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Abstract

We indicate a new approach to the deformation of three-dimensional curved

rods with variable cross section. The model consists of a system of nine or-

dinary di�erential equations for which we prove existence and uniqueness via

the coercivity of the associated bilinear form. From the geometrical point of

view, we are using the Darboux frame or a new local frame requiring just a

C
1
-parametrization of the curve. Our model also describes the deformation

occurring in the cross sections of the rod.

1 Introduction

This work is devoted to the study of three-dimensional curved rods with nonconstant

thickness and with multiply connected cross section. Under the action of body forces

and of (outside) surface tractions the rod will su�er deformations, and our approach

allows to investigate deformations of variable cross sections as well.

The model we propose is expressed as a system of nine ODEs and is derived from the

linear elasticity system under the minimal mechanical assumption that the trans-

verse sections remain plane after the deformation, although their shape may change.

We allow for shear and torsion, and even for (pointwise) degeneracy of the sections

to dimension one. However, we underline that this last remark just means that

our model does not impose other constraints than those coming from the validity

requirements of the linear elasticity system.

The literature concerning curved rods is very rich, and the books of Trabucho and

Viaño [19], Lagnese, Leugering and Schmidt [14], Antman [2] give a comprehensive

overview of the existing results and methods, both in the stationary and the time-

dependent cases. In the setting of asymptotic methods, we quote the recent paper

by Jurak, Tambaca and Tutek [13] and the very recent work of Murat and Sili [15]

announces the obtaining of an ODE model. The works of Reddy [17], Chenais and

Paumier [8], Chapelle [7] discuss the �locking problem� for the numerical approxima-

tion of arches and curved rods. An explicit solution for the Kirchho��Love arches

was found by Sprekels and Tiba [18], and a detailed examination of optimization

questions is due to Ignat, Sprekels and Tiba [12].

An important ingredient in the study of curved rods is the description of their

geometry and the choice of a local frame. While in the scienti�c literature the

classical Frenet frame is, usually, taken into account, in this paper we consider other

variants with the aim of relaxing the regularity assumptions or in connection with
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certain applications. In the case of shells, such regularity questions were discussed

by Blouza and Le Dret [4], Blouza [5].

In Section 2, we view the three-dimensional curve giving the line of centroids of

the rod as lying on a �xed surface, and we use the Darboux frame, Cartan [6].

This approach requires a curve parametrization in W 2;1 and �ts to the analysis

of associated optimization problems where such a situation describes an important

class of constraints. Section 3 introduces a direct method, based on a new choice of

a Lipschitzian local frame for W 2;1 rods.

In all cases, we prove the coercivity of the corresponding bilinear form, and we obtain

the existence and the uniqueness of the solution. In the last section, we present some

numerical simulations based on our model, and we make a brief comparison with

the already existing numerical results.

Finally, we point out that our way of working, by imposing the mechanical assump-

tions directly in the linear elasticity system, may be compared with the work of

Delfour and Jiabin [11] in the case of shells.

2 The Darboux frame

Let L > 0 be given, and let !(x3) � IR2 be bounded domains, not necessarily

simply connected, for any x3 2 [0; L] . We assume that !(x3) � ! , a given open

set in IR2 , such that

0 =

Z
!

x1 dx1 dx2 =

Z
!

x2 dx1 dx2 =

Z
!

x1 x2 dx1 dx2 : (2.1)

Hypothesis (2.1) on !(x3) ; x3 2 [0; L] , is a slight relaxation of a similar condition

used by Murat and Sili [15] and by Alvarez-Dios and Viaño [1].

We introduce the open set:


 =
[

x32]0;L[

�
!(x3) � fx3g

�
� IR3 : (2.2)

The curved rod ~
 is given as a transformation of 
 :

(x1; x2; x3) = �x 2 
 7! F �x = ~x = (~x1; ~x2; ~x3)

= ��(x3) + x1 �n(x3) + x2 �b(x3) 2 ~
 ; 8 �x 2 
 ; (2.3)

~
 = f~x = F �x ; �x 2 
g : (2.4)

Here �� 2 W 2;1(0; L)3 , with ��00 piecewise continuous is a three-dimensional curve,

called the line of centroids, parametrized with respect to its arc length, and �n(x3) ;
�b(x3) 2 IR3 are some vectors for any x3 2 [0; L] , which are di�erent (in general)
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from the normal and binormal vectors associated to the Frenet frame. In the sequel,

for any vector �a 2 IR3 , we shall denote by (a1 ; a2 ; a3) its components.

We assume now that the curve ��( � ) lies on a given surface S , de�ned by the

equation

�(x1; x2; x3) = 0 (2.5)

with� 2 C2(IR3) , that is,

� (�1(x3) ; �2(x3) ; �3(x3)) = 0 8 x3 2 [0; L] : (2.6)

We denote by �n(x3) = (n1(x3); n2(x3); n3(x3)) a unit normal to S in the points
��(x3) 2 S , that is, �(x3) �n(x3) = r� (��(x3)) for some real mapping � . We also

denote by �t(x3) = (�01(x3); �
0

2(x3); �
0

3(x3)) the unit tangent to the curve ��( � ) .
Finally, we choose the unit vector �b(x3) = �t(x3) ^ �n(x3) , the vectorial product

between �t and �n . Then, the local frame (�t; �n;�b) is positively oriented, and it is

called the Darboux frame.

