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Abstract

In this paper linear elliptic boundary value problems of second order with non-smooth
data (bounded measurable coefficients, sets with Lipschitz boundary, regular sets, non-
homogeneous mixed boundary conditions) are considered. It will be shown that such
boundary value problems generate isomorphisms between certain Sobolev–Campanato
spaces of functions and functionals, respectively.
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2 1 Introduction

1 Introduction

In this paper we consider linear elliptic operators L : W 1,2
0 (Ω ∪ Γ) → W−1,2(Ω ∪ Γ)

defined as

(1.1) 〈Lu,w〉 :=
∫

Ω

(A∇u · ∇w + duw) dλn, w ∈ W 1,2
0 (Ω ∪ Γ),

and regularity properties of solutions u ∈ W 1,2
0 (Ω∪Γ) to the corresponding linear elliptic

boundary value problem

(1.2) 〈Lu,w〉 = 〈F,w〉, w ∈ W 1,2
0 (Ω ∪ Γ),

for functionals F ∈ W−1,2(Ω ∪ Γ). In (1.1) and (1.2) Ω is a bounded open subset of IRn,
and Γ is a relatively open subset of the boundary ∂Ω such that Ω∪Γ is regular in the sense
of Gröger [11]. Furthermore, W 1,2

0 (Ω∪Γ) and W−1,2(Ω∪Γ) denote the Sobolev spaces of
functions u ∈ W 1,2(Ω) having trace zero on ∂Ω\Γ and its dual space, respectively. Hence,
our variational formulation (1.2) includes natural and Dirichlet boundary conditions on
the boundary parts Γ and ∂Ω \ Γ, respectively. The coefficients A and d are bounded
measurable maps defined on Ω, where A is real symmetric (n× n)-matrix valued, and d
is scalar valued. Finally, we assume that there exists a real constant ε > 0 such that for
all ξ ∈ IRn and almost all x ∈ Ω there hold

ε ≤ d ≤ 1

ε
and ε |ξ|2 ≤ A(x)ξ · ξ ≤ 1

ε
|ξ|2.

Under the above assumptions there exists a constant p = p(ε,G) > 2 such that L maps
W 1,p

0 (Ω ∪ Γ) isomorphically onto W−1,p(Ω ∪ Γ) for all 2 ≤ p < p (see Gröger [11]).
Unfortunately, for n ≥ 3 this result in general does not yield the Hölder continuity of the
solution u to the mixed boundary value problem Lu = F ∈ W−1,p(Ω ∪ Γ).

In this paper we will consider function spaces appropriate to the case n ≥ 3. In
Recke [15] and Griepentrog, Recke [9] it was shown the existence of a parameter
n− 2 < ω < n depending only on ε and G such that for all 0 ≤ ω < ω and all functionals
F ∈ W−1,2,ω(Ω ∪ Γ) the solution u ∈ W 1,2

0 (Ω ∪ Γ) of the mixed boundary value problem
Lu = F belongs to the Sobolev–Campanato space

W 1,2,ω
0 (Ω ∪ Γ) = {u ∈ W 1,2

0 (Ω ∪ Γ) : ∇u ∈ L2,ω(Ω; IRn)},
if F belongs to the space W−1,2,ω(Ω ∪ Γ) of all functionals F ∈ W−1,2(Ω ∪ Γ) with

(1.3) 〈F,w〉 :=
∫

Ω

(f · ∇w + gw) dλn, w ∈ W 1,2
0 (Ω ∪ Γ),

where

(1.4) f ∈ L2,ω(Ω; IRn), g ∈ L2,ω−2(Ω).

Note, that in the case n− 2 < ω < ω for F ∈ W−1,2,ω(Ω∪Γ) the Hölder continuity of the
solution u ∈ W 1,2,ω

0 (Ω ∪ Γ) to the boundary value problem (1.2) follows via embedding
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theorems. The main goal of the present paper is to overcome the following shortcoming
of the above approach:

To prove, that an arbitrarily given functional F ∈ W−1,2(Ω ∪ Γ) is an element of
W−1,2,ω(Ω∪Γ), up to now it was necessary to repeat the whole regularity theory to get a
representation of F in the form (1.3) and (1.4) via the variational formulation (1.1) and
(1.2) of the elliptic problem Lu = F .

Generalizing the results of Rakotoson [13, 14] (for the case Γ = ∅) in the present
paper we are able to give a more direct characterization of the space W−1,2,ω(Ω ∪ Γ)
which has the major advantage to be independent of a concrete representation (1.3) and
(1.4). Nevertheless, the argumentation is closely related to the methods developed in
Recke [15] and Griepentrog, Recke [9]. Our paper is organized as follows:

In Section 2 we collect preliminary results related to regular sets Ω ∪ Γ ⊂ IRn and
Sobolev–Campanato spaces W 1,2,ω

0 (Ω ∪ Γ).

Section 3 is devoted to the introduction of new Campanato spaces Y −1,2,ω(Ω∪Γ) of func-
tionals (see also Rakotoson [13, 14]), and among other things we prove the continuous
embedding W−1,2,ω(Ω ∪ Γ) ↪→ Y −1,2,ω(Ω ∪ Γ) for all 0 ≤ ω < n.

In Section 4 we prove a regularity theorem for solutions to the variational problem (1.1)
and (1.2). In fact, we will show the isomorphism property of the linear elliptic operator L
from W 1,2,ω

0 (Ω∪Γ) onto Y −1,2,ω(Ω∪Γ), hence, the coincidence of the spaces W−1,2,ω(Ω∪Γ)
and Y −1,2,ω(Ω ∪ Γ) for all 0 ≤ ω < ω.

A more comprehensive treatment of the topic can be found in the doctoral thesis of the
author (see Griepentrog [10]).

2 Preliminaries concerning Campanato Spaces

In the whole paper we will assume n ≥ 3. The symbol | · | is used for the absolute
value, and for the Euclidean norm in IRn. By ej we denote the j-th unit vector in IRn

and furthermore, for x = (x1, . . . , xn) ∈ IRn we write x̂ = (x1, . . . , xn−1) ∈ IRn−1.

For x ∈ IRn and r > 0 we denote by B(x, r) := {ξ ∈ IRn : |ξ − x| < r} and E1(x, r) :=
{ξ ∈ IRn : |ξ − x| < r, ξn − xn < 0} the open ball and the open halfball, respectively. In
the case x = 0, r = 1 we shortly write B and E1.

As usual, for subsets G of IRn we write G◦, G and ∂G for the interior, the closure and
the (topological) boundary of G, respectively.

By λn we will denote the n-dimensional Lebesgue measure on the σ-algebra of Lebesgue-
measurable subsets of IRn. Let Ω be a bounded open subset of IRn. We write L∞(Ω) and
L∞(Ω; IRn), for the sets of bounded measurable maps from Ω into IR and IRn, respectively.
Analogously, for 1 ≤ p < ∞ we write Lp(Ω) and Lp(Ω; IRn) for the Lebesgue spaces of
p-integrable functions from Ω into IR and IRn, respectively.
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2.1 Campanato Spaces and Sobolev–Campanato Spaces

For 1 ≤ p < ∞, 0 ≤ ω < n + p we denote by Lp,ω(Ω) the Campanato space, i.e. the
space of all u ∈ Lp(Ω) such that

(2.1) [u]pLp,ω(Ω) := sup
x∈Ω
r>0

r−ω

∫
Ω[x,r]

|u− uΩ[x,r]|p dλn < ∞.

In (2.1) we used the notation

(2.2) Ω[x, r] := Ω ∩ B(x, r), uΩ[x,r] :=
1

λn(Ω[x, r])

∫
Ω[x,r]

u dλn.

The space Lp,ω(Ω) is a Banach space with the norm

(2.3) ‖u‖Lp,ω(Ω) :=
{
‖u‖pLp(Ω) + [u]pLp,ω(Ω)

}1/p

.

Analogously, by Lp,ω(Ω; IRn) we denote the space of all f ∈ Lp(Ω, IRn) with components
in Lp,ω(Ω), and the norm in Lp,ω(Ω; IRn) is defined similarly to (2.3). Finally, for the sake
of simplicity, for ω ≤ 0 we will use the notation Lp,ω(Ω) := Lp(Ω).

The usual Sobolev space W 1,p(Ω) will be equipped with the norm

‖u‖W 1,p(Ω) :=
{
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω;IRn)

}1/p

.

For 0 ≤ ω < n+ p we denote by W 1,p,ω(Ω) the Sobolev–Campanato space, i.e. the space
of all u ∈ W 1,p(Ω) such that ∇u ∈ Lp,ω(Ω; IRn). The space W 1,p,ω(Ω) is a Banach space
with the norm

‖u‖W 1,p,ω(Ω) :=
{
‖u‖pLp(Ω) + ‖∇u‖pLp,ω(Ω;IRn)

}1/p

.

The following well-known (cf., e.g., Troianiello [17]) property of Campanato spaces
will be used repeatedly in our paper: If r0 > 0 is fixed and if the supremum in (2.1) is taken
over 0 < r ≤ r0, only, then the corresponding r0-depending norm, defined analogously to
(2.3), is equivalent to the original norm in Lp,ω(Ω). Moreover, we will use the following
theorem (cf. Kufner, John, Fučik [12], Giaquinta [7] or Troianiello [17]) that
describes embedding properties of Campanato spaces.

