••• ,E(qn)]'. If the qi 's were observable, 

then a test of H0 could be based on the standardized version of Sh*. Because E (qi) = 0 under 

H0 , q1
2 =114, and qi is independent of q1 if i -:t. j, the standardized Sh* is 

,.,.. *-Sh *-Nh 
lh -

vh 
(2.3) 

where 

n 
(2.4) Nh = (1/ 4) L,au,h , 

i=I 

and 

(2.5) Vh =[(1/8)~ ~a5.hl
112 

j-::t:.l 

HS showed that an adaptive, rate-optimal test of H0 can be obtained by rejecting H0 if the 

maximum of Th* over a suitable set of bandwidths h is too large. The test proposed here uses the 

same idea and is obtained by replacing the unknown variable qi with ~i in (2.2)-(2.5). 

where 

To this end, define 

Ti - Sh -Nh 
h - vh , 

n n 

(2.6) sh =I, Lau,it~J . 
i=l J=I 

We evaluate ~ at each h in a set of bandwidths and reject H0 if Th is too large for any 

bandwidth in this set. The set of bandwidths is H={h=~in2k1[2(d-I)] :h$;~ax,k=O,l,2, ... }, 

where ~ax and ~in are non-stochastic constants satisfying conditions that are stated in Section 

3 .1. Our test is based on the statistic 

T=maxTh. 
heH 
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The test rejects H0 at the (asymptotic) a level if T exceeds the critical value that is described in 

Section 2.2. 

2.2 Obtaining the Critical Value 

The exact a-level critical value for Tis the l - a quantile of the finite-sample distribution 

of T. This critical value cannot be evaluated in applications because the finite-sample distribution 

of the ;i 's is unknown. However, the asymptotic distribution of T under H0 does not depend 

on fJ or the distribution of the ci 's in ( 1.1 ). See Lemma 12 and the proof of Theorem 1 in the 

Appendix. Therefore, an asymptotic a-level critical value can be obtained as the 1-a quantile 

of the distribution of T that is induced by the model if*= x;b11 + ci* , where er is sampled from 

a convenient distribution. In the Monte Carlo experiments and empirical example reported in 

Sections 4 and 5, we use the empirical distribution of the residuals of the estimated null-

hypothesis model. The i 'th residual is if -Xibn. The asymptotic critical value can be computed 

with any desired accuracy by using the following simulation procedure: 

1. For each i = 1, ... , n, generate }j * = x;b11 + ci *, where ct* is sampled randomly from 

the residuals of the estimated null-hypothesis model. 

2. Use the data set {Yi*, X{: i = 1, ... , n} to estimate fJ . Denote the resulting estimate 

by b11 • Compute the statistic f that is obtained by replacing gi (i = l, ... ,n) with 

I (}j* - Xibn ~ 0)-1I2 in the formula for T . 

3. Estimate ta by the 1 - a quantile of the empirical distribution of f that is obtained by 

repeating steps 1-2 many times. 

3. THE MAIN RESULTS 

This section presents theorems that give the asymptotic behavior of the proposed test. 

Section 3.1 states our assumptions. The behavior of the test under H0 is given in Section 3.2. 

Sections 3.3 and 3.4, respectively, give the test's behavior under the sequence of local alternative 

hypotheses ( 1.2) and under smooth alternatives that are contained in a Holder class whose 

distance from the null hypothesis converges to zero at the optimal rate of testing. The adaptive, 

rate-optimal property of the test is established in Section 3.4. 
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3 .1 Assumptions 

Our results are obtained under the assumptions stated in this section. Let jjvjj denote the 

- Euclidean norm of the vector V . If D is a q x q matrix, define 

llDll = sup llDvjj . 
00 

V€1Rq llvll 
For every xe !Rd and every h > 0, define Mh(x) as the number of elements m the set 

{XdXi-xll ~ h}. Define foi(u)=P(ci ~u). 

Assumption 1 (Observations): The observations {Yj: i = 1,2, ... } in (1.1) are independent. 

Each cumulative distribution function Fi is absolutely continuous with respect to Lebesgue 

measure with a continuously differentiable density function Ji. There are constants CF and a 

such that fi(u) ~ aCF and I fi'(u) I~ a2CF for all i = l, ... ,n and u. 

Assumption 2 (Kernel): K is continuous(v differentiable, non-negative, symmetrical 

about the origin, and supported on [-I,1t-1• Moreover, K(O) = 1 and K(v) is a strictly 

decreasing function of llvll · 
Assumption 3 (Bandwidths): The quantities hmin and hmax satisfy hmin < hmax, 

hmin ?:.Chn-112+r, and hmax =CH(Ioglogn)-1 for finite constants y>O, ch >0, and CH >0. 

Assumption 4 (Design): (i) The design points {Xi: i = l, ... ,n} are non-stochastic. The 

first component of each xi is Xn = 1. (ii) There are positive constants c XI and c X2 such that 

for all h E 'H and all i = 1, ... , n, C x 1nhd-I ~ Mh (Xi)~ C x 2nhd-l. (iii) There are finite 

constants C x and C xx such that llXdl ,;:; C x for all i and ii[ n-1 I, ;=I Ji (O)X;X; r l ,;:; C xx · 

(iv) infb:llb-Pt,Jl>on-1:L;=l1Fi[X!b-m(Xi)]-Fj[X;p0 -m(Xi)]J>Cb' for some constant C and 

each b' > 0. 

