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ABSTRACT. We study a pair of populations in R? which undergo diffusion and
branching. The system is interactive in that the branching rate of each type
is proportional to the local density of the other type. For a diffusion rate
sufficiently large compared with the branching rate, the model is constructed
as the unique pair of finite measure-valued processes which satisfy a martingale
problem involving the collision local time of the solutions. The processes are
shown to have densities at fixed times which live on disjoint sets and explode
as they approach the interface of the two populations. In the long-term limit,
global extinction of one type is shown. The process constructed is a rescaled
limit of the corresponding 7Z2-lattice model studied by Dawson and Perkins
(1998) and resolves the large scale mass-time-space behavior of that model.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Background and motivation. In [DP98§] solutions to the following system
of stochastic partial differential equations were studied:

) 2 Xiw) = TAX{@) + [y XE@) X2 (@) Wi),

(t,z) € Ry xR i = 1,2. Here A is the one-dimensional Laplacian, o,y are
(strictly) positive constants (the migration and collision rate, respectively), and
W', W? are independent standard time-space white noises on Ry x R. Our goal is
to study the same system of equations for x € R?>. As we explain below, from one
point of view, existence in two dimensions appears to be counter-intuitive. This
is the reason why six different people were attracted to this question and finally
combined their efforts.
Recall that

(2) %Xt(l') = %AXt(fC) + /() Xi(z) Wi(w) on Ry x R

is the stochastic partial differential equation for the density of a one-dimensional
super-Brownian motion (SBM) ([KS88, R89]) with branching rate at time ¢ at z
equal to g;(z) (bounded in t and x). As a measure-valued process it arises as the
large population (IV particles), small mass (N ') per particle limit of a system of
critical binary branching Brownian motions with diffusion rate o? which branch
at rate N (z) at site z at time ¢. Equivalently each Brownian particle with path
s — &5 branches according to the additive functional ¢ — N fot ds 05(&s). Although
the limit exists in higher dimensions as the unique solution of an appropriate mar-
tingale problem, the resulting process takes values in the space of singular measures
and it is easy to use this fact to see that (2) has no solutions in higher dimensions
(see Remark 1.4 of [DP99]). The problem is that in higher dimensions the crit-
ical branching (which tends to cluster the population on a small set) overpowers
the diffusion. This situation is typical of parabolic spde’s driven by white noise:
Solutions seem to only exist in one spatial dimension (see [Wal86]).

One way to rectify this situation in the branching context is to replace
(oi(x)dz,t > 0) by a collection of singular measures, i.e., have the branching only
take place on singular sets. Delmas [Del96] showed if the branching takes place on a
Lebesgue null set (the catalyst) independent of time and satisfying a mild regularity
condition guaranteeing that the null set is not polar for Brownian motion (more
precisely, particles branch according to an additive functional with Revuz measure
supported by this null set) then the associated super-Brownian motion (reactant)
has a density at all times with probability one.

A particular time-dependent case was introduced by Dawson and Fleischmann
[DF97a] and different aspects of this model were investigated in [DF97b],[EF98],
[FK98] and [DF98]. In this model the catalyst itself is a super-Brownian motion
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o and the resulting reactant model X?¢ exists and has a nice density in 3 dimen-
sions and less. In higher dimensions an intrinsic Brownian reactant particle’s path
will not hit the support of an independent super-Brownian catalyst and hence the
reactant process degenerates into heat flow as there can be no branching. The
construction of such a model poses no difficulties in principle as one first constructs
the super-Brownian catalyst and then builds a super-Brownian motion (reactant)
whose branching rate is governed by this catalyst.

The situation in (1) is quite different as one has a truly interacting system
consisting of two types in which the branching rate of one type is given by the
local density of mass of the other, that is, each type catalyzes the branching of
the other. Let S(u) denote the closed support of a measure p. Assume for the
moment that X = (X!, X?) is a solution to (1) for (t,z) € Ry x R?, where the
Wl, W2 are independent white noises on Ry xR?. Then the singularity of ordinary
(2-dimensional) SBM (or of SBM with a strictly positive branching rate) suggests
that S(X}) N S(X?) is Lebesgue null, and the requirement in (1) that X solves
the heat equation away from this null set shows that X/ should have a density away
from this null set. In fact this would suggest that X} (x)X?(z) = 0 for almost all =
and so (1) degenerates into a pair of heat flows which of course do not solve (1).

To circumvent this non-existence argument we will work with the following mar-
tingale problem formulation of (1) in two dimensions. We write (u, ¢) to denote the
integral of a function ¢ with respect to a measure u. For fixed constants o, > 0,
let X = (X X 2) be a pair of continuous measure-valued processes such that for
an appropriate class of test functions ¢; ,

(3) Mi(pi) = (X{, i) — (', i) — /Otds <X§, %2A<Pi>,

t >0, ¢ = 1,2, are orthogonal continuous square integrable martingales starting
from 0 at time ¢ =0 and with continuous square function

(4) (M), = ~ / L (ds, 2]) ¢2().

[0,t]xR2

Here Lx is the collision local time of X! and X2, loosely described by

(5) L (dls, ) = ds X}(dz) | X2(dy)o.(0)

(a precise description is given in Definition 1 below via a smoothing procedure). It
is not hard to see that if a solution to (1) (for 2 dimensions) is locally bounded (in
both space and time) and has the appropriate square integrability properties then
the associated measure-valued processes will satisfy (3) and (4), and so the above
martingale problem is a natural generalization of (1). We will show (see Theorem 11
and 17 below) that under appropriate conditions on the finite initial measures and
for v/o? sufficiently small, solutions to this martingale problem exist and satisfy
the intuitive description given in the paragraph prior to (3): Each population X}
has a density denoted by the same symbol X/, and X} (z)X?(z) = 0 for Lebesgue-
a.a. z. Indeed we will give an explicit expression for the joint law of these densities
for fixed values of ¢t and z (see Theorem 17). Evidently these densities cannot be
locally bounded since in that case we can easily show that

(6) Lx ([0,00) x R?) = /Ooods de:c Xi(z)X2(z) = 0 as.,
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and again our solutions become a pair of solutions to the heat equation, hence
Lx ([0,00) x R?) > 0 contradicting (6). In fact we will show that each of these
densities becomes unbounded near any point in the interface of the two types given
by the support of the collision local time (Corollary 19). This bad behavior of the
densities near the interface is borne out by simulations of Achim Klenke which you
can find on his webpage http://www.mi.uni-erlangen.de/ klenke.

The question of uniqueness of solutions to the above martingale problem is also of
interest. Although there has been some progress recently in establishing uniqueness
for a variety of interactive measure-valued branching processes (e.g. Dawson and
March [DM95], Perkins [Per95], Donnelly and Kurtz [DK99], Athreya and Tribe
[ATO00]) this question for interactive branching diffusions in which the branching
rate depends on the present state of the system remains unresolved in general. For
the one-dimensional case (1), Mytnik [Myt98] obtained uniqueness by an exponen-
tial self-duality. It will be more difficult to implement this approach here due to
the bad behavior of the densities. Nevertheless, the problem of uniqueness will
be resolved in a companion paper [DFMPX00a] under an additional integrability
condition (IntC) involving the trajectories of X, introduced in Definition 7 below.
In the latter paper this condition will be verified for the solutions constructed in
Theorem 11 by means of the moment calculations in Section 3 which are carried out
in terms of a function-valued dual. We state the uniqueness result and associated
Markov property as Theorem 11 (b) as it will play an important role in our study
of the longtime behavior of the solutions (Theorem 20) and the proof of segregation
of the two populations (Theorem 17 (b)).

The existence of our solutions will be established by means of rescaling the lat-
tice versions of (1), constructed in [DP98] (in any number of dimensions). We will
use the moment bounds in Sections 3 and 4 (for finite initial conditions satisfying a
suitable energy condition) to establish tightness of these rescaled processes provid-
ing /02 is small enough. This restriction on the parameters is needed to ensure
that the higher (specifically fourth) moments used in the tightness arguments are
finite. It is not hard to show that the approximating fourth moments blow up for
v/o? large enough, but we have not tried to find the best value of this ratio here.
We conjecture that solutions to (3) and (4) should exist for any positive values of
and o. This is because 2+ ¢ moments should suffice and as § — 0, this should allow
any values of these parameters. The situation in higher dimensions is intriguing
and unresolved.