Theorem 2.1. Let 1 ≤ p1 ≤ p2 < ∞ and 0 ≤ ω1 < n+ p1, 0 ≤ ω2 < n+ p2 such that
(ω1 − n)/p1 ≤ (ω2 − n)/p2. Then we have Lp2,ω2(Ω) ↪→ Lp1,ω1(Ω).

A bijective map Φ between two subsets of IRn such that Φ and Φ−1 are Lipschitz
continuous is called Lipschitz transformation.

In order to formulate further properties of Campanato spaces (equivalence to Morrey
and Hölder spaces, multiplier, embedding and transformation properties) we have to
suppose certain minimal regularity of the boundary ∂Ω. Hence, let us introduce the
following usual terminology (using notation (2.2)):
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Definition 2.2. Let a > 0. An open set Ω ⊂ IRn is said to have property (a) if for all
sufficiently small r > 0 we have λn(Ω[x, r]) ≥ arn for all x ∈ Ω.

The results, summarized in the following theorem, are classical (cf. Campanato [1, 2,
3, 4], Giusti [8]).

Theorem 2.3. Let 1 ≤ p < ∞ and Ω ⊂ IRn have property (a). Then there holds:

(i) Let 0 ≤ ω < n and u ∈ Lp(Ω). Then it holds u ∈ Lp,ω(Ω) if and only if

(2.4) ‖u‖pLp,ω(Ω) := sup
x∈Ω
r>0

r−ω

∫
Ω[x,r]

|u|p dλn < ∞,

and the so called Morrey norm defined by (2.4) is an equivalent norm on Lp,ω(Ω).

(ii) Let 0 ≤ ω < n. Then for all u ∈ Lp,ω(Ω) and v ∈ L∞(Ω) the product uv belongs to
Lp,ω(Ω), again, and there exists a constant c > 0 such that

‖uv‖Lp,ω(Ω) ≤ c ‖u‖Lp,ω(Ω) ‖v‖L∞(Ω) for all u ∈ Lp,ω(Ω), v ∈ L∞(Ω).

(iii) Let n < ω < n+ p. Then Lp,ω(Ω) is isomorphic to the Hölder space C0,α(Ω) with
α = (ω − n)/p.

(iv) Let Ψ be a Lipschitz transformation from an open neighborhood of Ω into IRn and
0 ≤ ω < n + p. Then there exists a constant c > 0 such that for the transformation
Ψ∗u := u ◦Ψ : Ω → IR of a function u : Ψ(Ω) → IR there holds

‖Ψ∗u‖Lp,ω(Ω) ≤ c ‖u‖Lp,ω(Φ(Ω)) for all u ∈ Lp,ω(Ψ(Ω)),

‖Ψ∗u‖W 1,p,ω(Ω) ≤ c ‖u‖W 1,p,ω(Φ(Ω)) for all u ∈ W 1,p,ω(Ψ(Ω)).

2.2 Campanato Spaces on Lipschitz Hypersurfaces

For the the introduction of Campanato spaces on hypersurfaces in IRn we give the
following definition of Lipschitz hypersurfaces in IRn and sets with Lipschitz boundary:

Definition 2.4. (i) A subset M of IRn is called Lipschitz hypersurface in IRn if for
each x0 ∈ M there exist an open neighborhood U of x0 and a Lipschitz transformation
Φ from U onto B such that Φ(x0) = 0 and U ∩M = {x ∈ U : Φn(x) = 0}.
(ii) A bounded subset Ω of IRn is called set with Lipschitz boundary (see Giusti [8]) if

for each x0 ∈ ∂Ω there exist an open neighborhood U of x0 and a Lipschitz transformation
Φ from U onto B such that Φ(x0) = 0 and Φ(U ∩ Ω) = E1.

Remark 2.5. Every set with Lipschitz boundary is an open subset of IRn having
property (a). Moreover, there holds the following statement: If Ω ⊂ IRn is a bounded
open set and Υ = IRn \ Ω its exterior, then, Ω is a set with Lipschitz boundary if and
only if ∂Ω is a Lipschitz hypersurface in IRn with ∂Ω = ∂Υ.
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Let Ω ⊂ IRn be a set with Lipschitz boundary and M a relatively open subset of ∂Ω. By
λ∂Ω we denote the (n− 1)-dimensional Lebesgue measure on the σ-algebra of Lebesgue-
measurable subsets of ∂Ω. Note, that on the σ-algebra of Lebesgue measurable subsets
of ∂Ω it is equal to the (suitably normalized) (n− 1)-dimensional Hausdorff measure (cf.
Simon [16] and Evans, Gariepy [6]).

For 1 ≤ p < ∞ we write Lp(M) and L∞(M) for the Lebesgue spaces of p-integrable
functions and bounded measurable maps from M into IR, respectively.

For 1 ≤ p < ∞, 0 ≤ ω < n − 1 + p we denote by Lp,ω(M) the Campanato space, i.e.
the space of all u ∈ Lp(M) such that

(2.5) [u]pLp,ω(M) := sup
x∈M
r>0

r−ω

∫
M [x,r]

|u− uM [x,r]|p dλ∂Ω < ∞.

In (2.5) we used the notation

(2.6) M [x, r] := M ∩ B(x, r), uM [x,r] :=
1

λ∂Ω(M [x, r])

∫
M [x,r]

u dλ∂Ω.

The space Lp,ω(M) is a Banach space with the norm

(2.7) ‖u‖Lp,ω(M) :=
{
‖u‖pLp(M) + [u]pLp,ω(M)

}1/p

.

For the sake of simplicity, for ω ≤ 0 we will use the notation Lp,ω(M) := Lp(M).

If r0 > 0 is fixed and if the supremum in (2.5) is taken over 0 < r ≤ r0, only, then
the corresponding r0-depending norm, defined analogously to (2.7), is equivalent to the
original norm in Lp,ω(M). Moreover, we have (see Griepentrog [10])

Theorem 2.6. Let 1 ≤ p1 ≤ p2 < ∞ and 0 ≤ ω1 < n − 1 + p1, 0 ≤ ω2 < n − 1 + p2

such that (ω1 − n+ 1)/p1 ≤ (ω2 − n+ 1)/p2. Then there holds Lp2,ω2(M) ↪→ Lp1,ω1(M).

For the formulation of further properties of Campanato spaces on Lipschitz hypersur-
faces (equivalence to Morrey and Hölder spaces, multiplier and embedding properties) we
want to suppose property (a) of the boundary part M of ∂Ω. Having in mind notation
(2.6), we introduce the following terminology:

Definition 2.7. Let a > 0 and Ω ⊂ IRn a set with Lipschitz boundary. A relatively
open subset M of ∂Ω is said to have property (a) if for all sufficiently small r > 0 we
have λ∂Ω(M [x, r]) ≥ arn−1 for all x ∈ M .

Remark 2.8. For every set Ω ⊂ IRn with Lipschitz boundary ∂Ω has property (a).

As mentioned above, we want to summarize results comparable to Theorem 2.3 but
now for Campanato spaces on Lipschitz hypersurfaces (see Griepentrog [10]):

Theorem 2.9. Let 1 ≤ p < ∞ and Ω be a set with Lipschitz boundary. If the relatively
open subset M of ∂Ω has property (a), then the following is true:
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(i) Let 0 ≤ ω < n− 1 and u ∈ Lp(M). Then it holds u ∈ Lp,ω(M) if and only if

(2.8) ‖u‖pLp,ω(M) := sup
x∈M
r>0

r−ω

∫
M [x,r]

|u|p dλ∂Ω < ∞,

and the so called Morrey norm defined by (2.8) is an equivalent norm in Lp,ω(M).

(ii) Let 0 ≤ ω < n − 1. Then for all u ∈ Lp,ω(M) and v ∈ L∞(M) the product uv
belongs to Lp,ω(M), again, and there exists a constant c > 0 such that

‖uv‖Lp,ω(M) ≤ c ‖u‖Lp,ω(M) ‖v‖L∞(M) for all u ∈ Lp,ω(M), v ∈ L∞(M).

(iii) Let n − 1 < ω < n − 1 + p. Then Lp,ω(M) is isomorphic to the Hölder space
C0,α(M) with α = (ω − n + 1)/p.

2.3 Regular Sets

Let us denote for x0 ∈ IRn and r > 0 the standard sets

B2(x, r) := {ξ ∈ IRn : |ξ − x| < r, ξn − xn = 0},
E1(x, r) := {ξ ∈ IRn : |ξ − x| < r, ξn − xn < 0},
E2(x, r) := {ξ ∈ IRn : |ξ − x| < r, ξn − xn ≤ 0},
E3(x, r) := {ξ ∈ E2(x, r) : ξ1 − x1 > 0 or ξn − xn < 0}.

Here and later on in the case x = 0 and r = 1 we shortly write B2, E1, E2 and E3, re-
spectively. For the treatment of mixed boundary value problems we will use the following
terminology of regular sets G ⊂ IRn which is equivalent to the original concept introduced
by Gröger [11]. Additionally, we collect some frequently used properties of regular sets
(cf. Griepentrog, Recke [9]).