Section 4.2 describes a method for choosing ~in and hmax in applications. Assumption 

4(ii) is satisfied with probability approaching 1 as n _, oo if Assumption 3 holds and components 

2, ... ,d of {Xi} are sampled from a distribution that has bounded support and a density with 

respect to Lebesgue measure that is bounded away from zero on its support. Therefore, our 

results hold conditionally on {Xi} that are generated this way. However, we do not require {Xi} 

to be sampled from a distribution. Assumption 4(iv) is an identification condition. 
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3.2 Behavior of the Test Statistic under the Null Hypothesis 

The null hypothesis, H0 , is that P(Yf - x; /3::; 0) = I I 2 for all i and some f3 E :R. d . Let 

ta be the a -level critical value that is that is induced by the model Y * = X~b + c·* described in I I n I 

Section 2.2. The main result on the behavior of T under H0 is that ta is an asymptotically 

correct a -level critical value. This result is established by the following theorem. 

Theorem I: Let Assumptions 1-4 hold. Let H0 true. Then 

lim P(T > ta) =a. 
n-?oo 

3.3 Power against a Sequence of Local Alternatives 

This section establishes the consistency of our test under local alternatives of the form 

(1.2) with Pn ~ Cn- 112 ~loglogn for some constant C> 0. Normalize g so that 

Let X be the d x n matrix whose i'th column is Xi , :F be the n x n diagonal matrix whose (i, i) 

element is Ji (0), and g be the n x 1 vector whose i'th component is g(Xi) . Let In be the 

nxn identity matrix. Define the nxn matrix IT= In -X'(X:FXY1 X:F. If the Bi's are iid, then 

IT is the projection operator into the orthogonal complement of the space spanned by the Xi's. 

Assume that for all sufficiently large n and some 8 > 0 , 

If the ci 's are iid, then (3.2) states g has a non-zero projection into the orthogonal complement 

of the space spanned by the Xi 's. Conditions (3 .1) and (3 .2) insure that the quantity 

converges to 0 at the rate of Pn rather than a faster rate. The following theorem establishes 

consistency of our test under a sequence of local alternatives. 

Theorem 2: Let Assumptions 1-4 hold. Let (1.2) hold with Pn ~ Cn- 112 ~loglogn and 

g satisfying (3.1 )-(3.2). There exists C* < oo depending on 8 and the constants in Assumptions 

1-4 such that 

lim P(T > ta) = 1 
n-700 
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whenever C ;::: C*. 

3.4 Power against a Smooth Alternative 

This section gives conditions under which our test is consistent uniformly over 

alternatives in a Holder smoothness class whose distance from the class of linear conditional 

median functions converges to zero at the fastest possible rate. Measure the distance between the 

·true conditional median function, m(x), and the null hypothesis model by 

[ ]

1/2 

P1(m)= inf n-1'f lm(Xi)-X;bl2 
be IR" ~ z=I 

To specify the smoothness classes that we consider, define Hi(x) = Fj[x'/30 -m(x)], 

where f30 is as defined in (2.1 ). Also define 

Let}= (j2, ••• ,}d), where}z, .. . ,}d ~ 0 are integers, be a multi-index. Define I j I= L:=2 jk and 

whenever the derivative exists. Define the Holder norm 

llHillH,s = sup LI Dj Hi(x) I· 
x:Jx;l:5C.r JjJ ~ s 

The smoothness classes that we consider consist of functions (H1 , ••• ,Hn)e S(H,s) = 
{H1 , ••• ,Hn: llHillH ~CF for all i = 1, ... ,n} for some (unknown) s;::: max(2, (d - 1)/4] and Cp< oo. ,s 

Theorem 3 states that our test is consistent uniformly over the sets 

{ ( 
_1 )2s/(4s+d-l)l 

(3.3) BH,n = H1' ... ,Hn e S(H,s): p2(H);::: Ca n ~Ioglogn 

for some s ~ max[2, (d- 1)/4] and all sufficiently large Ca< oo, If (H1, ... ,Hn)e BH,n, then m 

( )
2s/(4s+d-l) 

belongs to a Holder smoothness class oforder sand p1 (m);::: Ca n-1 ~loglogn · . 

Theorem 3: Let Assumptions I-4 hold. Then for 0 <a< I and BH.n as defined in (3.3), 

lim inf P(T >ta)= I 
n~oo fe B11.n 

for all sufficiently large Ca < oo. 
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4. MONTE CARLO EXPERIMENTS 

This section presents the results of Monte Carlo experiments that illustrate the numerical 

performance of the adaptive, rate-optimal test. The section has two parts. Section 4.1 presents a 

sequence of alternatives against which our test is consistent but the tests of Bierens and Ginther 

(2000) and Zheng ( 1998) are not. This sequence motivates the design of the Monte Carlo 

experiments. The experiments and their results are described in Section 4.2. 