Many of the results of this paper had been obtained independently and at the
same time by two subgroups of the present authors and others were obtained after
we coalesced.

The present paper is completely restricted to the finite measure-valued case. For
the infinite measure case, we refer to our forthcoming paper [DEFMPX00b].

1.2. A Martingale Problem for Mutually Catalytic Branching. We start by
formulating our martingale problem for finite measures. Let My = M¢(R?) denote
the space of finite measures on the Borel subsets B(R?) of R?, with the topology
of weak convergence. C},(R?) is the space of bounded continuous functions on R?
with the supnorm || - ||« topology, and C{*(R?) is the subspace consisting of those
functions whose partial derivatives of order n or less are also in C}, (n could be a
natural number or oo). We let Ceom = Ceom(R?) denote the space of continuous
function on R? with compact support. v and o are fixed positive constants. Write
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(¢,1I, ,2 € R?) for the Brownian motion in R?* with variance parameter o2,

(7 pi(z,y) = L exp[—|y_m|2] t>0, z,yecR
BT ong2t 202t 1’ T ’

for its transition density (|-| denotes the Euclidean norm), and {S; : t > 0} for the
corresponding semigroup. If u is a measure on R?, set Syp (z) := [du(y) pe(,y).

Definition 1 (Collision Local Time). Let X = (X', X?) denote an M} —valued
continuous process where M2 = Mg x M¢. The collision local time of X (if it
exists) is a continuous non-decreasing M;—valued stochastic process t — Lx(t) =
Lx(t, -) such that

(8) (L’ (1), ) — (Lx(t),p) as 610 in probability,

for all t >0 and ¢ € Ceom(R?), where

0 L de) = /0 dr /0 ds S,X1(z) S, X2(z) dz,  t>0, 6>0.

The collision local time Lx will also be considered as a (locally finite) measure
Lx (ds,dz) on Ry xR2. o

Note that we used an additional smoothing in time in defining the collision
local time, compared with other sources, as e.g. [BEP91]. Clearly if it exists as in
[BEP91], it will exist in the above sense and the processes will coincide.

All filtrations will be assumed to be right-continuous and contain the null sets
at time 0.

Definition 2 (Martingale Problem (MP)%”). A continuous F.—adapted and Mg (R?)-
valued process X = (X', X?) on some probability space (Q,F,F.,P) is said to
satisfy the martingale problem (MP)Y7, if for all ; € C3(R?), i = 1,2,

. . . t . 2
(10 Mip) = (Ko - (oo - [ ds (XL TAR), 120, =12,
0
are orthogonal continuous L? F.—martingales such that M(p;) = 0 and

(11) (M), = v(Lx(t),9]), t>0, i=1,2. o

Note that in this definition the initial state Xy may be random. To construct
solutions to this martingale problem we will need to impose a bivariate regularity
condition on the initial state.

Notation 3 (Energy Function). Introduce the energy function

(12) g(z1,22) = 1+log" T1,79 € R,

|22 — 21|’
(recall that |-| denotes the Euclidean norm). O

Definition 4 (State Space Versions).

(a) (Energy Condition): Write u = (u!,u?) € Mg and say p satisfies the
energy condition, iff € MZ(R*) and

(13) lully = (u* x p?,g) < .
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(b) (Strong Energy Condition): Write p = (u!, u?) € Mg g and say p sat-
isfies the strong energy condition, iff u € M?(R?) and for any p € (0,1) there
is a constant ¢ = ¢(p, p) such that

< er? :
(14)  dax (u'xplipr) < er™r >0 ¢

Remark 5. (a) Inequality (14) is trivially fulfilled for » > 1, and so we only need
to consider 0 < r < 1. By an elementary interpolation argument it actually suffices
to consider only r = 27" and so My is clearly a Borel subset of M7.

(b) An elementary calculation shows that for all 7" > 0 there are constants cp
and C7 such that

T
(15) crg < 1+/ drpr < Crg.
0

In particular, by (14),
(16) Mf7se - Mf7e. &

Next we introduce a lattice system of approximating processes we will use to
construct solutions to (MP)3].
Fix a deterministic Xo € M, and ¢ € (0,1]. Set

(17)  X)%(x) = e %X} (ez +1[0,¢)), = (z1,72) €Z% i=1,2.

Let {Wi(z) : = € Z%i = 1,2} be a collection of independent standard one-
dimensional Brownian motions on (Q, F,F., P), and consider the unique (in law)
solution of

(18)
X (x) = X (@ / dsg—lAX” / dWi( \/7X“ X2 (@),

i=1,2, t>0, x € Z* See [DP98, Theorems 2.2 and 2.4] for the existence and
uniqueness of these solutions.
Via scaling we pass to processes indexed by €Z? (instead of Z2) :

(19) XNi(w) = X a(we™), i=12,t>0, z€el’

te—2

Write  ~° y if 2 and y are neighbors in £Z2, and introduce the discrete Laplacian
on eZ?:

(20) Ap(z Z 2y ), T € eZ°.
y ~Fw
If (°:= 3" c.z2€°0, and d°z denotes integration with respect to %, let M (R?)

denote the subspace of M;(IR?) of measures with densities with respect to £°. Also
denote by ¢ — X/ the *M;(R?)-valued process with densities “X/(z), i.e.,

(21) (Xip) = /szgm K@) pla) = Y Xix)p(x)e.
€ TEeZ?

Then X} ({z}) = X{ (x4 [0,¢)?) for @ € eZ? and so clearly these initial states
satisfy *X¢ — X¢ in M¢(R?) as e | 0. The following lemma can easily be derived.
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Lemma 6 (Martingale Problem (MP)3g""). The process X on (Q,F,F.,P)
defined via (21), (19), (18), and (17), based on Xo € My e, satisfies the following
approzimate martingale problem (MP)y e

For each pair of bounded functions <pl eZ? > R, i=1,2,

@) (Xhed = (X + [ s (X0 G B0 + MG,
where
) te ™2
@) M) = [ Fagla) [ aWies) \rXE e )X )
€Z? 0

(i =1,2) are orthogonal continuous L? (F.)-martingales such that

(24) (CM(on))), = o / ds [ w2 () X(w) X2(x) = 7 CLox(t), 62,

0 eZ?
i=1,2.

Existence of solutions to (MP);—(Z will later follow by taking a weak limit point
of *X as € | 0. Our proof of uniqueness will require an additional integrability
condition:

Definition 7 (Integrability Conditions on Path Space). For € > 0 and a pair p =
(put, p?) of measures in M¢(R?) we write

@) G = [ do [y |14 S0 50 5t Sa)

Integrability Condition (IntC)): A continuous M?2—valued process X =
f
(X1, X?) on a probability space (2, F,F., P) is said to satisfy the integrabil-
ity condition (IntC), if for all 0 < § < T < oo,

{ / ds H.( ‘ }'5} is bounded in probability as € | 0.

that is, for all n > 0 there is an M such that

- (] [ |} > 00) <o

(Strong Integrability Condition (SIntC): X is said to satisfy the stronger
(and simpler) integrability condition (SIntC) if
T

(27) @E ds H.(X) < oo, T>0. o
€ 0

To describe the restriction on v/0?, let (°¢,1I% , & € €Z?2) denote the continuous
time simple symmetric random walk on eZ? with generator %2 ¢A. That is, °£ jumps
to a nearest neighbor site at rate 262¢2. Introduce the corresponding transition
density “p(z,y) = e %I, (°¢, = y), =,y € €Z? with respect to £¢, and {¢S; : t > 0}
the related semigroup.