Definition 2.10. A bounded subset G of IRn is called regular, if for each x0 ∈ ∂G
there exist an open neighborhood U of x0 in IRn and a Lipschitz transformation Φ from
U onto B such that Φ(x0) = 0 and Φ(U ∩G) ∈ {E1, E2, E3}.

Remark 2.11. Every set with Lipschitz boundary is a regular set. Vice versa, the
interior of a regular set is a set with Lipschitz boundary. Moreover, the closure of a
regular set is regular, too.

Lemma 2.12. If G ⊂ IRn is a regular set and Ψ a Lipschitz transformation from an
open neighborhood of G onto another open subset of IRn, then Ψ(G) is regular.

Lemma 2.13. For every regular subset G of IRn there exists an atlas of charts
(Φ1, U1), . . . , (Φm, Um) of the following type: There exist points x1, . . . , xm ∈ G, open
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neighborhoods U1, . . . , Um of x1, . . . , xm in IRn, and Lipschitz transformations Φ1, . . . ,Φm

from U1, . . . , Um into IRn, respectively, such that there hold

(2.9) ∂G ⊂
⋃
j∈I

Uj,
⋃
j∈I0

Uj ⊂ G◦, G ⊂
m⋃
j=1

Uj ,

with I0 = {j ∈ {1, . . . , m} : xj ∈ G◦}, I = {j ∈ {1, . . . , m} : xj ∈ ∂G} and

(2.10) Φj(xj) = 0, Φj(Uj) = B, Φj(Uj ∩G) ∈ {B,E1, E2, E3}
for all j ∈ {1, . . . , m}. The subfamily {(Φj , Uj) : j ∈ I} is an atlas of ∂G.

2.4 Sobolev–Campanato Spaces on Regular Sets

Throughout this section we will assume, that G ⊂ IRn is a regular set, U ⊂ IRn

is a relatively open subset of G and, finally, that V ⊂ IRn is a relatively open subset
of U . Before considering Sobolev–Campanato spaces on regular sets we want to present
embedding and trace properties of Sobolev–Campanato spaces W 1,2,ω(Ω) on sets with
Lipschitz boundary (see Giusti [8], Griepentrog, Recke [9]):

Theorem 2.14. Let Ω ⊂ IRn be a bounded open set with Lipschitz boundary and M be
a relatively open subset of ∂Ω. Then, for 0 ≤ ω < n the following is true:

(i) W 1,2(Ω) is continuously embedded into L2n/(n−2)(Ω).

(ii) W 1,2,ω(Ω) is continuously embedded into L2,ω+2(Ω).

(iii) The trace operator γM maps W 1,2(Ω) continuously into L2(n−1)/(n−2)(M).

(iv) The trace operator γM maps W 1,2,ω(Ω) continuously into L2,ω+1(M).

In the sequel we will work with the following notation, which is usual in the theory of
mixed boundary value problems (cf., e.g., Troianiello [17], Gröger [11]). By W 1,2

0 (U)
we denote the closure in W 1,2(U◦) of the set

(2.11) C∞
0 (U) := {u|U◦ : u ∈ C∞

0 (IRn), supp(u) ∩ (U \ U) = ∅}.
Furthermore, for 0 ≤ ω < n+ 2 we consider closed subspaces of the Sobolev–Campanato
spaces defined as

W 1,2,ω
0 (U) := W 1,2

0 (U) ∩W 1,2,ω(U◦)

and equipped with the norm of W 1,2,ω(U◦). For the sake of completeness we write down
the following principles concerning extension, transformation, and restriction of Sobolev
space functions (see Griepentrog, Recke [9] and Griepentrog [10]):

Lemma 2.15. The zero extension map RU on W 1,2
0 (V ) defined as

RUu :=

{
u λn-almost everywhere on V ◦,

0 λn-almost everywhere on U◦ \ V ◦,
u ∈ W 1,2

0 (V ),
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is a bounded linear operator from W 1,2
0 (V ) into W 1,2

0 (U). Moreover, we have

‖RUu‖W 1,2
0 (U) = ‖u‖W 1,2

0 (V ) for all u ∈ W 1,2
0 (V ).

Lemma 2.16. If Ψ is a Lipschitz transformation of an open neighborhood of G onto
another open subset of IRn, then u belongs to W 1,2

0 (Ψ(U)) if and only if Ψ∗u is an element
of W 1,2

0 (U), and there holds

Ψ∗RΨ(U)u = RUΨ∗u for all u ∈ W 1,2
0 (Ψ(U)).

Let x ∈ B, r > 0, and k ∈ {1, 2}. Furthermore, let P : B → E2 be the projection
defined as Px := (x̂,−|xn|) ∈ E2 for x = (x̂, xn) ∈ B. Finally, using the notation
D(x, r) := B(x, r)∪B(Px, r), for u : B ∩D(x, r) → IR we define the odd part T1(x, r)u :
E1[Px, r] → IR and the even part T2(x, r)u : E1[Px, r] → IR of 2u by

(Tk(x, r)u)(x) := u(x) + (−1)ku(x̂,−xn), x ∈ E1[Px, r].

respectively. Then, there holds 2u = T1(x, r)u+ T2(x, r)u and

Lemma 2.17. For x ∈ B, r > 0, and k ∈ {1, 2} the operator Tk(x, r) maps the space
W 1,2

0 (B ∩D(x, r)) continuously into W 1,2
0 (Ek[Px, r]), and we have

TkRBu = REk
Tk(x, r)u for all u ∈ W 1,2

0 (B ∩D(x, r)).

Let k ∈ {1, 2}. For u : E1 → IR we define the antireflection R1u : B → IR and the
reflection R2u : B → IR onto the unit ball B by

(Rku)(x) :=

{
u(x) for x ∈ E1,

(−1)ku(x̂,−xn) for x ∈ B \ E1,

respectively. Then, we have the following statement

Lemma 2.18. For 0 ≤ ω < n and k ∈ {1, 2} the operator Rk maps W 1,2,ω
0 (Ek)

continuously into W 1,2,ω
0 (B). Moreover, R2 maps W 1,2,ω(E1) continuously into W 1,2,ω(B),

and there holds

‖R1u‖2
W 1,2,ω(B) ≤ 2 ‖u‖2

W 1,2,ω(E1)
≤ 2 ‖R1u‖2

W 1,2,ω(B) for all u ∈ W 1,2,ω
0 (E1),

‖R2u‖2
W 1,2,ω(B) ≤ 2 ‖u‖2

W 1,2,ω(E1)
≤ 2 ‖R2u‖2

W 1,2,ω(B) for all u ∈ W 1,2,ω(E1).

In the sequel we also need the generalization of the above reflection operations to vector
and matrix valued functions. For f : E1 → IRn we define the antireflection R1f : B → IRn

and the reflection R2f : B → IRn by

(R1f)j := R1fj for j ∈ {1, . . . , n− 1}, and (R1f)n := R2fn,

(R2f)j := R2fj for j ∈ {1, . . . , n− 1}, and (R2f)n := R1fn.
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Let 0 < ε ≤ 1 be a real constant. By S(n) and S(ε, n) we denote the spaces of all
real symmetric (n×n)-matrices and all real positive definite (n× n)-matrices having the
spectrum in the interval [ ε, 1/ε ], respectively. For A : E1 → S(n) we define the reflection
R2A : B → S(n) by

(R2A)ei := R2(Aei) for i ∈ {1, . . . , n− 1}, and (R2A)en := R1(Aen).

Notice, that for A : E1 → S(ε, n) there holds R2A : B → S(ε, n).

3 Campanato Spaces of Functionals

Throughout this section we assume, that G ⊂ IRn is a regular set, U ⊂ IRn is a relatively
open subset of G and, finally, that V ⊂ IRn is a relatively open subset of U .

3.1 Definition

Let W−1,2(U) be the dual space to W 1,2
0 (U) and 〈 , 〉U the dual pairing between these

spaces. We define the norm of an element F ∈ W−1,2(U) by

‖F‖W−1,2(U) := sup {|〈F,w〉U | : w ∈ W 1,2
0 (U), ‖w‖W 1,2

0 (U) ≤ 1}.

To localize a functional F ∈ W−1,2(U) we do the following: We define the mapping
F �→ F |V from W−1,2(U) into W−1,2(V ) as the adjoint operator to the extension map
RU : W 1,2

0 (V ) → W 1,2
0 (U), that means,

〈F |V , w〉V := 〈F,RUw〉U , w ∈ W 1,2
0 (V ).

Obviously, the property of the extension operator RU (see Lemma 2.15) yields

‖F |V ‖W−1,2(V ) ≤ ‖F‖W−1,2(U) for all F ∈ W−1,2(U).

Moreover, there holds the norm identity

‖F‖W−1,2(U) = sup
x∈U◦
r>0

‖F |U [x,r]‖W−1,2(U [x,r]) for all F ∈ W−1,2(U).

Now, we construct Campanato spaces of functionals as subspaces of W−1,2(U) by the
following modification of the W−1,2(U)-norm (cf. Rakotoson [13, 14]).