4.1 An Example 

This section presents a parametric model and a sequence of alternatives against which our 

test is consistent but the tests of Bierens and Ginther (2000) and Zheng ( 1998) are not. The null 

hypothesis model in the example is 

( 4.1) ~ = /30 + /31 xi + ci , 
where /30 and /31 are constants, the Xi's are scalars that are sampled from a distribution that is 

symmetrical about 0, and ci - N(O,a2
) for every i. The sequence of alternative m<?dels is 

(4.2) 

( )
-1/9 

where ci - N(0,1), </J is the standard normal density function, and "Cn = C n-1.Jloglogn for 

some finite C > 0. The function mn(x) = x + "rn4</i._x/r,,) has a peak that is centered at x = 0 and that 

becomes narrower as n increases. The sequence of alternative models { mn} is contained in B H.n 

with s = 2. The distance between mn and the parametric model ( 4.1) satisfies 

( 
r----)-4/9 p1(mn)oc n-1.Jloglogn . It is not difficult to show that under that the sequence (4.2), the 

noncentral parameters of the tests of Bierens and Ginther (2000) and Zheng ( 1998) converge to 

zero as n -7 oo, so those tests are inconsistent against (4.2). It follows from Theorem 3, however, 

that the adaptive, rate optimal test is consistent against this sequence if C is sufficiently large. 

4.2 Monte Carlo Experiments 

This section presents the results of Monte Carlo experiments that illustrate the numerical 

performance of the adaptive, rate-optimal test. In each experiment, a parametric null-hypothesis 

model and two alternatives are specified. Monte Carlo simulation is used to estimate the 

probability that the adaptive, rate-optimal test rejects the parametric model when it is correct and 

the test's power against the alternatives. To provide a basis for judging whether the test's power 

is high or low, the power of Zheng' s ( 1998) test is also estimated by Monte Carlo simulation. In 
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all experiments, the nominal probability of rejecting a correct null hypothesis is 0.05. The 

designs of the experiments are motivated by the example of Section 4.1. 

The null-hypothesis model in the experiments is 

(4.3) }j = /30 + /31Xi + ei; i = 1,2, ... ,250 

where each Ai is a scalar that is sampled from the N(0,25) distribution truncated at its 5th and 95th 

percentiles. In experiments where (4.3) is correct (Ho is true), /30 = /31 = 1. The tt's were sampled 

independently from three distributions, depending on the experiment. These are N(0,4), a 

variance mixture of normals in which £i is sampled from N(O, 1.56) with probability 0.9 and from 

N(0,25) with probability 0.1, and the Type I extreme value distribution shifted and scaled to have 

median zero and variance of 4. The mixture distribution is leptokurtic with a variance of 3.9, and 

the Type I extreme value distribution is asymmetrical. 

The alternative models have the form 

where the £/s are sampled from one of the three distributions just described and "C = 1 or 0.25, 

depending on the experiment. Figure 1 plots the function m(x) = 1 + x + ( 4/ r){b(x Ir) for each 

value of r: The J:.j's were sampled once from the specified distribution and held fixed in repeated 

realizations of the Yi' s. The values of /30 and /31 were estimated by least absolute deviations 

(LAD). The kernel used for the adaptive, rate-optimal test and Zheng's (1998) test is 

K(u)=(l5/16)(1-u 2 )2 J(iul~ 1). 

Implementing Zheng's (1998) test requires selecting a bandwidth parameter. Zheng 

( 1998) proposed a generalized cross validation procedure for doing this. Ill our experiments, 

however, this procedure gave bandwidths that were much too large and often exceeded the range 

of the values of X. Therefore, to avoid biasing the experiments against Zheng' s test, we chose its 

bandwidth through Monte Carlo experimentation to maximize its power subject to the restriction 

.that the empirical probability of rejecting ( 4.3) when it is correct be contained in a 95% 

confidence interval around the nominal rejection probability. 

The adaptive, rate-optimal test requires choosing the set of bandwidths H . We used 5 

equally spaced bandwidths. The smallest is hmin = 2max(Xi+I -Xi) (i = l, ... ,n-1), and the 

largest is hmax =0.S(Xn -X1)1loglogn, where the Xi's are sorted in increasing order 

The experiments were carried out in GAUSS using GAUSS pseudo-random number 

generators. There were 1000 Monte Carlo replications in the experiments in which Ho is true and 

500 in the experiments in which H0 is false. The larger number of replications for the 
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experiments with a true Ho insures that the probabilities of Type I errors are estimated reasonably 

precisely. The lower number of replications with a false Ho conserves computing time while 

providing sufficient precision to be informative about the relative powers of the tests. There were 

99 replications in the Monte Carlo procedure that was used to estimate the critical value of the 

adaptive, rate-optimal test. 

The results of the experiments are presented in Table 1. When Ho is true, all tests have 

empirical rejection probabilities that are close to the nominal probability of 0.05. None of the 

differences between the nominal and empirical rejection probabilities is significantly different 

from zero at the 0.05 level. The power of the adaptive, rate-optimal test is much higher than the 

power of Zheng's test when Ho is false. All of the differences between the powers of the 

adaptive, rate-optimal test and Zheng's test are significant at the 0.01 level. 

5. AN EMPIRICAL EXAMPLE 

Buchinsky (1998) used data from the 1993 Current Population Survey (CPS) to estimate 

a median regression model of the relation between the weekly wages of male workers in the U.S. 

and a variety of covariates. The model is 

logW= Po+ P1X + P2X 2 +y'Z +U, 

where Wis the weekly wage, Xis years of labor-force experience, and Z is a vector of covariates 

that includes years of education and dummy variables indicating the worker's race, the region of 

the country in which the worker is employed, whether the worker is employed in a metropolitan 

area, and whether employment is full time and for the full year. U is an unobserved random 

variable whose median conditional on X and Z is 0, the p 's are scalar coefficients, and r is a 

vector of coefficients. In this example, we investigate the relation between log W and X for 

white, full-time, full-year, workers with 12 years of education who were employed in a 

metropolitan area in the north central region of the U.S. Thus, Z is fixed in the example, and the 

model is 

(5.1) logW=Po+P1X+P2X 2 +U, 

where median(U IX= x) = 0 almost surely. The 1993 CPS contains 1833 observations of 

workers with the specified characteristics. The p's were estimated by LAD. 