The following elementary result is proved in Appendix A for the sake of com-

pleteness.
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Lemma 8 (Random Walk Kernel Estimates).
(a) (Local Central Limit Theorem): For all s > 0, with the heat kernel p
from (7),

(28) lim sup |*p,(z,y) — ps(z,y)| = 0.

20 5 yeez2

(b) (Uniform Bound): There is a universal constant cs (independent of o2)
such that

(29) sup Eps(:tt,y)SUQ = sup Eps(O,O)SUZ = cg,
§>0, z,y€cZ? s>0

for all e > 0.

Remark 9 (Size of ¢g). Statement (a) is of course a standard local central limit
theorem. The value of the constant cg of (b) enters in Theorem 11 below. To
estimate its value, write p instead of °p in the case ¢ = 0 = 1. Then,

(30) cs = sup tp(0,0).

t>0

Now a direct calculation and exploiting Stirling’s Formula (see [Fel68, p.52]) gives
cg < e'/12/2 < 0.55. On the other hand, cg > p;(0,0)to?, and it follows from (a)
that

(31) cg > tp(0,0) = (27)"' > 0.15.
Consequently, cg € (0.15, 0.55). O

Notation 10 (Path Space). Let 2, := C(R;, MZ(R?)) with the usual topology
of uniform convergence on compact subsets of R, . <

Recall the spaces Mt and Mg g introduced in Definition 4.
Theorem 11 (Mutually Catalytic SBM in R?). Assume

(32) v/o® < (3V6mes) !
and Xo € Mse.
(a) (Existence): There is a process X on some (Q,F,F.,P) satisfying the

martingale problem (MP);—(Z and the integrability condition (IntC), and such

that X; € Mge for all t > 0 a.s. If moreover Xg € Msse, then X will
satisfy (SIntC).

(b) (Strong Markov and Uniqueness): There is a (time-homogeneous) Bo-
rel Markov transition kernel P = {Pt(,u,du) :t>0, u€ Mf7e} on Mse
such that any process satisfying (MP)Y" and (IntC) on (Q, F, F., P) is (F.)-
strong Markov with transition kernel P. In particular, the law Px, on Q. of
the solution in (a) is unique.

(c) (Lattice Approximation): Let *X denote the lattice system of approz-
imating processes given by (18), (19), with initial conditions (17) and let
¢Lex be as defined in Lemma 6. As € ] 0,

(33) P((°X,"L:x) € -) = P((X,Lx) € -)

weakly on C (R4, M3 (R?)), where X satisfies (IntC) and is a solution to the
martingale problem (MP);Z with Lx as its collision local time.
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(d) (Scaling Property): Assume that X satisfies (MP)g and (IntC), ¢,6 >
0, z € R and Xj(A) := 0X%,(z +eA), t >0, A € B(R?), i = 1,2. Then
(X*,X?) satisfies (MP)Z" and (IntC) and so has law Py .

0

The proof of (b) will be completed in a companion paper [DFMPX00a], but much
of the groundwork is laid in Section 3 below. The verification of the integrability
conditions (IntC) and (SIntC) is also deferred to [DFMPXO00a] as its main use is
the proof of (b) (although (SIntC) is also used in our description of the long term
behavior (Theorem 20)). The main ingredient in the proof of (IntC) is a bound
on its conditional 4th moments in terms of a function-valued dual (Theorem 53
below).

Remark 12. (i) Part (c) remains true for a wider class of lattice approximations
of the initial measure. It suffices that Xy approaches X, weakly and satisfies the
conclusions of Lemmas 35 and 45(a) below.

(ii) Part (a) of Theorem 11 is valid if we only assume v/0? < 2/v/6. To al-
low for this weaker condition, solutions may be constructed as limits as € | 0 of
smoothed models in R? in which the branching rate of type i at time ¢ at site =
is dw [, X{(dy)pe(w,y) (where j # i), instead of Xj(dz). The proof in fact is
simpler than that for our lattice approximation but the latter is in many ways more
natural and is used in [DEFMPXO00b] to shed some light on the large mass-time-
space behavior of the lattice systems studied in [DP98]. Part (b) remains valid for
v/o? < 1//6.

(iii) The space Mg ge seems to be needed to get unconditional fourth moment
bounds (see, e.g. Theorem 54) and a simple second moment argument shows that
X € Mige a.s. YVt > 0 (see Proposition 24 (a) below). We have not, however, been
able to show X; € M¢g Vt > 0 a.s. and this leads to an additional conditioning
argument in our construction and the use of the larger Mt . as our state space. &

We now state the key self-duality result, Proposition 2.13 from [DFMPXO00a]
both because it is used below and because its proof uses our existence results
Theorem 11(a).

Proposition 13. Assume (32), Xo € My, and Xo = (2(z), #2(x)) where & is
bounded, non-negative and continuous. Then
Px, (exp {— (X} + X7, & + &3) +i (X} — X[, & — &) })
=lim Py, (oxp {— (X3 + X3,8.%¢ + 8.%}) +i (X3 - X3,5.%} - 5.%2) }) .
€l0 0

In [DFMPX00a] this proposition plays a major role in the proof of uniqueness in
Theorem 11(b) which is assumed implicitly in our notation. The result is therefore
stated there for any solution X of (MP)¥” and for a particular limit point, X from
Theorem 11(a).

We now introduce an integrability hypothesis on a possibly random initial state.
Recall the norm || - ||, introduced in (13).

Definition 14 (Random Energy Condition (EnC)). We say a possibly random
initial state Xo € Ms e satisfies the random energy condition (EnC) if

(34) 3 B(X{1) + ElXolly < oo

i=1,2
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(If Xo € Mt is deterministic, then (EnC) clearly holds.) <&

Although we will need either a dual process calculation or some explicit differen-
tial equation calculations to handle some higher moments, the covariance structure
of the solutions to (MP)%” only requires some integrability conditions and (IntC)
is more than enough.

Proposition 15 (First Two Moments). Let X satisfy (MP);Z on some filtered
space (Q, F,F., P) for a possibly random Xo satisfying (EnC).
(a) (Expectation): Let ¢ : R> — R, be a bounded Borel map. Then
(35) B(X],0) = E(X(,Si) < 00, >0, i=1,2.
(b) (Correlation): For bounded measurable v : (R*)?> — Ry, t > 0, and
1,7 =1,2,

E<th X th ,'Lﬂ> S E dJ,'l StXé (.1'1) d:l?g StXé ($2)¢($1,$2)
R2 R2
t
+ 045 7E/ ds [ dx Ss X} (v) Ss X2 (x)
0 R2

X / dz; Ptfs(l“;ﬂ?l)/ dzy pi—s(x, 2) Y(21, 22)
R2 R2

where all expressions are finite. Moreover, equality holds if i # j.
(c) (Expected Collision Local Time): For measurable ¢ : Ry x R? — Ry,
bounded on each [0,T] x R, T >0,

T
(36) E/ dLx ¢ < / ds/ dx (s, 2)ESs X (7) Ss X3 (z) < o0.
[0,T1xR? 0 R2

(d) (Identities under (IntC)): If, in addition, X satisfies the integrability
condition (IntC), then equality holds in both (b) and (c).

Note that it follows from (a) that the solution to (MP)” constructed in The-
orem 11 is not deterministic since (X{,p) = (X§,Sp) will not satisfy (MP)37.
Alternatively we can see from (d) that the covariance structure of this solution is
not trivial.

We will now be able to state some more interesting properties of the solutions
to (MP);Z We begin by stating the absolute continuity and segregation of types
results mentioned in the introduction.

1.3. Segregated densities.

Notation 16 (Brownian Exit Time). Consider the (planar) Brownian motion ¢ =
(€4,€%) with law II,, = € R2 , and introduce its exit time
(37) Tex = inf {t: & & =0},
from the first quadrant. <o
Let ¢(dx) = dz denote Lebesgue measure. Here and elsewhere we will identify
integrable functions X (z) in C{" with the finite absolutely continuous measure
X (z)dz.
Here is our segregation result.
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Theorem 17 (Segregated Densities). Fiz t > 0.