Definition 3.1. Let 0 ≤ ω < n be a real constant. A functional F from W−1,2(U)
should belong to the Campanato space Y −1,2,ω(U), if and only if the supremum

(3.1) ‖F‖2
Y−1,2,ω(U) := sup

x∈U◦
r>0

r−ω ‖F |U [x,r]‖2
W−1,2(U [x,r])

has a finite value. In that case we define the norm of F ∈ Y −1,2,ω(U) by (3.1).
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Remark 3.2. If r0 > 0 is a given radius and if we take the supremum in the def-
inition (3.1) for 0 < r ≤ r0, only, then the corresponding r0-dependent norm, defined
analogously to (3.1), is an equivalent norm on Y −1,2,ω(U).

Remark 3.3. For 0 ≤ ω ≤ σ < n, r0 > 0, 0 < r ≤ r0, there holds r−ω ≤ rσ−ω
0 r−σ.

This yields the continuous embedding Y −1,2,σ(U) ↪→ Y −1,2,ω(U).

Remark 3.4. The spaces Y −1,2,ω(U) are Banach spaces for 0 ≤ ω < n: To prove the
completeness of the normed linear space Y −1,2,ω(U) let {Fα}α∈IN be a Cauchy sequence in
Y −1,2,ω(U). Because of the embedding of Y −1,2,ω(U) in W−1,2(U) the sequence {Fα}α∈IN

is a Cauchy sequence in W−1,2(U). Hence, it converges in W−1,2(U) to a functional
F ∈ W−1,2(U). If we fix δ > 0, we can choose α0(δ) ∈ IN such that

‖Fα+β − Fα‖Y −1,2,ω(U) ≤ δ for all α, β ∈ IN with α ≥ α0(δ).

For all x ∈ U◦ and r > 0 we get

r−ω ‖(F − Fα)|U [x,r]‖2
W−1,2(U [x,r]) ≤ 2r−ω ‖(F − Fα+β)|U [x,r]‖2

W−1,2(U [x,r]) + 2δ2.

Letting β → ∞ and taking the supremum for all x ∈ U◦ and r > 0 we arrive at the
sought-for result:

‖F − Fα‖2
Y −1,2,ω(U) ≤ 2δ2 for all α ∈ IN with α ≥ α0(δ).

3.2 Invariance Principles

We are going to consider several bounded linear operations on the above defined Cam-
panato spaces of functionals.

Let χ ∈ C∞
0 (IRn) and 0 ≤ ω < n. Now, for F ∈ W−1,2(U) we define by

〈χF,w〉U := 〈F,wχ〉U , w ∈ W 1,2
0 (U),

a functional χF ∈ W−1,2(U). There exists a real constant c = c(χ) > 0 such that

‖χF‖W−1,2(U) ≤ c ‖F‖W−1,2(U) for all F ∈ W−1,2(U).

Lemma 3.5. Let χ ∈ C∞
0 (IRn) and 0 ≤ ω < n. Then, F �→ χF is a bounded linear

map from Y −1,2,ω(U) into Y −1,2,ω(U).

Proof. If F ∈ Y −1,2,ω(U), then by definition we get for all x ∈ U◦, r > 0

‖(χF )|U [x,r]‖W−1,2(U [x,r]) = ‖χF |U [x,r]‖W−1,2(U [x,r]) ≤ c ‖F |U [x,r]‖W−1,2(U [x,r]),

where c = c(χ) > 0 is a real constant. This proves the desired result. �

Lemma 3.6. If 0 ≤ ω < n, then F �→ F |V defines a bounded linear map from
Y −1,2,ω(U) into Y −1,2,ω(V ).
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Proof. Let F ∈ Y −1,2,ω(U). Then, for all x ∈ V ◦, r > 0 by definition we have

‖F |V [x,r]‖W−1,2(V [x,r]) ≤ ‖F |U [x,r]‖W−1,2(U [x,r]),

which proves the sought-for result. �

Another useful tool for our regularity considerations is the extension principle for func-
tionals by reflection and antireflection, respectively. Let x ∈ B and r > 0. Having in
mind the continuity of the operators

Tk(x, r) : W
1,2
0 (B ∩D(x, r)) → W 1,2

0 (Ek[Px, r]),

and especially the continuity of Tk : W 1,2
0 (B) → W 1,2

0 (Ek) for k ∈ {1, 2} (Lemma 2.17) we
construct the mapping Fk �→ RkFk from W−1,2(Ek) into W−1,2(B) as the adjoint operator
of Tk : W 1,2

0 (B) → W 1,2
0 (Ek), that means,

〈RkFk, w〉B := 〈Fk, Tkw〉Ek
, w ∈ W 1,2

0 (B).

Because of the properties of the operators Tk (see Lemma 2.18) it follows

‖RkFk‖W−1,2(B) ≤
√
2 ‖Fk‖W−1,2(Ek) for all Fk ∈ W−1,2(Ek).

Lemma 3.7. Let k ∈ {1, 2} and 0 ≤ ω < n. Then, Fk �→ RkFk is a bounded linear
map from Y −1,2,ω(Ek) into Y −1,2,ω(B).

Proof. Let k ∈ {1, 2} be an index and Fk an element of Y −1,2,ω(Ek). Then, we get for
all x ∈ B, r > 0 and w ∈ W 1,2

0 (B[x, r]) the relation

|〈(RkFk)|B[x,r], w〉B[x,r]| = |〈RkFk, RBw〉B| = |〈Fk, TkRBw〉Ek
|

= |〈Fk, REk
Tk(x, r)RB∩D(x,r)w〉Ek

| = |〈Fk|Ek[Px,r], Tk(x, r)RB∩D(x,r)w〉Ek[Px,r]|
by the properties of Tk(x, r), Tk (see Lemma 2.17) and the extension operators. Hence,

‖(RkFk)|B[x,r]‖W−1,2(B[x,r])| ≤
√
2 ‖Fk‖W−1,2(Ek [Px,r]),

which proves the desired result. �

Next we will see, how the invariance of Sobolev spaces with respect to Lipschitz trans-
formations carries over to our new scale of Campanato spaces of functionals.

Let Ψ be a Lipschitz transformation from an open neighborhood of G onto another
open subset of IRn. Then, Ψ(G) ⊂ IRn is a regular set, too (see Lemma 2.12). Now, we
are able to define the mapping F �→ Ψ∗F from W−1,2(U) into W−1,2(Ψ(U)) as the adjoint
operator of Ψ∗ : W

1,2
0 (Ψ(U)) → W 1,2

0 (U), that means,

〈Ψ∗F,w〉Ψ(U) := 〈F,Ψ∗w〉U , w ∈ W 1,2
0 (Ψ(U)).

By the transformation invariance for Sobolev spaces (Theorem 2.3 and Lemma 2.16) there
exists a positive constant c = c(Ψ) > 0 such that

‖Ψ∗F‖W−1,2(Ψ(U)) ≤ c ‖F‖W−1,2(U) for all F ∈ W−1,2(U).
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Lemma 3.8. Let Ψ be a Lipschitz transformation from a neighborhood of G onto
another open subset of IRn and 0 ≤ ω < n. Then, F �→ Ψ∗F defines a bounded linear
map from Y −1,2,ω(U) into Y −1,2,ω(Ψ(U)).

Proof. Let L ≥ 1 be a Lipschitz constant for the transformation Ψ and V = Ψ(U).
We choose r0 > 0 such that for all y ∈ V ◦, 0 < r ≤ r0 there holds the inclusion

Ψ−1(B(y, r)) ⊂ B(x, Lr) for x = Ψ−1(y).

For all y ∈ V ◦, 0 < r ≤ r0 and w ∈ W 1,2
0 (V [y, r]) we get the relation

|〈(Ψ∗F )|V [y,r], w〉V [y,r]| = |〈Ψ∗F,RVw〉V | = |〈F,Ψ∗RVw〉U |
= |〈F,RUΨ∗w〉U | = |〈F |U [x,Lr], RU [x,Lr]Ψ∗w〉U [x,Lr]|.

Here we have used the properties of the extension operators with respect to the transfor-
mation Ψ (Theorem 2.3 and Lemma 2.16) and the above inclusion, respectively. Hence,
there exists a constant c = c(Ψ) > 0 such that

‖(Ψ∗F )|V [y,r]‖W−1,2(V [y,r]) ≤ c ‖F |U [x,Lr]‖W−1,2(U [x,Lr]),

which proves the result. �

3.3 Examples

Next, we consider examples of functionals from Y −1,2,ω(G), which are interesting for a
broad class of applications.

Theorem 3.9. Let M be a relatively open subset of ∂G having property (a). Then, for
all 0 ≤ ω < n the map

(f, g, h) �→ F (f, g, h),

defined by

〈F (f, g, h), w〉G :=

∫
G

(f · ∇w + gw) dλn +

∫
M

hγM(w) dλ∂G, w ∈ W 1,2
0 (G),

is a bounded linear operator from

L2,ω(G◦; IRn)× L2n/(n+2), ωn/(n+2)(G◦)× L2(n−1)/n, ω(n−1)/n(M) into Y −1,2,ω(G).