The dashed and solid lines in Figure 2 show the parametrically and nonparametrically 

estimated conditional median functions. The parametric estimate (dashed line) is 

b0 +qX +b2X 2 , where bj is the LAD estimate of Pj (j = 0, 1, 2). The nonparametric estimate 
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(solid line) was obtained by local linear median regression (Chaudhuri 1991). There are obvious 

differences between the parametric and nonparametric estimates, which suggests that the 

parametric model is misspecified. However, the graph does not indicate whether this apparent 

misspecification is an artifact of random sampling error. The adaptive, rate-optimal test gives T = 
2.85 with a 0.05-level critical value of 1.75. Thus, the test rejects the parametric model (5.1) at 

the 0.05 level. 

We also tested a version of (5.1) that is augmented by adding X 3 to the specification, 

thereby producing the cubic model 

(5.2) log W = /30 + /31X + /32X 2 + f33X 3 + U. 

The dotted line in Figure 2 shows the conditional median function estimated by applying LAD to 

(5.2). The fit of (5.2) is much better than that of (5.1). The adaptive, rate-optimal test of (5.2) 

gives T = -0.65 with a 0.05-level critical value of 1.16. Thus, the test does not reject the cubic 

model (5.2). 

6. CONCLUSIONS 

This paper has developed a test of the hypothesis that a conditional median function is 

linear against a nonparametric alternative. The test adapts to the unknown smoothness of the 

alternative model, does not require knowledge of the distributions of the possibly heterogeneous 

noise components of the model (the ei ;s in ( 1.1) ), and is uniformly consistent against alternative 

models whose distance from the class of linear functions converges to zero at the fastest possible 

rate. This rate is slower than n-112 • In addition, the new test is consistent (though not uniformly) 

against local alternative models whose distance from the class of linear models decreases at a rate 

that is only slightly slower than n-112 • The results of Monte Carlo simulations and an empirical 

application have illustrated the usefulness of the new test. 

7. MATHEMATICAL APPENDIX 

This appendix presents the proofs of the theorems in the text. Except as otherwise noted, 

it is assumed that Assumptions 1-4 hold. 

13 



7 .1 Properties of the Parametric Model 

The main result of this section is a proof of n 112 asymptotic normality of the LAD 

estimator b11 • Let ~ and J; , respectively, denote the probability distribution and density 

functions of Jf . Define 

n 
T/n = -Qn - In - I I 2 L xi [I (Yj - x; /Jo ~ 0) - ~ ( x; /Jo)] ' 

i=I 

and 

Proposition 1: Let Assumptions 1-4 hold. Let the sequence {811 } satisfy .n-112 I 811 = o(l) 

as n -7 oo and 811 ~ (n-1 log n)112
• Then as n -7 00 , P(llb11 - /loll;;::: 811 ) = o(l), and 

P[llnl/2 (bn - /Jo )-1Jn II> Co (8n log n)l/2 J = o(l)' 

where C0 is a constant whose value depends only on d and the constants from Assumptions 1-4. 

Moreover, r.;1121]11 -?d N(O,ld), where Id is the dxd identity matrix. 

Remark: An immediate corollary of this result is that n112 (b11 - /30) is asymptotically 

normal. 

The proof relies on the following lemmas. 

Lemma 1: Define C1 = dC x I 2. The vector b11 satisfies 

n 
(7.1) LXi[l(J[-X;b11 :::;0)-1!2] :::;c1• 

i=I 

Proof: See Koenker and Bassett ( 1978). 

Lemma 2: Let {Ki: i = 1, ... ,n} be independent Bernoulli random variables with 

parameters {pi}, and let {ci: i = l, ... ,n} be constants. Given any real z, define 

G2 = maxexp[zci /(2V)]. 
1$i$n 

If L:
1 
c? Pi (1- Pi)~ V 2 for some constant V and G2 ~ 2, then 
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Moreover, if I;=l cf 14 ~ V 2
' then for all z;;::: 0 

Proof: It follows from Chebyshev's exponential inequality that for every A..> 0, 

The function fp (x) = log(l - p - pex) satisfies fp (0) = 0, J; (0) = p , and 

P(l-p)ex 
J;(x) = < p(l- p)ex. 

(1- p+ pex)2 

Therefore, fp(x)~px+ p(l-p)x2ex 12. Set A..=zl(2V). Then 

n n n 
-A..zV-iL,CiPi + Llog(l- Pi+ Piek;) ~-A..zV + LPi(l- Pi)A.. 2cfic,. 12 

i=l i=l i=l 

Application of this inequality with A..= z /(2V) and G2 ~ 2 yields 

-A..zV +A.2V 2G2 /2~-z2 (1-G2 /4)/2~-z2 /4. 

Similarly, one can bound P[ L;=lci(Ki - Pi) <-zV J, and (7.2) follows. 