(a) (Absolute Continuity): If X is a solution to (MP)Y) on (Q,F,F., P)
with a possibly random initial condition Xo € M?(H@), then X} < ( a.s.
and so X}(dxr) = X}(x)dx a.s. where

. lim Sy-n X](z) if it exists,
(38) Xi(m)=q "7
0 otherwise.

(b) (Local Segregation): Let X, € Mo be ﬁa:ed and Xy = (X}, X7?) the
functions from (38), and set S;Xo(z) := (S:X{(x),S: X¢(x)) . Then the fol-
lowing two statements hold:

(b1): For {(—a.a. z,

(39) Pxo (Xi(2) € -) = Ils,xo(a) (rex € -)-
(b2): With Px,—probability one, X}(z) X?(x) =0 for {—a.a. x, and so

(40) de X} (z) X?(x) = 0 Px,-a.s.
R2

Remark 18 (Infinite Variance). (i) Note that (bl) implies
Ex, (X,f(a:))2 =oo for f-a.a.z € R} and i=1,2,

for any Xo € Mg with X #0, i =1,2.

(ii) It follows from (b) that the two populations segregate at each fixed time. The
“interface” between the two types, although Lebesgue null must be rather active
to generate a non-trivial collision local time and we show below (Corollary 19) that
the densities typically explode near it. The particular distribution arising in (b1)
also gave the large time limit for the lattice system (18) starting in constant initial
states. In fact, the counterpart of this latter result for solutions to (MP)g? (Theo-
rem 20 below) plays a central role in the proof. Basically a scaling argument shows
that locally the joint densities z +— X;(z) relax to an equilibrium state instanta-
neously. In fact, when both types are present, the infinitely large branching rate
will immediately drive one type to local extinction. The type to die is determined
by the exit distribution of planar Brownian motion from the first quadrant. <&

Let (38) define our canonical and jointly measurable densities
(41) X Ry xR xQ, = [0,00), i=1,2

Let || X|| denote the essential supremum of X (with respect to Lebesgue measure)
on the open set U C Ry x R2.

Corollary 19 (Explosion at the Interface). If Xo € Mt e, then Px,—a.s. for any
open set U C Ry x R?,

(42) Lx(U) >0 implies || X'[jv = 0o = [|X*[|v.

Example. Here is a simple time-independent example on the line which shows
how (unbounded) densities with disjoint supports may nonetheless have a non-zero
collision local time. Let 1 > aj1,as > 0 and set

X(dz) = v (z)dr = 2~ 1(z > 0)dz, X?*(dr) = u*(z)dx = |z|”“21(z < 0)dz.
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Then clearly u! (z)u?(x) = 0 but if ay + a2 = 1, the analogue of collision local time
is (¢ € Ceom(R?))

(Lx,p) = lim/SEXl(m)SEX2(m)cp(m)dm
—tim [ [ [ otvEwmo = zpw - m)e el 1 <0 < @) diado

= (p(O) //pz(Zl — 2’2)2’17&1|22|7a21(22 <0< Zl)dzleQ,

where we have used Dominated Convergence in the last line. Therefore the collision
local time of X is a (non-zero) constant multiple of the dy.

1.4. Global Extinction of One Type. The one-dimensional version of the fol-
lowing theorem is proved in [DP98, Theorem 6.6].

Theorem 20 (Global Extinction of One Type). Let Xo € Mg e. Then

(43) (X7, 1), (X7, 1)) tT—> (XL,X2) Px,-a.s.,
where
(44) P((X}, X2) € -) = T((xs ), (xzy) e € -

The a.s. convergence is immediate from the martingale convergence theorem, as
t = (X{,1) are non-negative martingales by (MP)%”. The fact that X X2, =
0 a.s. will require a refinement of the proof for the lattice case given in [DP98,
Theorem 1.2 (b)]. In particular, we need to consider the rate of convergence in that
result.

2. PRELIMINARIES

In this section we prove Proposition 15 and identify the natural state space for
X.

2.1. Green Function Representation. Assume X is a solution of (MP)3” X, on

(Q, F, F., P) where X is an Fo—measurable M?(R?)-valued initial state. Let Mo,

denote the space of continuous (F.)-local martingales such that My, = 0 and, for

T > 0 fixed, M?[0, 7] the space of continuous square integrable (F.)-martingales

on [0, T], where processes which agree off an evanescent set are identified. Let M?

be the space of continuous square integrable (F;)-martingales on R;..

Let P denote the o-field of (F.)-predictable sets in Ry x Q and define

L. = {zp Ry x QX R2 - R: ¢ is P x B(R?)-measurable

(45)
and Ly (d(s,z)) ¢*(s,w,z) < oo Vt>0, a.s.}

[0,t] xR2

By starting with functions v of the form

k
(46) (s,w,x) Z Yim—1( m () Lty 0] (5)
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for some ¢, € CZ(R?), ym_1 € bF:,, , (the space of bounded F,, ,—measurable

maps), and 0 = tg < -+ < t, < 00, and defining [with M? from the martingale
problem (MP)g], for i = 1,2,

(47)
Mtl(,éb) = / dMl(S7$)¢(S7$) = Z wm—l (Mtl/\tm (()0]) - Mtl/\tj71((pj))7
[0,t] xR? m=1
we may uniquely extend M? to linear maps M? : LE . — Mo, such that
(48) «Ml(%)an(%)»t = 76ij LX (d(S,iE)) wi(sax) ¢j(57$)

[0,t]xR2

t >0 as. for all ¢; € £ . This may be done as in [Per00, Proposition II.5.4] or
[Wal86, Chapter 2]. The M? are orthogonal martingale measures. If in addition,

(49) YeLt = {weﬁﬁ,cz E/
[0,t] xR?
then M*(y)) € M?. The martingale problem (MP)%” shows that M*(1) belongs

to M2, hence the constant function 1 is in £? and so

(50)  every bounded and P x B(IR?)-measurable ¢ is in £? and M*(y)) € M2

dLx ¢* < oo, Vt > 0},

We need to extend (MP)g” to time-dependent test functions.
Notation 21 (Time-space Test Functions). If T' > 0, let Dy denote the set of all
bounded Borel maps ¢ : [0,7] x R? — R satisfying:

(a): For any = € R?, the map ¢ — 1)(t, ) is absolutely continuous and ¢ (¢, z) =

%(t, x) is uniformly bounded in (¢,z) and continuous in z for each ¢ € [0, 7.

(b): For each t in [0,7], the mapping x — (¢, x) belongs to CZ(R?), and
AY(t, - )(z) is uniformly bounded in (¢, x). &

Lemma 22 (Extension of the Martingale Problem (MP)37). If ¢); € Dr, i =
1,2, then
. . t .. 0'2 ,
6 Xy = () + [ ds (X5 0i00) + T Avi(o)) + M),
t € [0,T], where M(3);) belongs to M2, and
62 (LMW, = 67| Lx(d(s,2) ils,) (s, 0)
[0,£] xR2

Proof. This may be done just as for ordinary superprocesses; see, e.g., [Per00,
Proposition I1.5.7]. The argument proceeds by approximating ¥ (s, z) by an appro-
priate sequence of step functions in ¢. ]

Corollary 23 (Green Function Representation). Let i = 1,2. If ¢; : R2 - R s
bounded and measurable, then for any fized T > 0,

(53) (X}, Sr-epi) = (X&, Srei) + N7 (i), 0<t<T, as,

where

(54) t= N (gy) = / dM*(r,z) St _,pi(z) belongs to M?[0,T],
[0,t]xR?
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and
(55) {N"T(:), N*T(0;)}), = i 7/[0 ) R2Lx (d(s,2)) St—spi(x) ST—s0j().

In particular,
(56) (Xi. i) = (X4, Srei) + Np'(pi) a5 VT > 0.