Proof. Let {(Φ1, U1), . . . , (Φm, Um)} be an atlas of G fulfilling (2.9) and (2.10). Fur-
thermore, let L ≥ 1 be a common Lipschitz constant for all transformations. Then, there
exists a radius r0 > 0 such that for all x ∈ G◦ the open ball B(x, r0) is included in one of
the neighborhoods U1, . . . , Um. We consider the decomposition of the set J = {1, . . . , m}
into the index sets

I0 = {j ∈ J : Uj ⊂⊂ G◦} and I = {j ∈ J : Uj ∩ ∂G �= ∅}.
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(i) Obviously, we get F (f, 0, 0) ∈ W−1,2(G) by the estimate

|〈F (f, 0, 0), w〉G| ≤ ‖f‖L2(G◦;IRn) ‖∇w‖L2(G◦;IRn) for all w ∈ W 1,2
0 (G).

Moreover, for all x ∈ G◦, r > 0 and w ∈ W 1,2
0 (G[x, r]) there holds the relation

|〈F (f, 0, 0)|G[x,r], w〉G[x,r]| ≤ ‖f‖L2(G◦[x,r];IRn) ‖∇w‖L2(G◦[x,r];IRn).

Hence, we get

(3.2) ‖F (f, 0, 0)|G[x,r]‖W−1,2(G[x,r]) ≤ ‖f‖L2(G◦[x,r];IRn).

(ii) Because of W 1,2
0 (G) ↪→ L2n/(n−2)(G◦) it follows F (0, g, 0) ∈ W−1,2(G) by

|〈F (0, g, 0), w〉G| ≤ ‖g‖L2n/(n+2)(G◦) ‖w‖L2n/(n−2)(G◦) for all w ∈ W 1,2
0 (G).

Moreover, for all x ∈ G◦, 0 < r ≤ r0 and w ∈ W 1,2
0 (G[x, r]) we have the relation

|〈F (0, g, 0)|G[x,r], w〉G[x,r]| ≤ ‖g‖L2n/(n+2)(G◦[x,r]) ‖w‖L2n/(n−2)(G◦[x,r]).

Case B(x, r0) ⊂ Uj for a certain index j ∈ I0:
Then, for all 0 < r ≤ r0 we have B(x, r) ⊂ G◦ and for all w ∈ W 1,2

0 (G[x, r]) it follows

‖w‖L2n/(n−2)(G◦[x,r]) ≤ c1 ‖∇w‖L2(G◦[x,r];IRn),

where c1 > 0 is a positive constant depending only on n.

Case B(x, r0) ⊂ Uj for a certain index j ∈ I:
Introducing the notation

z = Φj(x) ∈ E1 and V (r) = Φ−1
j (B(z, Lr)),

we get for all 0 < r ≤ r0/L
2 the inclusions

Φj(G[x, r]) ⊂ E2[z, Lr] and G[x, r] ⊂ G ∩ V (r).

Hence, for all 0 < r ≤ r0/L
2 and w ∈ W 1,2

0 (G[x, r]) there holds

wj = (RG∩V (r)w) ◦ Φ−1
j ∈ W 1,2

0 (E2[z, Lr])

with the estimate

‖w‖L2n/(n−2)(G◦[x,r]) ≤ c2 ‖wj‖L2n/(n−2)(E1[z,Lr])

≤ c3 ‖∇wj‖L2(E1[z,Lr];IRn) ≤ c4 ‖∇w‖L2(G◦[x,r];IRn),

where c2, c3, c4 > 0 depend only on n and L. Summing up we get the existence of a
constant c5 = c5(n, L) > 0, such that for all x ∈ G◦, 0 < r ≤ r0/L

2 and w ∈ W 1,2
0 (G[x, r])

we have

|〈F (0, g, 0)|G[x,r], w〉G[x,r]| ≤ c5 ‖g‖L2n/(n+2)(G◦[x,r]) ‖∇w‖L2(G◦[x,r];IRn),
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hence,

(3.3) ‖F (0, g, 0)|G[x,r]‖W−1,2(G[x,r]) ≤ c5 ‖g‖L2n/(n+2)(G◦[x,r]).

(iii) Due to the regularity of the set G ⊂ IRn and Remark 2.8 both M and ∂G have
property (a). Because of the equivalence between Morrey and Campanato norm for
parameters 0 ≤ ω−1 < n−1 (see Theorem 2.9) we can extend h ∈ L2(n−1)/n, ω(n−1)/n(M)
by zero to a function which belongs to L2(n−1)/n, ω(n−1)/n(∂G). Hence, it suffices to consider
only the case M = ∂G. The continuity of the trace operator γM from W 1,2

0 (G) into
L2(n−1)/(n−2)(M) yields F (0, 0, h) ∈ W−1,2(G):

|〈F (0, 0, h), w〉G| ≤ ‖h‖L2(n−1)/n(M) ‖γM(w)‖L2(n−1)/(n−2)(M) for all w ∈ W 1,2
0 (G).

Moreover, for all x ∈ G◦, 0 < r ≤ r0 and w ∈ W 1,2
0 (G[x, r]) we have the relation

|〈F (0, 0, h)|G[x,r], w〉G[x,r]| ≤ ‖h‖L2(n−1)/n(M [x,r])‖γM(w)‖L2(n−1)/(n−2)(M [x,r]).

To prove further estimates it is sufficient to consider x ∈ G◦ and 0 < r ≤ r0 such that
M [x, r] is nonempty. For such points x ∈ G◦ there exists an index j ∈ I with the property
B(x, r0) ⊂ Uj . Using again the notation

z = Φj(x) ∈ E1 and V (r) = Φ−1
j (B(z, Lr)),

we get for all 0 < r ≤ r0/L
2 with M [x, r] �= ∅ the inclusions

Φj(G[x, r]) ⊂ E2[z, Lr] and G[x, r] ⊂ G ∩ V (r).

For all 0 < r ≤ r0/L
2 with M [x, r] �= ∅ and all w ∈ W 1,2

0 (G[x, r]) there holds

wj = (RG∩V (r)w) ◦ Φ−1
j ∈ W 1,2

0 (E2[z, Lr])

and the relation

‖γM(w)‖L2(n−1)/(n−2)(M [x,r]) ≤ c6 ‖γB2[z,Lr](wj)‖L2(n−1)/(n−2)(B2[z,Lr])

≤ c7 ‖∇wj‖L2(E1[z,Lr];IR
n) ≤ c8 ‖∇w‖L2(G◦[x,r]),

where c6, c7, c8 > 0 depend only on n and L. Hence, we have proved the estimate

|〈F (0, 0, h)|G[x,r], w〉G[x,r]| ≤ c8 ‖h‖L2(n−1)/n(M [x,r]) ‖∇w‖L2(G◦[x,r];IRn)

for all x ∈ G◦, 0 < r ≤ r0/L
2 and w ∈ W 1,2

0 (G[x, r]), in other words,

(3.4) ‖F (0, 0, h)|G[x,r]‖W−1,2(G[x,r]) ≤ c8 ‖h‖L2(n−1)/n(M [x,r]).

Using Theorem 2.3 and Theorem 2.9 from the estimates (3.2), (3.3) and (3.4) it follows
the desired result. �

Remark 3.10. To underline the relevance of the preceding theorem we want to en-
lighten the connections to usual Lebesgue and Campanato spaces, respectively.
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(i) Note, that for p = 2n/(n− ω) and 0 ≤ ω < n we have the continuous embedding

Lp(G◦) ↪→ L2,ω(G◦).

(ii) Furthermore, for p = 2n/(n− ω + 2) and 0 ≤ ω < n+ 2 we can state

Lp(G◦) ↪→ L2,ω−2(G◦) ↪→ L2n/(n+2),ωn/(n+2)(G◦).

(iii) Additionally, for p = 2(n− 1)/(n− ω) and 0 ≤ ω < n there holds

Lp(M) ↪→ L2,ω−1(M) ↪→ L2(n−1)/n,ω(n−1)/n(M).

(iv) Let 0 ≤ ω < n. We define the subspace W−1,2,ω(G) of Y −1,2,ω(G) as

W−1,2,ω(G) := {F (f, g, 0) ∈ W−1,2(G) : f ∈ L2,ω(G◦; IRn), g ∈ L2,ω−2(G◦)},
and the norm of an element F ∈ W−1,2,ω(G) as the infimum over all sums

‖f‖L2,ω(G◦;IRn) + ‖g‖L2,ω−2(G◦), f ∈ L2,ω(G◦; IRn), g ∈ L2,ω−2(G◦), F = F (f, g, 0).

Then, W−1,2,ω(G) is continuously embedded into Y −1,2,ω(G).