Next, the inequality ab~ (a+ b)2 I 4 with a= 1- p and b = pex implies 

J;(x) = p(l- p)i',, < l/ 4 
(1- p+ pext 

for all x;;::: 0 and p e [O, l]. Therefore, 
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This inequality applied with A= z IV yields (7.3). Q.E.D. 

We also present a vector version of Lemma 2. For any vector xe )Rd, define 

llx!L = max1$j$d I xj I· 
Lemma 3: Let {Ki: i = l, ... ,n} be independent Bernoulli random variables with 

parameters {pi}, and let {ci: i = l, ... ,n} be constant vectors in Rd. Given any real z, define 

G2 = maxexp[z!lcdl /(2V)]. 
l$i$n 00 

Moreover, if I.;=1 11cill~ I 4~ V 2
, then for all z ~ 0 

Proof: Apply Lemma 4.2 to every component of L;=
1
ci(Ki - Pi). Q.E.D. 

For any fixed f3 e JRd define ~i(/3) = l(~ -x;p ~ 0)- ~cx;p) and 

n 
s(/3) = n-112 I.,xi~i(/3). 

i=l 

Lemma 4: The random field s(/J)e JRd satisfies E((/3) = 0, 

and, for every z ~ 0 , 

PC!ls C/3)11>xCxI2) ~ 2exp(-z2 I 2). 
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Proof: The first two statements obviously follow from independence of the Bernoulli 

random variables i;i . It is also straightforward to check that 

A Taylor series expansion and Assumption 1 yield 

Therefore, 

n 
= n-1tr LXiX[E I s=iCP1)-c,;i(,82)12 

i=l 

n 
~ n-1tr Ixix; I ~(X[,81)-~(X[,82) I 

i=I 

n 

~ n-1cl llP1 - PJLJicx;,81) + o.scjcpa2 llP1 - P2ll2 
i=I 

The last statement of the lemma now follows from Lemma 3. Q.E.D. 

The following lemma establishes stochastic equicontinuity of s (,8) . 
Lemma 5: Let ye (1/2,1). There are positive constants Cz1 and Cz2 such that for 

every fixed ,BE IR d, 

Proof: Let f3 satisfy ll/3 - Pll ~ n-a . It is easy to see that 

n 

llscP)-s c/3)11 = n-112 Ixi[s=ic,a)-s=i c/J)J 
i=I 
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n 
~ n-l/

2 :L1c1r;-x:fJ1 ~I X'(/3- /3) I) 
i=l 

n 
+ n-112 LXi[~(x;{J)-~(x;jJ) . 

i=l 

Since I x;c/J- /3) I~ c xn-a, for some I e I~ 1 we have 

n n 

:Lxi[if cx:fJ)-ij(x;jJ) = I,x}~[x;{J + ec/3- /J)Jx;c/3- /3) 
i=l i=l 

<c2c 1-:-a - x xx 11 · 

Therefore, 

(7.4) lls(/J)-((/J)ll~n-112Cx I/i +C}Cxxn112-a' 
i=l 

where the ri = I (I J; - X' /31~ C x n -a) are Bernoulli random variables with 

As in the proof of Lemma 4, one bounds 

n n 
~ C -a~ i' (X'/J) C? C ? -2a+I £.,;Pi~ 2 x 11 £.,;Ji i + x Fa-n 
i=l i=I 

< 2C C -a-1 C2 C 2 -2a+I < C -a+l - X xxn + X Fa n - z2n 

for some constant Cz2 ::::: 2C xC xx. Application of Lemma 2 with ci = 1, z = V, and 

P[f.ci-; -P;) <= v2
] ~ 2exp(-V2 14). 

z=l 

Therefore, 

P( ti-; <=2Cz211 1-"]~2exp(-Cz2n 1-a /4). 
lz=l 

This inequality and (7.4) yield the result. Q.E.D. 
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The next lemma gives a uniform bound for t; (/3) - t; (/Jo) when ll/3 - /Jo II:::;; a . 
Lemma 6: Let n-112 :::;; o ~ 1. Then for some constant C2 depending on d, CF and C x 

only, 

Proof: Let 'Dn be a £-net in the ball {/3: ll/3 - /Jo II:::;; o} with the step n-a for a= 314. 

This net can be constructed with cardinality (2ona)d :::;; (2n 314 )d. Fix f3 e 'Dn. By Lemma 4, 

Ellt;(/3)-t;(/30 )11
2

:::;; dCdl/3- /Joli for some constant Cz3 ~ clx xx Id. Now apply Lemma 3 

to t;(/3)-t;(/Jo) with Ci =n-112Xi, V2 =Cz30 and z=(4dlogn)112
. Then 

log G2 :::;; C xn-112 z /(2V) = C xn-112 (d log n)112 /(Cz3o)112 = o(l) 

as n ~ 00 for a ~ n - I I 2 ' which yields G2 :::;; 2 for n sufficiently large. By (7 .3) 

P[llC:C/3)-!;(/Jo)ll ~ 2d(Cz30log n)112 J:::;; 2de"7dlogn. 

Now 

+ L P[llC:C/3)-t;(/Jo)ll ~ 2d(Cz30iogn)112 J 
/Je'Dn 

:::;; (2n 314 )d [ exp(-Cz2n1-a I 4) + 2d exp(-d log n)] = o(l). 

The lemma follows because 0 112 ~ n114 and n-a+l/ 2 = n114 . Q.E.D. 