Proof. Let ¢ € CZ(R?) and ¢(s,z) = Sr_sp(z) for (s,z) € [0,T] x R?. Then
¢ € Dy because (s, z) = (—02/2)ASr_s0(x) = (—02/2)Sr_sAp(x). The result
follows for such ¢ € CZ(R?) by Lemma 22. Now pass to the bounded pointwise
closure to get the result for all bounded measurable ¢. ]

2.2. First and Second Moments: Proof of Proposition 15. We proceed in
several steps.

Step 1° (Proof of (a)) The equality in (a) is immediate upon taking expectations
in Corollary 23 and using (EnC) (14) for the finiteness of the mean.

Step 2° Assume that 1 = p; ® o with @1, € bB(R?). Corollary 23 shows
that

(57) E(X},0:)(X], ;) = E(X§, Sepi) (X3, Sepj)

+ 0;;vE Lx (d(s, :r;)) Si—spi(x) Si—spj(x),
[0,t]xR2

since by conditioning on X the cross terms vanish.

Step 3° (Proof of (c)) Before completing the proof of (b) we will consider (c).
Assume (s, z) = p(x) with ¢ € CL  (R?). By Definition 1 and Fatou’s lemma,

(58) E(Lx(T),¢) < lirgl&)nf E(LX’ (T), )

(59) = liminfE—/ dr/ ds [ drS.X1(x)S,X2(zx)e(x)
510 0 Jo R2
(60) = liminfE / X5 (dy1) / X3 (dys)
(o) [ / ds [ dopreaoan) prsa(o,02) ¢(0)
R2
where we used (57) to continue after (59). The term in (61) is bounded by
1
(62 loll [ [ b 1,22) < clilloon, o),
0 0

where in the last step we used (15). But by (EnC) the bound in (62) is integrable
with respect to EX} x X2. Hence, the limit inferior can be taken through the three
integrals in (60). It is then easy to let § — 0 in the resulting integrand as we only
need to consider y; # yo» by (EnC). This gives

T
(63) E(Lx(T), o) < E / s [ | de .55 5.53(0) o)

(64)

A

cr [liplloo Bl Xolly < oo.
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By an obvious monotone class argument, claim (c) follows for bounded measurable
¢ on [0,%] x R?.

Step 4° (Proof of (b)) We may apply (c) to (57) to get the claim (b) for the
special functions ¢ used in step 2°. A monotone class argument then gives the
desired extension.

Step 5° (Proof of (d)) Assume (IntC). First consider again the case ¥(s,z) =
¢(z) with a function ¢ € Ct  (R?). Fix 0 < e < T. Suppose we can show

T—e
69 E{(Ix(D)-Lx@. ) | R} = [ a5 [ do (o) $.X00) 5.2,
Then by (57),

T
(66) E(Lx(T)— Lx(e), p) = / ds /R ] dz o(z) ES, X} (7) Ss X3 ().

Now let ¢ | 0. By (c), the left hand side of (66) converges to E(Lx(T),¢),
whereas by monotone convergence on the right hand side we obtain the required
expression. Provided we have (65), this proves equality in (c¢) under (IntC) for the
considered special 9, hence for all required ¢ by Dominated Convergence and (c).

By (57), we then also get the equality in (b) under (IntC) for functions ¢ of the
form ) ® @o with 1, € bB(R?), thus for all required ).

Step 6° To finish the proof, it remains to show (65). First of all, (56) and (53) in
Corollary 23 give

(67) (X1, 0) — (XL, Ss_cp) = NI*(p) = NI*(p), as. s>e, i=12.

Therefore,
(63)  E{(XLe)(X20) |7} = (XL S .v) <X3,ss,sgo>, as. s>e.
On the other hand, for & > 0, by the Definition (1) of L%,
(69) <L;}5(T)—L;;5 Q) = 5/ dr/ ds/de:rap ) S, X1 (z) S, X2(x).
Thus, by (68),
E{{(LZ(T) - 1 (), ¢) | 7.}

§ T
= %/ dr l/ ds/ dr o(x) Spis X1 () ST+SEX3($)]
0 € R?

(70) = %/06 dr [/TH_T_E ds /R2 dr p(z) Ss X1 () SSXEZ(:L“)] .

Since r € [0,¢], the term in square brackets in (70) can be bounded above by

T
(71) /0 ds [ | do ola) $.X!(a) S, X2(a).

But by (57), the expectation of this can be computed and equals

T+e
(72) / s [ o pla) S,X3(a) 5,3 )
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which is finite by (36). Hence, (71) is finite a.s. Therefore we may let § [ 0 in (70)
and conclude that for any sequence d,, J. 0,

(73) tim B {(I3"(T) - 15" @), ¢) | 7.}

ntoo
T—e
= / ds | dx o(x) SsX1(z) SsX2(x), a.s.
0 R2
Thus, to prove (65) it suffices to show that in probability
() B M- @) v) | 7} — B{Ix@)-Lx(E). 9} |},
Note that by the Definition 1 of the collision local time there is convergence in

probability of the corresponding expressions inside the conditional expectations.
On the other hand, by (69) and Jensen’s inequality, we have

2
(L (@) = L (0), o)
, T [ r ‘
ol [Car [Cas [ ao [y s X1 8 X2 @) 5. X2 ) 8, X3w)
, T "
< oly [ ar [ ds EX)
5” 0 5
[recall notation (25)]. Therefore,
2
(75) B{(15 @ - 1@ 0) | 7]

, T "
< (pio—/ dr/ ds E{H,(X;) | F-
lelizo s [ ar [ ds B {m.0x) | 7}

which is bounded in probability as d, | 0 by our assumption (IntC) (recall Defi-
nition 7). A standard uniform integrability argument for conditional expectations
(Lemma 63 in Appendix B) now gives (74), and completes the proof of (d). ]

IN

2.3. State spaces for X. Recall the state space versions M and Ms g from
Definition 4.

Proposition 24 (State Spaces). Assume Xo is a random initial state in My e
satisfying the random energy condition (EnC) from Definition 14, and X satisfies
(MP)3. Then:

(a): Xy € Mige a.s. for each t > 0.

(b): Xy € Mie forall t>0 a.s.

Proof. (a) Fix ¢t > 0. By Remark 5, for the verification of (14) it suffices to
consider 0 < r < 1. By Proposition 15 (b),

B(XixX/pe) < B [ doy SiX3(w) [ | dos SiXY(@2) piar, )
t
+ (5ij7E/ ds [ dr S;X}(x)Ss X3 (x)
0 R2

></ dzq pt-s(:r:,xl)/ dzy pi—s(z,x2) pr(z1, T2).
R2 R2
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The right hand side of this inequality can be written as

. t
(76) E<X3 X Xg,p2t+r> + 6ij7E/ ds Dria(t—s)(0,0)E (Xg X X3, p2s) -
0

For the first term in (76), use poryr(y1,y2) < porer(0,0) < ¢(t), to get the

bound ¢(t) E{X§,1)(X{,1). In the second term of (76), break the integral at
t/2. For the lower part, apply p,ya(1—s)(0,0) < ¢(t), whereas for the second part,
use pas(Y1,y2) < c(t). This gives the bound

t/2
(77) c(t) / ds E{X{ x X3 ,p2s)
0

t
(78) + «(t) // ds Dria(i—s)(0,0) E(Xg, 1)(X,1)
t/2

for the second term in (76). For (77) use (15) to bound it by ¢(t) ||Xo||4, whereas
in (78) the ds—integral can be bounded by ¢(t) [1 4 log(1/r)] . Altogether,

(79)  B(X{xX].p)
< o) [1-+10g(1/n] B| 3 (X517 + Kol | = ¢ [1-+10g(1/r)].

where in the last step we used our assumption (EnC), and the constant ¢ is
independent of r.