4 Regularity Theory

Let G ⊂ IRn be a regular set and 0 < ε ≤ 1. Remembering the notation S(ε, n) for
the space of real positive definite (n × n)-matrices having the spectrum in the interval
[ ε, 1/ε ], the Lax-Milgram Lemma yields that for all coefficients (A, d) which belong to
L∞(G◦;S(ε, n)× S(ε, 1)) the operator LG(A, d) defined as

〈LG(A, d)u, w〉G :=

∫
G

(A∇u · ∇w + duw) dλn, u, w ∈ W 1,2
0 (G),

is an isomorphism from W 1,2
0 (G) onto W−1,2(G). Hence, the mixed boundary value

problem LG(A, d)u = F has a uniquely defined solution u ∈ W 1,2
0 (G) for every functional

F ∈ W−1,2(G). In Recke [15] and Griepentrog, Recke [9] was proved the following
regularity theorem:

Theorem 4.1. Under the above assumptions there exists a constant µ(ε,G) > n − 2
such that for all 0 ≤ µ < µ(ε,G) the operator LG(A, d) is an isomorphism from W 1,2,µ

0 (G)
onto W−1,2,µ(G).

Applying Theorem 3.9 the image of W 1,2,ω
0 (G) under the operator LG(A, d) is contin-

uously embedded into W−1,2,ω(G) ↪→ Y −1,2,ω(G) for all 0 ≤ ω < n. In this section we
will prove the existence of a constant ω(ε,G) > n − 2 such that for all 0 ≤ ω < ω(ε,G)
the operator LG(A, d) has the isomorphism property from W 1,2,ω

0 (G) onto Y −1,2,ω(G).
Hence, we will get the desired coincidence of the spaces W−1,2,ω(G) and Y −1,2,ω(G) for
all 0 ≤ ω < ω(ε,G) as conjectured by Rakotoson [13, 14], where the result was shown
for the case G = G◦, n− 2 < ω < ω(ε,G).
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4.1 Admissible Sets

We will formulate and prove our regularity results using the concept of admissibility of
regular sets which is essentially due to Recke [15].

Definition 4.2. Let G ⊂ IRn be a regular set. A regular subset G0 of G is called
admissible with respect to G, if and only if for every 0 < ε ≤ 1 there exists ω > n − 2
such that for all 0 ≤ ω < ω one can find a positive constant c1 = c1(n, ε, ω,G,G0) > 0
such that for all coefficients (A, d) ∈ L∞(G◦;S(ε, n)× S(ε, 1)) and F ∈ Y −1,2,ω(G) the
solution u ∈ W 1,2

0 (G) of LG(A, d) u = F fulfills ∇u|G◦
0
∈ L2,ω(G◦

0; IR
n) and, additionally,

there holds

‖∇u‖L2,ω(G◦
0;IRn) ≤ c1

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

If the set G is admissible with respect to itself, then we will call it admissible. In that
case we denote by ω(ε,G) the supremum of all real numbers n − 2 < ω < n, such that
for all 0 ≤ ω < ω there exists a positive constant c2 = c2(n, ε, ω,G) > 0, such that for
all functionals F ∈ Y −1,2,ω(G) and coefficients (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) the
solution u ∈ W 1,2

0 (G) of LG(A, d) u = F fulfills ∇u ∈ L2,ω(G◦; IRn) and, furthermore,
there holds

‖∇u‖L2,ω(G◦;IRn) ≤ c2

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

The aim of this section is to prove that every regular set G ⊂ IRn is admissible, which
is in fact the sought-for regularity result announced in our introduction. To do so, first
of all we show certain properties of admissible sets.

Lemma 4.3. Let G ⊂ IRn be a regular set and {U1, . . . , Um}, {V1, . . . , Vm} open
coverings of G such that for all j ∈ {1, . . . , m} there holds Vj ⊂ Uj and Vj ∩ G is
admissible with respect to Uj ∩G. Then, G is admissible.

Proof. Let 0 < ε ≤ 1 and consider (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)). Having in
mind, that the sets Uj ∩G and Vj ∩G are regular for every j ∈ {1, . . . , m} we construct
bounded linear operators Lj(A, d) : W 1,2

0 (Uj ∩G) → W−1,2(Uj ∩G) by

〈Lj(A, d) v, w〉Uj∩G :=

∫
Uj∩G

(A∇v · ∇w + dvw) dλn, v, w ∈ W 1,2
0 (Uj ∩G).

Because of the admissibility of Vj ∩G with respect to Uj ∩G there exists a parameter
n − 2 < ω < n such that for all 0 ≤ ω < ω one can find a constant c1 > 0 depending
on n, ε, ω,G and {U1, . . . , Um}, {V1, . . . , Vm} such that for every index j ∈ {1, . . . , m},
every Fj ∈ Y −1,2,ω(Uj ∩ G) and all coefficients (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) the
gradient ∇uj|Vj∩G◦ of the solution uj ∈ W 1,2

0 (Uj ∩ G) to Lj(A, d) uj = Fj belongs to
L2,ω(Vj ∩G◦; IRn) and, furthermore, there holds

(4.1) ‖∇uj‖L2,ω(Vj∩G◦;IRn) ≤ c1

{
‖Fj‖Y −1,2,ω(Uj∩G) + ‖uj‖W 1,2

0 (Uj∩G)

}
.
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If {χ1, . . . , χm} ⊂ C∞
0 (IRn) is a partition of unity subordinate to {V1, . . . , Vm} then

δ = min
1≤j≤m

dist(supp(χj), ∂Vj) > 0.

Let F ∈ Y −1,2,ω(G) be a functional and u ∈ W 1,2
0 (G) the solution of LG(A, d) u = F .

Now, we define for all j ∈ {1, . . . , m} the functions

uj = (uχj)|Uj∩G◦ ∈ W 1,2
0 (Uj ∩G)

and the functionals F0j ∈ W−1,2(Uj ∩G) by

〈F0j , w〉Uj∩G :=

∫
Uj∩G

(uA∇χj · ∇w −A∇u · ∇χj w) dλn, w ∈ W 1,2
0 (Uj ∩G),

respectively. Hence, for all w ∈ W 1,2
0 (Uj ∩G) we get the identity

〈Lj(A, d) uj, w〉Uj∩G = 〈LG(A, d) u,RG(wχj)〉G + 〈F0j , w〉Uj∩G

= 〈F,RG(wχj)〉G + 〈F0j, w〉Uj∩G.

Therefore, uj ∈ W 1,2
0 (Uj ∩G) is the solution of the variational problem

(4.2) 〈Lj(A, d) uj, w〉Uj∩G = 〈(χjF )|Uj∩G + F0j , w〉Uj∩G, w ∈ W 1,2
0 (Uj ∩G).

Because of the embedding W 1,2
0 (G) ↪→ L2,2(G◦) for µ = min{ω, 2} there holds

uA∇χj ∈ L2,µ(G◦; IRn) and −A∇u · ∇χj ∈ L2,µ−2(G◦).

Hence, by Theorem 3.9 we get F0j ∈ Y −1,2,µ(Uj ∩ G) and there exists a constant c2 > 0
depending on ε, µ,G and the above partition of unity such that

‖F0j‖Y −1,2,µ(Uj∩G) ≤ c2 ‖u‖W 1,2
0 (G) for all j ∈ {1, . . . , m}.

On the other hand, (χjF )|Uj∩G belongs to Y −1,2,µ(Uj ∩G), too, and we have

‖(χjF )|Uj∩G‖Y −1,2,µ(Uj∩G) ≤ c3 ‖F‖Y −1,2,µ(G) for all j ∈ {1, . . . , m},
where c3 > 0 is a positive constant depending on µ and the above partition of unity.
Applying relation (4.1) to the functionals

Fj = (χjF )|Uj∩G + F0j ∈ Y −1,2,µ(Uj ∩G),

we get the estimate

‖∇uj‖L2,µ(Vj∩G◦) ≤ c1

{
‖(χjF )|Uj∩G + F0j‖Y −1,2,µ(Uj∩G) + ‖uj‖W 1,2

0 (Uj∩G)

}
.

Hence, there exists a constant c4 = c4(c1, c2, c3) > 0 such that for all j ∈ {1, . . . , m}

‖∇uj‖L2,µ(Vj∩G◦) ≤ c4

{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
.
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Summing up the results we get

u =

m∑
j=1

uχj =

m∑
j=1

RGuj ∈ W 1,2,µ
0 (G),

and, moreover,

‖u‖W 1,2,µ
0 (G) ≤ c5

{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
,

where c5 = c5(c4, m, δ) > 0 is a positive constant. Because of the continuity of the
embedding W 1,2,µ

0 (G) ↪→ L2,µ+2(G◦) there exists a constant c6 = c6(c5, µ, G) > 0 with

‖u‖L2,µ+2(G◦) ≤ c6

{
‖F‖Y −1,2,µ(G) + ‖u‖W 1,2

0 (G)

}
.

Now, we can complete the proof by a recursive argumentation. Because of the contin-
uous embedding W 1,2,µ

0 (G) ↪→ L2,µ+2(G◦) for µ = min{ω, 4} we have

uA∇χj ∈ L2,µ(G◦; IRn) and −A∇u · ∇χj ∈ L2,µ−2(G◦).

Repeating the above arguments, we get u ∈ W 1,2,µ
0 (G) and the corresponding norm

estimate. After a finite number of analogous steps, we arrive at the sought-for result for
µ = ω, in other words, there holds u ∈ W 1,2,ω

0 (G) and there exists a positive constant
c7 = c7(n, ω,G) > 0 such that

‖u‖W 1,2,ω
0 (G) ≤ c7

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
,

which proves the admissibility of G. �

Lemma 4.4. Let G0 ⊂ G ⊂ IRn be two regular sets and Ψ be a Lipschitz transformation
from an open neighborhood of G onto another open subset of IRn. If H0 = Ψ(G0) is
admissible with respect to H = Ψ(G), then G0 is admissible with respect to G.