Define 

n 
B(/3) = n-112 LXJFi cx;fJ)- ~cx;/Jo)] . 

. i=l 

Note that B(/3) = E[t; (/3) - t; (/30 )] . The next lemma states that B(/3) is nearly linear in a small 

neighborhood of /Jo. Let F(X' /3) be the vector whose components are ~ cx;fJ). 
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Lemma 7: For all f3 

and 

"B(/3)- nl/2Qll (/3- /3o)ll::; 0.5a2CFn-112 ixi I x;c/3- /30) 12 ::; C3a2n112 ll/3- /3oll2' 
i=I 

where C3 = o.sc_tc F . 

Proof: This result follows from a Taylor series expansion and Assumption 1. Q.E.D. 

Lemma 8: Let the sequence {811 } satisfy n-112 I 811 = o(I) as n ~ oo. Then 

lim PCllb11 - /30 II > 811 ) = 0 . 
n~oo 

Proof: Lemma 7 and Assumption 4 imply that 

inf B(/3) ~ oo 
JJ:ll/3-Piill~o,, 

as n ~ oo • By Lemmas 4 and 6, ( (/3) is bounded in probability in every neighborhod of f30 • 

Moreover, (7.1) implies that lls(b11 )-B(b11 )ll::;C1n-112 . The lemma follows from this inequality 

and monotonicity arguments. See Portnoy (1981) for details. Q.E.D. 

Lemma 9: r.; 112T/11 ~d N(O,Id). 

Proof: 

n 

T/n = Q-;1((/30) = Q;1n-112 _Lxi;i(/30) 
i=I 

Therefore, ET/11 = 0 and E1711 17~ = I.11 by Lemma 4. Asymptotic normality follows from the 

central limit theorem for sums of uniformly bounded random variables. See Koenker and Bassett 

( 1978) for details. Q.E.D. 

Proof of Proposition 1: By definition 

n 

n-112 _Lxi[l(Yj -x;p::; 0)-1/2] = ((fJ) + B({J). 
i=I 

Let 811 satisfy n112 811 = o(I) as n ~ 00 • Then llb11 - {30 II::; 811 with probability approaching 1. By 

Lemmas 6 and 7 lls(b11 )-((/3o)ll::;C2(811 logn)112 and jjB(b11 )-n112Q11 (b11 -f3o)jj::;C3a28;n112 

when and for llb11 - /30 II::; 811 • Therefore, 

lls(fJo) + n112Q11 (b11 - fJo)ll::; C1n-112 + C2(811 logn)112 + C3a2n1128; 
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and 

with probability approaching 1 But 77n = -Q;1((f30). Set on~ (n-1 logn)112
. Then 

lln 112 (b11 -/30 )-7711 11 ~ C0 (8n logn)112 with probability approaching 1, where C0 is slightly larger 

than C2 . Asymptotic normality follo:ws from Lemma 9. Q.E.D. 

7.2 Properties of Nonparametric Smoothers 

Lemma 10: For all he H, L;=lwij,h ~Cw1 (J=l, ... ,n) and ll~L ~Cw1 for some 

constant cwl' where ~ is the matrix whose (i, j) element is wij,h and 

jjwh IL =sup .-leIRn ll~A-11 I l!A-jj. In addition, there are constants Cal and Ca 2 such that 

Proof: See HS. Q.E.D. 

7 .3 Asymptotic Expansion of the Statistics Sh 

For every f3 in a n-112 neighborhood of/30 , define 

= ~ [ti wif,hlS).Bl+fj(Xj,8)-112] J. 
Also define z j (/3) = Fj ( Xj /3) - Fj ( Xj /Jo) . We use a matrix representation of Sh (/3) . Let 

SC/3), F(X' /3), and z(/3), respectively, be the vectors in Rn with components ;//3), 

Fj(Xj/3), and zj(/3). Let ~ be the nxn matrix whose (i,j) element is wij,h. Then 

sh (/3) = 11~ [;({3) + f(x' /3)-112]112 = llrYJi [;({3) + F(X' /Jo )-112 + z(/J)Jll2. 
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Under the null hypothesis, Fj (Xj/3o) = 112' so sh (/3) = 11wh [q(/J) + z(/J)Jll2 • The test statistic is 

based on Sh(bn). Lemma 10 enables us to obtain an asymptotic expansion for Sh= Sh(bn). 

Define the n x n matrices Ah = w;wh and TI F = F X' ( XF X')- 1 X. 

Lemma 11: The following relation holds with probability approaching 1 as n ~ oo : 

for all h E 1i, some constant C9 , and 8n satisfying 8n::;; (n- 1 log n)112 and n-112 I 8n = o(l). 