Next we want to apply this estimate for special values of r. In fact, if r belongs
to [27771,27™) n >0, then p, < 2py—n, and if p € (0,1), then from (79),

o0
E sup rP <th X th,pr> < 2022*”” [1+log2"] < oc.
o<r<1 _
n=0
This proves X; € Mg e a.s.
(b) We will use a Tanaka formula approach from [BEP91]. To prepare for this, for
a,e >0, set

1 o0
Joe(T1,12) 1= 56”‘/2/ du e py(z1,39), 1,72 € R2.
£

Note that
(80) Ga,e S ea 9a,0, 0 S £ S 17 a Z 07
and we have pointwise convergence
(81) lim Ja,e = Ga,0, a > 0.
el0
It is easy to see ([BEP91, (5.6)]) that to each a > 0 there are positive constants
co and C, such that
(82) cag < 1+gap < Cayg

[with the energy function ¢ from (12)].
Let X; = X} x X7. Tt follows from (MP)%¥” and a bit of stochastic calculus,
just as in the derivation of (T;) in Section 5 of [BEP91], that
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(83)
<Xtagoz6 XO:.gas

/ //gm w1, @2) [ X (dwy) M? (ds, daz) + X (dx2) M (ds, day)]
+0‘/0 //gme(%mz)Xi(dml)Xf(dwz)ds - L5(X)

where L(X) = fot [ pe(@1 — 22) X1 (d21) X2(dws)ds. As ga,- is bounded the above
stochastic integral in (83), I°(¢), is a continuous local martingale and we may choose
stopping times T, 1 0o a.s. such that sup,<;, I°(t) < n. Then (83) implies

E(Xint,  g0e)) < E((Xo,gas)) + 0 / E((Xon, - gore))ds

(84) < CuE((Xo0,9)) + 0 / E((Xunz, 00c))ds (by (80) and (2)).

Note also that (MP)%” implies that (X, 1) = (X}, 1) (X7,1) is a martingale (we
also use EnC here) and SO

E(<Xt/\Tn7gOé7E>) S ||ga,5||ooE(<Xt/\Tn7 1>) = ||goz7€||ooE(<X07 1>) < 0.
It therefore follows from (84) that
(85) E((X¢T,, ga,e)) < c(@)E((Xo,9))e*, ¥V t>0,n€N

Note also by Proposition 15(b),

B (/ //pg 2)Ss X (y1)Ss Xo(y2)dy1dy2ds>
=F (/ //ps‘”s 1 — y2) Xg (dy1) X5 (dyr )ds )

(86) E((Xo,9))-

It follows from (83) and the integrability implied by (85) and (86) that
Yy = (XinT, s Ga,e) + Liag, (X) is a non-negative submartingale. Therefore by the
weak maximal inequality for any ¢, K > 0 fixed

P ( sup (Xs, ga,e) > K> <P <squs” > K>

s<tATy s<t
< KB
< K7 e(@)e™ + ¢ ()] B((Xo, 9)).-

First let n — oo and then ¢ — 0 in the above and use Fatou’s Lemma and (81) to
see that

P (s:irt) (X5, 9a,0) > K) <Kt [c(a)eat + c'(t)] E((Xo,g)).

In view of the lower bound in (82), the required result is immediate. m
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3. A FUNCTION-VALUED DUAL FOR HIGHER MOMENTS

In this section function-valued duals which are used to compute higher moments
are presented.

3.1. Lattice approximation moment dual V¢ and self-duality. Since it has
not been explicitly mentioned in [DP98], we start by pointing out that our lattice
approximations have finite moments of all orders:

Lemma 25 (Moments of all Orders). Let € > 0. Assume °X satisfies the mar-
tingale problem (MP);ZE of Lemma 6 with deterministic initial condition, Xy €
Mft(]Rz). Then for any integer m > 1, and T > 0 there is a constant C =
C(E,T,m, (Xo, 1)) such that

87 E (sup °X},1)™) < C.
(87) i:ZL:Q (t§g<t>)_

Proof. Clearly we may assume m > 2 and € =1, and we will suppress the index
e =1 in our notation. Then, for i € {1,2} fixed, t — (X},1) — (X{,1) = M/ (1) is
a continuous L?>-martingale such that for T > 0 fixed and t < T,

(i = (7 / Y X Xf(x>)m/2

z€L?
t m/2 t
< c/ ds ( Z Xsl(x)Xf(:c)> < c/ ds Z (Xt 1ym
0 ©€Z2 0 =12

(where ¢ = ¢y y,7). Fix for the moment K > 1, and consider the stopping time
Tk =T Ninf {t : 25:1 (X}, 1) > K} Burkholder’s inequality then shows that for
any r € [0,T],

(88) E(> sup (X,

i=1,2 t<rATk

< CZ(X3,1>m+c/ ds E | Y (X D™ |,

i=1,2 0 i=1,2

with the constant ¢ independent of r (and K). Since the expectation in the
integrand on the right hand side of this inequality can further be bounded from
above by E(},_; 5 SuPsconry (X{,1)™), Gronwall’s Lemma implies

(89) E[> sup (X, )"| <C

i=1,2 ISTK

where C = C(T,m, (Xp,1)) is independent of K. Letting K 1 oo completes the
proof since 7x 1T 7. [

Although in this paper we only use fourth order moments, we now introduce a
function-valued dual process VF = V=™ which will describe moments of arbitrary
but fixed order m > 1 for solutions “X of (MP)g ", with a fixed ¢ € (0, 1]. The
state space of the dual is 8¢ = S&&™ := Cf ((eZ?)™) x 2{b--m} (with 2{L--m}
denoting the power set of {1,...,m}), and elements in S are denoted by (¢, I).
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It is convenient to think of the argument of ¢ as the spatial positions of a system of
m particles. Particles take two types: those corresponding to a coordinate whose
index is in I are of type 1, those corresponding to indices in I¢ are of type 2. These
m particles have positions described by z € (¢Z?)™. We give C;f ((¢Z*)™) the
topology of pointwise convergence, to make S° a separable metric space.

Let ESt(m) denote the semigroup on Cp,((¢Z?)™) obtained by running m inde-
pendent copies of our simple random walk ¢¢ (each with generator "72 °A), and let
"; cA(m) denote the associated generator.

For 1 < j,j' < m with j # j', define maps = : (R*)™ — (R*)™ and
figr Gy ((€2)™) = CF ((eZ*)™) by

(90) (M), )i = { i; ig zij,’ T = (21,0 7m) € (R)™,
and
(91) Figr(9) (@) = @(mjjx)e * 1wy = )

= ¢(mj jro)po(x), xj0).

Definition 26 (Dual Process V¢). For fixed m > 1, denote by V& = V=™ =
{V§ > 0} the Markov process which has sample paths in the Skorohod space
D(Ry,S%), and evolves as follows:
(a) (Jumps): If V¢ is in the state (¢,I), for each (ordered) pair (j,j') in
I? satisfying j # j', the process V* jumps to (f;;(¢), I\{j'}) with rate
v/2, and for each (j,j') € (I€)* with j # j, it jumps to (f;;(¢), TU{j'}),
also with rate /2. (In particular, a jumping particle changes its type.) In
these cases we say j' switches via j.
Let {T} : j > 1} denote the successive jump times, and set Tp = 0.
(b) (between jumps): Between jump times, the component ¢ of V¢ evolves
according to the semigroup =S("), whereas the component I is frozen. That
is,

(92) if T, <t < Tpy1, then o (z) =S\ ¢r, (z), and I, = Ir, .

Let A® = A=™ denote the (weak) infinitesimal generator of V¢, and P‘E/S the
law of V¢ if V¢ starts in V§ (deterministic). O

Define a duality function F :S8° x MZ(eZ?) — Ry by

93 F(o, I, ub, 12 = Y(da; 2(dx; .
(93) (6.1, ) g/gzzuw)jgc/spmmas(x)
Then, for (¢,I,p) € 8¢ x ME(eZ?),

2

(94) AF(,\p)(6,0) = F(5 Ao, 1p)

* % > (F(ff,j' (9), I\{s'}, 1) — F(qs,l,u))
i
v 1Y (FUL @I - F@ L),

(4,3") € (I°)?
J#5
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Hence, for u € M3(eZ?),
¢

(95) F(Vi) — F(V50) — [ ds AF(VE
0

is a P‘E/S —martingale. [See (97) below for the integrability of F(V§, 1) with respect
to P‘E’S ]

Let “X be our solution to (MP)g”* from Lemma 6 and denote the underlying
probability by Pg . As usual Xp is a fixed element in Ms .. If (¢,I) € S, then
It6’s Lemma and the system of stochastic equations (18) defining the process X
show that

F(d);I;EXt) = F(QZS,I,EXO)

+ s wrerex) +of () + (15)) froexa] + e,

where M?! is a continuous L?>-martingale which can be explicitly written in terms
of the Brownian motions arising in (18). (Note that the integrals in the duality
function (93) are actually sums.)