Proof. Let 0 < ε ≤ 1 and L ≥ 1 be a Lipschitz constant of the transformation Ψ.
Furthermore, we consider coefficients (A, d) ∈ L∞(G◦;S(ε, n)× S(ε, 1)).

Because of the properties of the Jacobian matrix and determinant, respectively, for the
transformed coefficients

(AH , dH) := ((DΨ)(Ψ−1
∗ A)(DΨ)∗ JΨ−1,Ψ−1

∗ d · JΨ−1)

there holds the relation (AH , dH) ∈ L∞(H◦;S(L−n−2ε, n)× S(L−n−2ε, 1)).

Having in mind the regularity of H0 and H we construct a bounded linear operator
LH(AH , dH) : W

1,2
0 (H) → W−1,2(H) by

〈LH(AH , dH) v, w〉H :=

∫
H

(AH∇v · ∇w + dHvw) dλn, v, w ∈ W 1,2
0 (H).

Because of the transformation invariance of Y −1,2,ω(G) (Lemma 3.8) the admissibility of
H0 with respect to H yields the existence of a parameter n − 2 < ω < n such that for
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all 0 ≤ ω < ω one can find a constant c1 > 0 depending on n, ε, ω,Ψ, G and H only such
that for all (A, d) ∈ L∞(G◦;S(ε, n) × S(ε, 1)) and every F ∈ Y −1,2,ω(G) the gradient
∇v|H◦

0
of the solution v ∈ W 1,2

0 (H) to LH(AH , dH) v = Ψ∗F belongs to L2,ω(H◦
0 ; IR

n) and,
furthermore, there holds

(4.3) ‖∇v‖L2,ω(H◦
0 ;IRn) ≤ c1

{
‖Ψ∗F‖Y −1,2,ω(H) + ‖v‖W 1,2

0 (H)

}
.

Let u ∈ W 1,2
0 (G) be the uniquely determined solution to L(A, d) u = F . Then, by the

chain rule and the transformation formula for all w ∈ W 1,2
0 (H) we get the identity

〈LH(AH , dH)Ψ
−1
∗ u, w〉H = 〈L(A, d) u,Ψ∗w〉G = 〈F,Ψ∗w〉G = 〈Ψ∗F,w〉H.

Hence, v = Ψ−1
∗ u ∈ W 1,2

0 (H) is the solution to LH(AH , dH) v = Ψ∗F . By (4.3) and
Lemma 3.8 we get the existence of a positive constant c2 = c2(c1,Ψ, G) > 0 such that

‖∇(Ψ−1
∗ u)‖L2,ω(H◦

0 ;IRn) ≤ c2

{
‖F‖Y −1,2,ω(G) + ‖Ψ−1

∗ u‖W 1,2
0 (H)

}
.

Finally, the transformation invariance of W 1,2,ω
0 (G) yields the existence of a constant

c3 = c3(c2,Ψ, G) > 0 such that

‖∇u‖L2,ω(G◦
0;IRn) ≤ c3

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
,

which proves the admissibility of G0 with respect to G. �

4.2 Local Estimates on Concentric Balls

For the proof of admissibility of the standard sets B, E1, E2 and E3 we want to utilize
local estimates for the gradient of the solution to elliptic problems on concentric balls
and halfballs, respectively. We start with the so called Campanato inequality (see De
Giorgi [5], Campanato [4] or Troianiello [17]).

Lemma 4.5. Let 0 < ε ≤ 1. Then there exist positive constants n − 2 < ω < n
and c = c(n, ε, ω) > 0, such that for all x ∈ IRn, 0 < 9 ≤ r < 1, coefficients A ∈
L∞(B(x, r);S(ε, n)), functionals F ∈ W−1,2(B(x, r)) and functions u ∈ W 1,2(B(x, r))
fulfilling ∫

B(x,r)

A∇u · ∇w dλn = 〈F,w〉B(x,r) for all w ∈ W 1,2
0 (B(x, r)),

there holds the estimate

‖∇u‖2
L2(B(x, );IRn) ≤ c

{(9

r

)ω

‖∇u‖2
L2(B(x,r);IRn) + ‖F‖2

W−1,2(B(x,r))

}
.

Remark 4.6. For every number 0 < ε ≤ 1 we define the supremum ω(ε) of all
parameters n− 2 < ω < n, for which Lemma 4.5 holds true. Obviously, that supremum
depends on n and ε only, and the map ε �→ ω(ε) is non-decreasing.
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Lemma 4.7. For every 0 < R < 1 the ball B(0, R) is admissible with respect to B.

Proof. Let 0 < ε ≤ 1, 0 < R < 1 and n− 2 < ω < ω(ε) be given. Now, we define the
decreasing sequence {rk}k∈IN by

R < rk := R + 2−k(1−R) ≤ 1, k ∈ IN.

We fix a radius 0 < rB ≤ 4−nmin{R, 1 − R} and consider x ∈ B(0, r1), 0 < r ≤ rB,
coefficients (A, d) ∈ L∞(B;S(ε, n)× S(ε, 1)) and functionals F ∈ W−1,2(B).

Let u ∈ W 1,2
0 (B) be the uniquely determined solution to LB(A, d) u = F . If we define

the functional Fd ∈ W−1,2(B(x, r)) by

〈Fd, w〉B(x,r) := −
∫
B(x,r)

duw dλn, w ∈ W 1,2
0 (B(x, r)),

then u|B(x,r) ∈ W 1,2(B(x, r)) fulfills the identity∫
B(x,r)

A∇u · ∇w dλn = 〈Fd + F |B(x,r), w〉B(x,r) for all w ∈ W 1,2
0 (B(x, r)).

Hence, Lemma 4.5 yields the existence of constant c1 = c1(n, ε, ω, R) > 0, such that
for all 0 < 9 ≤ r ≤ rB, coefficients (A, d) ∈ L∞(B;S(ε, n) × S(ε, 1)) and functionals
F ∈ Y −1,2,ω(B) for the gradient ∇u there holds

‖∇u‖2
L2(B(x, );IRn) ≤ c1

{(9

r

)ω

‖∇u‖2
L2(B(x,r);IRn) + ‖Fd + F |B(x,r)‖2

W−1,2(B(x,r))

}

≤ 2c1

{(9

r

)ω

‖∇u‖2
L2(B(x,r);IRn) +

1

ε2
‖u‖2

L2(B(x,r)) + ‖F |B(x,r)‖2
W−1,2(B(x,r))

}
.

Let us define for all 0 ≤ µ < ω the quantity

κµ(u, F ) := ‖u‖2
W 1,2

0 (B)
+ ‖F‖2

Y −1,2,µ(B),

and let 0 ≤ ω < ω be a fixed. Because of the embedding W 1,2(B) ↪→ L2,µ(B) for
µ = min{ω, 2}, there exists a constant c2 = c2(n, ε, µ) > 0 such that

‖u‖2
L2,µ(B) ≤ c2 κµ(u, F ).

Now, the last two estimates yield the existence of a constant c3 = c3(n, ε, µ, ω, R) > 0,
such that for all 0 < 9 ≤ r ≤ rB we have

‖∇u‖2
L2(B(x, );IRn) ≤ c3

{(9

r

)ω

‖∇u‖2
L2(B(x,r);IRn) + rµκµ(u, F )

}
.

Having in mind 0 ≤ µ = min{ω, 2} < ω, we can apply an elementary lemma (see, for
instance, Giaquinta [7]) to get

‖∇u‖2
L2(B(x, );IRn) ≤ c4

{(9

r

)µ

‖∇u‖2
L2(B(x,r);IRn) + 9µκµ(u, F )

}
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for all 0 < 9 ≤ r ≤ rB, where c4 = c4(n, ε, µ, ω, R) > 0 is a positive constant. Now, by
specifying r = rB, we arrive at ∇u|B(0,r1) ∈ L2,µ(B(0, r1); IR

n). Moreover, there exists a
constant c5 = c5(n, ε, µ, ω, R) > 0 such that

‖∇u‖2
L2,µ(B(0,r1);IRn) ≤ c5 κµ(u, F ).

We want to complete the proof by a recursive argumentation. Because of the continuous
embedding W 1,2,µ−2(B(0, r1)) ↪→ L2,µ(B(0, r1)) for µ = min{ω, 4} one can find a positive
constant c6 = c6(n, ε, µ, ω, R) > 0 such that

‖u‖2
L2,µ(B(0,r1)) ≤ c6 κµ(u, F ).

Then, we repeat the above arguments to get u|B(0,r2) ∈ W 1,2,µ(B(0, r2)) and the corre-
sponding norm estimate. Because of

R < rk ≤ 1 and rB < rk − rk+1 for all k = {0, 1, . . . , n},
after at most n analogous steps we arrive at the sought-for result for µ = ω, in other
words, there exists a constant c7 = c7(n, ε, ω, ω, R) > 0 such that

‖∇u‖2
L2,ω(B(0,R)) ≤ c7 κω(u, F ),

which proves the admissibility of B(0, R) with respect to B. �

Lemma 4.8. For every 0 < R < 1 and k ∈ {1, 2} the set Ek(0, R) is admissible with
respect to Ek.