Proof: We prove this lemma under the null hypothesis only. The general case can be 

considered similarly. For all /3 such that ll/3 - /30 II::;; 8n , Assumption 1 yields 

(7.5) lfttcx;fJ)-}j(X;/30)1::;; C5a8n, 

whre C5 =CFC x. We now bound the differences llWh[q(/3) + z(/J)Jjl2 -llWh[q(/30) + z(/3)Jll2 

uniformly over h E 11. and /3 with ll/3 - /30 II::;; 8n . Define 77h (/3) = Whq(/3) . As in Lemma 4, 

n 

E[77i,h(/3)-7]i,h(/3o )]2 = L wt.h IP1(Xj/3)-F/X}/3o)I 
j=I 

n 

::;; C5a8n L wt,h = C5a8naii,h. 
j=I 

As in Lemma 6, 

P[ 
I 77i,h (/3)-77i,h (/Jo) I> C ( ~ 1 )112]- (l) sup sup max 11 ., 6 aun ogn - o 

P:llP-Poll~on he1i l~i~n aii,h 

as n ~ oo for some constant C6 . In the same way, one can bound 7Ji,h (/30) . For some constant 

[ 
I 77i h(/30) I 112] P sup m~x ' 112 > C7 (log n) = o(l). 

he'H, l~z~n aii,h 

These two results can be understood as meaning that there is a random set An such that 

(7.6) J/? I 'h,h (/30) I ::;; C7 (au,h log n) -
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for all h E 7-i, all /3 such that ll/3- /loll~ 8n, and all i = l, ... ,n. This and (7.5) imply that on An 

1iff'h[q(/3)-q(/3o)Jlf ~ CJa8ntr(Ah)logn, 

llff'hq(/3o)jj2 ~ Cjtr(Ah)logn, 

and 

llW'h [q(/30) + z(/3)11 ~ C7 [tr( Ah) log n]112 + C5an 112811 • 

Now by the inequality 1 llxll2 -llyll2 
I ~ llx - Yll Cllx - Yll + 2 llxll) and Lemma 10, the following holds 

on An for all /3 satisfying ll/3- /30 II~ 811 : 

'"Wh[q(/3) + z(/3)112 -!lff'h[q(/Jo) + z(/3)112 I ~ C6 (a8n )112 [C6 (a811 )
112 + 2C7 ]tr( Ah) log n 

(7.7) < C ( ~ ) II 2 h-1 1 - s au11 ogn. 

Since llb11 - /30 II ~ 8n with probability approaching 1 as n --7 oo , the same inequality holds with 

probability approaching 1 when /3 is replaced by bn . Proposition 1 implies that with probability 

approaching 1 as n --7 oo , 

and 

where C0
1

:::: C0C xCF. Therefore, by Lemma 10, 

C9a(811 logn)112 

with probability approaching 1 as n --7 oo , where C9 = C0Cw1 • The proof is now completed 

similarly to (7.7). Q.E.D. 

Lemma 11 implies that under the null hypothesis, Sh can be approximated by 

llff'hq(/30 ) -Tf'hTI Fq(/30 )112 
. The second term in this expression comes from the parametric LAD 

fit. The next lemma shows that the effect of this term is asymptotically negligible when 

hmax --7 0 'as n --7 00 • 

Lemma 12: Let hmax --7 0 as n --7 oo. Then under the null hypothesis 
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Proof: By Lemma 11, it suffices to show that 

This would follow from 

L h112 E[llWh Un -ITF )q(,80)11
2 

-11Whq(fio)ll2J = op(l) 
heH 

and 

L h112Var[i1Wiz Un -ITF )q(,80)1!2 -11Whq(fio)ll2J =op (1). 
he Ji 

The definition of q(fio) yields Eq(fio)q(fio)' =In 14. Since ITF is a projection operator in IRn 

onto a d -dimensional subspace, tr(ITF) = d. This and Lemma 2 from HS imply that 

Similarly 

where C is a constant that depends only on Cw1 and d . Since 'H is a geometric grid, 

I h112 ~chi~~--) o. 
he Ji 

A similar result holds for LheHh. The result of the lemma follows. Q.E.D. 

The results of Lemmas 10 and 12 imply that under the null hypothesis, 

(7.8) sup I Th* -Th,O I= op(l), 
heH 

24 



where 

n 
llWh~(/Jo )f -(1/ 4) Liaj,h 

Th,O =-------i=_l __ 

(ii'AhJ
112 

1=! 

7.4 Proof of Theorem 1 

Relation (7.8) reduces the proof to considering supheh'. lh,o. lh,o is the centered, 

standardized quadratic form JJTf/z~(/)0 )11
2 

, and ~(/Jo) is a vector of independently and identically 

distributed Bernoulli random variables with means of zero. The distribution of lh,o does not 

depend on the unknown distributions of the ei 's in (1.1). The distribution of supheh'. Th,O is 

investigated in HS and Spokoiny (2000). Here, we briefly review the main issues. 

Let ~ be an n x 1 Gaussian random vector with zero mean and covariance matrix In 14 . 

Define fh,O by centering and standardizing l1Wh~l12 • Then supheh'. Th,O is close in distribution to 

f =sup heh'. fh,O . Let la be the 1-a quantile of the distribution of f . Then fa = 0( ~log log n) 

and f has a bounded, continuous density at la. This and (7.8) imply Theorem 1. See HS and 

Spokoiny (2000) for details. 

7 .5 Proofs of Theorems 2 and 3 

The next proposition gives sufficient conditions for consistency of the adaptive test, rate-

optimal test. Define !ii =~ex; Po) -1/ 2 . Let Ii be the vector in JR n with elements !ii. Define 

* 2 ~n ~n 2 2 (Vh) =(118)..L.Ji=l £..Jj=laij,h =tr(Ah)/8. 