On the other hand, if A° is the weak generator of X, then we have

o) aFo0 = AFCnen +{ (1) + (1) e,
(6,1,1) € 8 x ME(R?).

Proposition 27 (Moment Duality for X°). For any V§ € 8%, Xo € M¢e(R?),
e € (0,1], and t > 0,

Bx,F(V§,°X,) = By <F(V§,6x0)exp [7/; ds {('2') + ('g') H) < oo0.

Proof. In view of (96) we only need to check the hypotheses (4.50) and (4.51) of
[EK86, Theorem 4.11] with a = 0 and (¢, I) = (1) + (I)). Note that B(4,1) <
2(2’), so that (4.51) is obvious. Let N, be the number of jumps of V* up to time
s. Note that

EA'€/8 X E‘EXO ( sup F(¢S: [sasxt)>
0<s,t<T

O7) < Bl o) B, ( supCXE 1" 4 supCXE 1) < o6,

0 t<T t<T
by Lemma 25. Then (4.50) in Theorem 4.11 of [EK86] is a simple consequence of
this. ]

It is not hard to see that the above moments grow too quickly for the moment
problem to be well-posed and hence do not characterize the law of ©X. Mytnik’s
exponential self-duality [Myt98] is still required for this. At times we will write ¢
for ¢ in V¢, but note that we may define I = I; to be independent of €.

A slight modification of the proof of Theorem 2.4 (b) in [DP98] gives the following
self-duality relation for the discrete space processes:
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Lemma 28 (self-duality). Fiz 0 < ¢ < 1. Let X = (X!,%X?) and X =
(E)Nfl,g)?z) denote independent mutually catalytic symmetric simple super-random
walks in €Z? with initial states “Xo = “u = (*pt,p?) € “M? and Xy = % =
(%pt,%p?) € (L*(de))?, respectively. Then the following duality relation holds for
these M3 —valued processes:

Py exp [— (X + X7, % +50%) + i (X — X7, %! — 5<p2>]

= P:,exp [—(5/11 + 5/12,??3 + E)Z'f> +1 <5,ul — 5/12,?@1 — 5)??)] , t>0,
(with i = +/—1), where the terms <E,uj,5)?t’“, >, 7,k = 1,2, occurring in the exponent
at the right hand side are finite P-,-a.s.

3.2. Limiting moment dual V. In order to let £ | 0 in Proposition 27 we spe-
cialize to m = 4 and introduce the natural candidate for a limiting dual process V.
In order to define the state space we introduce some notation.

Notation 29. For x = (z!,...,2") € (R))", n > 1, we set
x| = x|+ 2.
We introduce the mollifier
p(x) == clyxj<1yexp [-1/(1 — 2?)], T € R,

with ¢ the normalizing constant so that [ dxp(z) =1. For A € R, set

i (@) = /dy e MWy —2z), veR,
and introduce the reference function

oA (@) == A (21) - P)(2a), @ = (21,...24) € R

If ¢ is a (real-valued) function on R, put

lelx == sup |p(z)|/dr(z), A€R
z€ERE

For A € R, let Cy denote the set of all continuwous functions such that |¢|y is finite.
Introduce the space

Crap = Crap (Rd) = U>\>0C)\

of rapidly decreasing continuous functions. Let Miem = Myem(R?) denote the
subset of all measures p on R such that (u, ) < 0o for all A > 0. We topologize
the set of tempered measures Myem by the metric

dyerm (11, v) := do(p, V) + Z 27" (Ju = vlim A1), v € Miem.

n=1

Here dy is a complete metric on the space of Radon measures on R? inducing the
vague topology, and |p — v|x is an abbreviation for | (u, dr) — (v, d»)|. Note that
(Miem, dtem) is a Polish space and that py, — p in Myem if and only if (i, @) —
(i, @) for all ¢ € Crap.
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The state space for this dual V will be S = M ((R?)?) x 2{5--4}although
our starting point Vy will be in

(98) CF(R2)4) x 2ibth = Sy

As before, we will identify functions ¢q in C’g with the finite measure ¢ (z)dz in
Miem. We abuse our earlier notation slightly and define F': S x M?(R?) — R} by

F(¢,1,p) :{ J o, wa) [licr ot (de) [T r 12 (dzg), if (6,1) € So

0, otherwise

and define ; ; : (R?)* — (R?)* for 1 < j,j' < 4 as before. If 1 < j,j' < 4, then
Fig: Cf (R?)*) = Miem ((R?)*) is given by fj ji(#) = ¢ 0 7j j10s; o, , that is

(99) f(6)(4) = /A A2y ... dvg G(m;07) 0a;y o, (3):

It is easy to check this measure is in Myepm.
Definition 30 (Dual Process V).

Let S; be the 8-dimensional Brownian semigroup with variance parameter o2,

let ‘FTA denote its generator and p;(z,y) the associated transition function. The
dynamics of the dual process V.=V™ = (¢.,1.) € D(R;,S) are as follows:

(a) For each (j,5') € I?, j # j', with rate /2,
(¢t—, Ii-) jumps to (f;j(¢e-), Ii—\{j'}), and for each (j,j') € (I{)*, j # j', with
rate v/2, (¢r—, It—) jumps to (fjj (¢e-), L— U{j'})-

Let 0 =Ty < T < T < ... be the successive jump times.

(b) For T), < t < Tpy1, Vi = (Se_1, b1, I1,,). o

Remark 31. To ensure that this does define a process Vi we need to check that
¢r,— € Cf (R2)Y) for alln > 1 a.s. so that f;j(¢r,_) is well-defined. For this
we will use induction to show if T,, < Ty, 1 for alln > 0, then

(100)  On [Tn,Tht1), ¢. is a continuous Myem-valued process taking values in

Cy (R®) fort € (T, Tpt1), and ¢, ,,— = St,,,—1, 91, € C; (R®).

Forn = 0 this is clear as ¢o € C; . Assume (100) for n—1 and consider n. Then
d)Tn = f]}j’(qun*) € Mtem and fOT’ te [T’I’L;Tn+1)

61(z) = Si_1, b1, (2) = / pe_1. (@,9)br, (dy).

It is easy to see that if f € Crap, then (S¢_1, é1,, f) = (o1, St—1, f) is continuous
int (e.g., use Dominated Convergence and Lemma 6.2(ii) of [Shig94]) and so ¢
is continuous on [T, Ty41) and ¢7, ., = S1,,,—1,¢1,. Fort > T, use the bound
pi_t, (z,y) < ceMele AV (¢, X\ may depend on (t,T,)) and Dominated Convergence
to conclude that ¢:(-) is continuous for all t € (T),Tnt1) and the same is true for
@1, 41— (). For boundedness use the induction hypothesis to see that
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o1, < |61, |loc0s, 2, dz and so (take j =1 and j' = 2 for definiteness)

60(2) < b, —lloo / Do, (51,91, v, ya)dys dysdys

<o, —looP2(e—1,) (1, 72)

< et = T) " o, -llo < 0.
The same reasoning shows that ¢, ., is bounded. This completes the inductive
proof of (100).

It is clear from (100) that V. has sample paths in D(R; ,S) a.s. Let Py, denote
the law of V on D(R;,S).