Proof. Let 0 < ε ≤ 1, 0 < R < 1 and n−2 < ω < ω(ε) be fixed. Because of Lemma 4.7
and the reflection invariance of the coefficients and functionals (see Lemma 3.7) for all
0 ≤ ω < ω one can find a constant c1 = c1(n, ε, ω, R) > 0, such that for all coefficients
(A, d) ∈ L∞(E1;S(ε, n) × S(ε, 1)) and F ∈ Y −1,2,ω(Ek) the gradient ∇v|B(0,R) of the

solution v ∈ W 1,2
0 (B) to the problem LB(R2A,R2d) v = RkF belongs to L2,ω(B(0, R); IRn)

and, furthermore, there holds

(4.4) ‖∇v‖L2,ω(B(0,R);IRn) ≤ c1

{
‖RkF‖Y −1,2,ω(B) + ‖v‖W 1,2

0 (B)

}
.

On the other hand, the solution u ∈ W 1,2
0 (Ek) to LEk

(A, d) u = F for all w ∈ W 1,2
0 (B)

fulfills the identity

〈LB(R2A,R2d)Rku, w〉B = 〈LEk
(A, d) u, Tkw〉Ek

= 〈F, Tkw〉Ek
= 〈RkF,w〉B.

Hence, v = Rku ∈ W 1,2
0 (B) is the solution of LB(R2A,R2d) v = RkF , and by (4.4) we

get the estimate

‖∇(Rku)‖L2,ω(B(0,R);IRn) ≤ c1

{
‖RkF‖Y −1,2,ω(B) + ‖Rku‖W 1,2

0 (B)

}
.

Finally, the continuity of the extension operator Rk on Y −1,2,ω(Ek) yields a constant
c2 = c2(n, ε, ω, R) > 0, such that

‖∇u‖L2,ω(Ek(0,R);IRn) ≤ c2

{
‖F‖Y −1,2,ω(Ek) + ‖u‖W 1,2

0 (Ek)

}
,

in other words, Ek(0, R) is admissible with respect to Ek. �
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4.3 Global Estimates and Isomorphism Theorem

We proof the global regularity result for the standard sets B, E1, E2 and E3.

Lemma 4.9. The open unit ball B is an admissible set.

Proof. First of all, we choose an atlas {(Φ1, U1), . . . , (Φm, Um)} of the ball B with the
properties (2.9) and (2.10). Then, there exist radii 0 < δ1 < δ2 < 1 such that the families
{V1, . . . , Vm}, {W1, . . . ,Wm} are open coverings of B if we define

Vj := Φ−1
j (B(0, δ1)) and Wj := Φ−1

j (B(0, δ2)), j ∈ {1, . . . , m}.
By Lemma 4.8 the set E1(0, δ1) is admissible with respect to E1(0, δ2). Furthermore, by
Lemma 4.7 the ball B(0, δ1) is admissible with respect to B(0, δ2). Therefore, Lemma 4.4
yields the admissibility of Vj ∩B with respect to Wj ∩B for every index j ∈ {1, . . . , m}.
Applying Lemma 4.3, finally, it follows the admissibility of B. �

Lemma 4.10. The sets E1, E2 and E3 are admissible.

Proof. Case k ∈ {1, 2}:
Let 0 < ε ≤ 1 and n − 2 < ω < ω(ε, B) be fixed. Because of Lemma 4.9 and the reflec-
tion invariance of the coefficients and functionals (see Lemma 3.7) for all 0 ≤ ω < ω
one can find a positive constant c1 = c1(n, ε, ω) > 0, such that for all coefficients
(A, d) ∈ L∞(E1;S(ε, n) × S(ε, 1)) and functionals F ∈ Y −1,2,ω(Ek) the gradient ∇v of
the solution v ∈ W 1,2

0 (B) to the problem LB(R2A,R2d) v = RkF belongs to L2,ω(B; IRn)
and, furthermore, there holds

(4.5) ‖∇v‖L2,ω(B;IRn) ≤ c1

{
‖RkF‖Y −1,2,ω(B) + ‖v‖W 1,2

0 (B)

}
.

Since the solution u ∈ W 1,2
0 (Ek) to LEk

(A, d) u = F for all w ∈ W 1,2
0 (B) fulfills

〈LB(R2A,R2d)Rku, w〉B = 〈LEk
(A, d) u, Tkw〉Ek

= 〈F, Tkw〉Ek
= 〈RkF,w〉B,

by (4.5) we get an estimate for v = Rku ∈ W 1,2
0 (B):

‖∇(Rku)‖L2,ω(B;IRn) ≤ c
{
‖RkF‖Y −1,2,ω(B) + ‖Rku‖W 1,2

0 (B)

}
.

Finally, the continuity of the extension operator Rk on Y −1,2,ω(Ek) yields a positive
constant c2 = c2(n, ε, ω) > 0, such that

‖∇u‖L2,ω(Ek ;IRn) ≤ c2

{
‖F‖Y −1,2,ω(Ek) + ‖u‖W 1,2

0 (Ek)

}
,

which proves the admissibility of Ek.

Case k = 3:
There exists a Lipschitz transformation from IRn onto IRn mapping the set E2 onto E3.
Hence, Lemma 4.4 and the admissibility of E2 yields the admissibility of E3. �

Theorem 4.11. Every regular set G ⊂ IRn is admissible.



24 4 Regularity Theory

Proof. If we take an atlas {(Φ1, U1), . . . , (Φm, Um)} of G fulfilling (2.9) and (2.10), then,
there exists a radius 0 < δ < 1 such that the family {V1, . . . , Vm} is an open covering of
G if we define

Vj := Φ−1
j (B(0, δ)), j ∈ {1, . . . , m}.

By Lemma 4.10 the set Ek(0, δ) is admissible for every index k ∈ {1, 2, 3}. Furthermore,
by Lemma 4.9 the ball B(0, δ) is an admissible set. Therefore, Lemma 4.4 yields the
admissibility of Vj ∩ G for all j ∈ {1, . . . , m}. Applying Lemma 4.3, finally, we get the
admissibility of G. �

Hence, we are able to prove the main result:

Theorem 4.12. Let G ⊂ IRn be a regular set and 0 < ε ≤ 1. Then, there exists a
real constant n − 2 < ω(ε,G) < n such that for all 0 ≤ ω < ω(ε,G) and all coefficients
(A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)) the elliptic operator LG(A, d) is a linear isomorphism
from W 1,2,ω

0 (G) onto Y −1,2,ω(G).

Proof. Applying Theorem 4.11, for every 0 ≤ ω < ω(ε,G) one can find a constant
c1 = c1(n, ε, ω,G) > 0, such that for all (A, d) ∈ L∞(G◦;S(ε, n)×S(ε, 1)) and function-
als F ∈ Y −1,2,ω(G) the uniquely determined solution u = LG(A, d)−1F to the problem
LG(A, d) u = F belongs to W 1,2,ω

0 (G), and there holds the estimate

‖u‖W 1,2,ω
0 (G) ≤ c1

{
‖F‖Y −1,2,ω(G) + ‖u‖W 1,2

0 (G)

}
.

By the isomorphism property of LG(A, d) between W 1,2
0 (G) and W−1,2(G) and the con-

tinuous embedding Y −1,2,ω(G) ↪→ W−1,2(G) it follows

‖LG(A, d)−1F‖W 1,2,ω
0 (G) ≤ c2 ‖F‖Y −1,2,ω(G) for all F ∈ Y −1,2,ω(G),

where c2 = c2(c1, n, ε, ω,G) > 0 is a positive constant.

Because of embedding theorems for Sobolev–Campanato spaces and Theorem 3.9 the
elliptic operator LG(A, d) is a bounded linear operator from W 1,2,ω

0 (G) into Y −1,2,ω(G)
for every 0 ≤ ω < ω(ε,G), which proves the desired regularity result. �

Remark 4.13. We want to emphasize that for n− 2 < ω < n, α = (ω − n+ 2)/2 the
space W 1,2,ω

0 (G) is continuously embedded into the Hölder space C0,α(G).

By Theorem 3.9 the image of W 1,2,ω
0 (G) under LG(A, d) is continuously embedded into

W−1,2,ω(G) ↪→ Y −1,2,ω(G) for all 0 ≤ ω < n. Hence, Theorem 4.12 yields

Corollary 4.14. Let G ⊂ IRn be a regular set and 0 < ε ≤ 1. Then, for every
parameter 0 ≤ ω < ω(ε,G) the spaces W−1,2,ω(G) and Y −1,2,ω(G) coincide.

Remark 4.15. The result of Theorem 4.12 can be generalized to the case of linear
elliptic systems with diagonal structure and general lower order terms. Then, the linear
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elliptic operator is still a Fredholm operator of index zero from the corresponding vector
valued version of the Sobolev–Campanato space into a Campanato space of functionals
(see Griepentrog, Recke [9] and Griepentrog [10]).
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