Proposition 2: Suppose there is a sequence {rn} such that rn --7 oo as n --7 oo and 

n n 

(7.9) L .~:aij,h!ii!ij ;;=: Cta+rn)Vh* 
i=l j=I 

ft:i 

for some h E 1t. Then 

lim P(T >ta)= 1. 
n~oo 
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Proof: It suffices to show that for a given h E H, P(Th <ta)= o(l) as n --7 oo. The 

asymptotic expansion from Lemma 11 reduces this condition to 

Now 

ByLemma2, 

~';,;r;h \In -I1 F )~(pli) = 0 P (!) . 
rn Ll Wh~(In -TIF) 

Moreover, because the elements of m satisfy I mi I ~ 1/ 2 and In - TI F is a projection operator in 

Rn, it follows from Lemma 10 that 

11.!'.l'WhWh(In -TIF )112 ~ (1/ 4)tr(WhWh)2 = 4(Vh *)2
. 

Therefore, L'.l' WhWh (In - TI F )q (/Jo) = o P ( rn Vh *) . As in the proof of Lemma 12, one can show 

that llWh (In -nF )q(/J0)ll2 -jjWhq(/J0)jl2 
=op (Vh *). Since Varl1Whq(/J0 )jl

2 
= (Vh *)2, it follows 

that 11Whq(/J0)jl2 -EjjWhq(fJ0)ll2 =op (rnViz*). Since, also, Eqi(fJ0 )
2 =1/ 4-mf, it follows that 

n n n 
EllWhq(/Jo)ll2 

=EL LaiJ,hqi(/Jo)qj(/Jo) = Lau,h(ll 4-L'.ll) 
i=l j=I i=l 

so that 
n 

EllWhq(fJ0 )jl2 -(1/4)tr(Ah)=-!au,hL'.lf. 
i=l 

This implies that 
n 

llWh(In -TIF)q(/Jo)ll2 -(1/4)tr(Ah)=-:Lau,hLlT +op(rnVh*). 
i=l 

n n 

llWh(ln -TIF )q(/Jo)+ WhL'.lll2 -tr(Ah)/4-taVh* = L LaiJ,hLliLlj -taVh * +op(rnVh*)' 
i=I j=I 

jt:-i 
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and the proposition follows. Q.E.D. 

ProofofTheorem 2: Define t.'.l as in Proposition 2. Set Pn = Cn-112 ~loglogn for some 

finite C > 0 . It follows from Assumption 1 and (2.1) that /30 - /3 = Pn (XFX')XFQ + o(pn). 

Therefore, Ll=-pn(ln -II~)Q+o(pn)=-pnI19+o(pn). Moreover, because hmax ~O and 

WhIIQ is the result of smoothing the continuous function ITQ by the kernel method, 

WhITQ ~ ITQ as n ~ 00 • This result and (3.2) imply that for sufficiently large n, 

llt.'.lll2 ~ 0.5p~ jjrrgf ~ 0.5p~8 = 0.5C8loglogn, 

where 8 > 0 is as in (3.2). By Lemma 2 of HS, Cv1 I h ~ (Vh* )2 ~ Cv2 I h for finite constants 

Cv1 and Cv2 . Therefore, setting h = hmax and rn =(log log n )114 and noting that 

ta =O(~loglogn) yields Cta +rn)Vh* =O(loglogn). It follows that (7.9) holds for all 

sufficiently large C . The theorem now follows from Proposition 2. Q.E.D. 

ProofofTheorem 3: It is straightforward to see that for a continuous t.'.le S(H,s) 

n 
~a .. ht.'.l~ £.. ll, l 

i=l 
n n 

I. I au.ht.'.lit.'.l j 
i=l j=I 

Moreover, 

o(l). 

for constants C51 and C52 that depend only on the design {Xi: i = l, ... ,n}. See HS (proof of 

Theorem4). Nowset tn=ta+~2logiogn=O(~loglogn). Define h tobetheelementofH 

that is closest from below to (nlt,z)-21<4s+d-I). Since H is a geometric grid, h ~ (nl tnr21<4s+d-I) 

and h::::: (n I tn )-21c4s+d-I). By Lemma 10, (Vh *)-1 ~ Cv2 h112 for some fixed constant Cv. Now 

the inequality n-112 ljt.'.ljl ~ C;j1 (C52 + Cv )(n I tn )-2sl(4s+d-i) and (7.10) yield 

(Vh *)-1 llWht.'.lll2 ~ Cv2 (n I tn )-11(4s+d-I) ( C sillt.'.llj- Cs2n1I2 hs )2 ~ tn . 

Therefore, (Vh *)-1 jjWht.'.ljj2 
- ta ~ 00 as n ~ oo , as is required to prove the theorem. Q.E.D. 
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TABLE 1: RESULTS OF MONTE CARLO EXPERIMENTS1 

Distribution 
of £ 

Probability of Rejecting 
~~-Null Hypothesis~~ 

Zheng's 
Test 

Rate-Optimal 
Test 

Null Hypothesis Is True 

Normal 0.048 0.054 
Mixture 0.050 0.049 
Extreme 
Value 0.056 0.053 

Null Hypothesis Is False 

Normal 1. 0 0.776 0.984 
Mixture 1. 0 0.600 0.942 
Extreme 
Value 1. 0 0.490 0.796 

Normal 0.25 0.516 0.816 
Mixture 0.25 0.300 0.770 
Extreme 
Value 0.25 0.446 0.797 

The differences between empirical and nominal rejection probabilities under Ho are not 
significant at the 0.05 level. Under Hi, the differences between the rejection probabilities of the 
rate-optimal and Zheng's test are significant at the 0.01 level. 
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