Theorem 32 (Limiting Moment Dual V). Assume /02 < (csmv/6) ™!, Xo € M
where cg is given by (30) and “X is the solution to (MP)¥"* of Lemma 6. Let
Y ME(R?*) = Ry be a bounded continuous map and let {em }m>1 be a sequence of
positive numbers with €, | 0. Assume either

(a) 0=0<t and Xg € Mt e, or
(b) 0<d<t, {¢p#0}C{(pt,p?) : p(R?)+ u?(R?) < K} for some K and the
law of X5 converges weakly in M?(R?) as m — oo to a law Px,(Xs € -).
Then for any ¢o € C;F (R®), Iy C {1,...,4},

lim Bl xo F(Vo, = X0) (7 X5)

: e || |75
= EVO X EXO F(Vt_§ s Xg) 'gb(XJ) exp ’y/ ds 9 + 9 < 00.
0
Remark 33. The proof (given below) is independent of the uniqueness results in
Theorem 11and will in fact be used in the derivation of uniqueness in [DFMPXO00a].
By (100), ¢1—s € C{ (R®) a.s. and so on the right-hand side of the above,
(101) F(pt—s,1lt—5,Xs) = /¢t—6($1, cowe) [ X)) [ X3(da) as.
i€l;—s J¢Ii—s
The proof requires the following bound on ¢p which is proved in Appendix A.

Lemma 34. If r € (0,1), then

(102) sup {Eps(:z:,y) :0<s, 0<e, Jly—z| > s"/? +6T} =: ¢34 < 00.
If p,e > 0, define

(103) Ep(FXy) = il;%) sP <5Xt1 X EXE, Eps>

and

(104) Ep(Xy) = §1>1%) sP <Xt1 X Xf,ps> + (th, 1> <Xt2, 1>.

The proof of case (a) also uses the following result which is a simple consequence
of the previous Lemma.

Lemma 35. If Xg € M;sge, then for any 0 < p' < p < 1 there is a c35 =
C35(p7plao') so that
(105) sup & »(*Xo) < e35Ep (Xo) < 00.

0<e
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Proof. By Lemma 8 and the definition of *p,(z) we have
(106) “ps(®) <eola)(s A ).
Ife >0 and p’ € (0,1), then
Xh(de) [ X3(de2) 1or 2] < 2)
(107) R? R?
< e1(0)e? (X4 x X3,p2) < 2P, (Xo).
If p,r € (0,1), then (106) and (107) show that

sp//1(|x1 — aa] < 8712 4 €)%y (w1, m9) XL (dar) X2 (das)
< sPco(0)(s~L A2 / / |y — ] < 4("2 + &) X2 (da1) X2 (ds)

S SPCO(U)(571 A 572)/\/’1(|J;1 _ $2| S 8(81‘/2 vV €T))Xé(d$1)X§(dx2)
S Cng, (XO)SP(S vV 82)7‘(1_1)’)_1
< 2608 (Xo) (5 VR0,

Let 0 < p/ < p < 1 and choose r = r(p',p) sufficiently close to 1 so that the
exponent of s in the above is positive. Use the above to bound s < 1 and Lemma
8(b) to handle s > 1 and conclude that

o<, Sp//l(m — 2o <877 4 ") "py (21, 22) X (dr ) X (dis)
<g,s

(108) < 2638 (Xo) + cso (X5, 1)(X3, 1).

Combine this with Lemma 34 and (107) to see that

(109) sup &, (*Xo) < 2628,y (Xo) + (34 + cgo 2) (X5, 1)(X3, 1).
0<e

The result follows. u

The proof of case (b) of Theorem 32 will use

Lemma 36. Let 0 <p <1 and § > 0.
(a) There is a cs6 = cz6(0,p) so that for any € > 0,n € (0,1] there is a random
variable Z(e,n,p,d) satisfying

EE,IJ(EXJ) S C36np71 (EX(%: 1> (EX(?: 1) + Z(&‘, n,D, 6)7
and E(Z(g,n,p,0)) < csed P2 (X3, 1) (X5, 1).
(b) supgc. E(E: p(°Xs)) < eze(l+071)(Xg, 1)(XG, 1)

Proof. (a) Lemma 8 implies that ps < ¢;(s™! Ae~2). This, together with Lemma
34, implies for ¢ > 0, and r =1 - §,

Ep(FX5) < (EXC%, 1) (EXC?, 1)+ sup s”/sps(ml,mz) EXg(dml) EXg(dmg)
s<1
< (o1 +esa) (°X5,1) (°X5, 1)

(110) + stipl)clsp(s_l /\5_2)/1(|a}1 — x| < ("% 4+ €7)) X} (dwy) TXE (duy).
s_
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The second term in (110) is bounded by
sup ¢ (s Ve?)P(s Vv 52)*1/1(|a}1 — x| < 2(s V)2 X} (dxy) *XE (day)
s<1

< Clnpil <EX¢%71> <EX§7 ]->
(111) +c; sup sp*1/1(|a}1 — x| < 25"/%) X }(dxy) *XE(dy),
e2<s<n
where the second term is defined to be 0 if €2 > n. If s € 27771, 27%] then
51771/1(@:1 ~ aa] < 25"/2) X (dar) X2 (ds)
< 2t=po—klr=1) / 1(|zy — 2o| < 217 %/2) X} (day ) °X 3 (ds).

Use this in (111) and then (110) to see that

(112) gEyP(gxls) S 02(U:p)77p_1 <EX§71> <EX§7 1> + Z(Eanapa 6)7
where
Z(Eanapa 6) =C2 Z 2k(1—p)/1(|$1 - $2| S 21_Tk/2) EX;(dxl) 6X(?(d$2)
27k <2n

Proposition 15 (b) shows that

E(Z(e,n,p,0)) = c2 Z 2’“(17”)////1(|331_332| < 217k
2=k<2p
“ps(z1,91) “ps(w2, y2)d x1 dEl"fX& (dy1) EXg(dyz)
<cpego 26T Y 2T rR(XE 1) (X2 1)
2=k<2p

<es(p, o) (Xg, (X5, 1) Do 27

2-k<2p
< ca(p, o)XY, 1)(XE, /2.

(112) therefore implies (a). To derive (b), take n = 1 in (a) and note that
E((X}, 1) (X2, 1)) = (X}, 1)(X2,1) by Proposition 15 (b) . n

Notation 37. Let c37(0?) = cso~2. Then Lemma 8 implies

(113) pe(w) <egrtt Ve>0,t>0 x€cel’

Let U, =Tp —Tp—1 (n > 1) be the inter-jump times for the dual process (V§,1;).

Lemma 38. Let ¢y € C;f (R®), Iy C {1,2,3,4} and ng € Z. Assume there are
distinct random indices {i1,i2} C {1,2,3,4} and a measurable map f: Ry x Q —
Ry such that t — f(t,w) is continuous Pj ; —a.s. and

(114) ¢§(ylay2ay3ay4) S f(taw)EPZ(thno)(yh - yi2)7 il € It7i2 ¢ It
for T, <t < Thpyt1, 15;0710 a.s.
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Let

Pl (s) = f(Tng+1) (HZ=n0+2 (Uk_CfiUk)) Utst, o Tn <8 <Tat1, n>mo
f(s) if Thy <8< Tpgt1-
Then there are random indices {it,i% : n > no} C {1,2,3,4} such that

62 (y) < plo () Pos—m) Wir —yig), iy €L, i €I, T <5 <Tpy1, V> ng,

pe
P 1, — a.s.

Proof. We proceed by induction on n > ng. If n = ny, the required result is our

hypothesis (114). Assume the result holds for n — 1 (n — 1 > ng) and consider n.
Then

07, - () < Phy (T=) “pov, Win-1 = Yin-1), iy ™" € Iy i3~ ¢ I,

We consider several cases in analyzing the jump at T,,. We will write (iy,i2) for
(i%',i%') and use 43,44 to denote the distinct indices in {1,2,3,4} — {i1,i2}.

Case 1. i, switches via i3 € I, _.

o7, () < pho (Tn=)"pou, (Wis — Yia) Po Wi, — Yis), I, D {is}, If, D {i1,iz}.
Case 2. iy switches via i3 € [T .

o7, () < Pl (Tn=) P2, Wir — Yis)*P0Wia — Yis)s I, D {i1,i2}, 1§,