As �t ; �n ; �b are di�erentiable and j�tj2
IR

3 = j�nj2
IR

3 = j�bj2
IR

3 = 1 8 x3 2 [0; L] , it follows

that

h�t ; �t0i = h�n ; �n0i = h�b ; �b0i = 0 in [0; L] : (2.7)

The orthogonality relations (2.7) give the �equations of motion� of the Darboux

frame,

�t0(x3) = a(x3)�b(x3) + �(x3) �n(x3) ;

�b0(x3) = � a(x3) �t(x3) + c(x3) �n(x3) ;

�n0(x3) = � �(x3) �t(x3) � c(x3)�b(x3) ; (2.8)

where the functions a( � ) ; �( � ) ; c( � ) are piecewise continuous and, in that order,

are called the geodesic curvature, the normal curvature, and the geodesic torsion,

respectively, of the curve ��( � ) , Cartan [4, p. 162].

The curved rod ~
 is clamped at both ends, and it is subjected to body forces ~f

in ~
 (weight, electromagnetic �eld, etc.) and to surface tractions ~g on the lateral

surface denoted ~� . Notice that, on the �inside� lateral face of ~
 (i.e. corresponding

to possible holes in the cross section), we have ~g � 0 .

We denote by �u : ~
 ! IR3 the corresponding displacement of each point ~x 2 ~


under the action of the given forces. Our �mechanical� assumption is that �u has

the form

�u(~x) = �� (x3) + x1 �N(x3) + x2 �B(x3) 8 ~x 2 ~
 ; (2.9)

with �x = (x1; x2; x3) = F�1(~x) and where �� ; �N ; �B 2 H1
0 (0; L)

3 are unknown

functions.

Relation (2.9) is a special simple case of the so-called polynomial approximation of

the displacement, used by Trabucho and Viaño [19], Delfour and Jiabin [11]. In

particular, it says that transverse sections of ~
 (i.e. perpendicular on �t(x3) ; x3 2
[0; L] ) remain plane or degenerate to dimension 1 after the deformation. The vector
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��(x3) describes the translation of the points on the centroid line ��( � ) , and the

vectors �N(x3)+ �n(x3) ; �B(x3)+�b(x3) show the deformation of the orthogonal frame

in the cross section (which does not necessarily remain orthogonal to the tangent of

the new centroid line, i.e. to ��0(x3) + �� 0(x3)) . This allows for shear and length or

volume changes after the deformation.

By an obvious computation, we get the Jacobian of F , denoted by J(�x) = DF (�x) ,

its determinant, and its inverse (using (2.8)):

J(�x) =

2
64
n1(x3) b1(x3) t1(x3) + x1 n

0

1(x3) + x2 b
0

1(x3)

n2(x3) b2(x3) t2(x3) + x1 n
0

2(x3) + x2 b
0

2(x3)

n3(x3) b3(x3) t3(x3) + x1 n
0

3(x3) + x2 b
0

3(x3)

3
75 ; (2.10)

J(�x)�1 =

2
66666664

n1 �
c t1 x2

1� � x1 � a x2
n2 �

c t2 x2

1� � x1 � a x2
n3 �

c t3 x2

1� � x1 � a x2

b1 +
c t1 x1

1� � x1 � a x2
b2 +

c t2 x1

1� � x1 � a x2
b3 +

c t3 x1

1� � x1 � a x2

t1

1 � � x1 � a x2

t2

1 � � x1 � a x2

t3

1 � � x1 � a x2

3
77777775
;

(2.11)

det J(�x) = 1 � �(x3) x1 � a(x3) x2 ; 8 �x 2 
 : (2.12)

If !(x3) is contained in a ball with a su�ciently small radius with respect to the

curvatures, then we may assume that

det J(�x) � c > 0 ; 8 �x 2 
 :

We introduce the vectorial mapping �w : 
! IR3 ,

�w(�x) = �� (x3) + x1 �N(x3) + x2 �B(x3) ; 8 �x 2 
 ; (2.13)

and we notice that

�u(~x) = �w(F�1 (~x)) : (2.14)

We recall that

D �u(~x) = D �w(F�1(~x))DF�1(~x) = D �w(F�1(~x)) J(F�1(~x))�1 ; 8 ~x 2 ~
 : (2.15)

We simply denote:

DF�1(~x) = (d
ij
(~x))

i;j=1;3
; J(�x)�1 = (h

ij
(�x))

i;j=1;3
: (2.16)

By (2.10)�(2.16), we can compute the symmetrized gradients e
ij
of the displacement

�u(~x) . We have

@u
i

@~x
j

(~x) = N
i
(x3(~x)) d1j(~x) + B

i
(x3(~x)) d2j(~x) +

h
� 0
i
(x3(~x))

+ x1(~x)N
0

i
(x3(~x)) + x2(~x)B

0

i
(x3(~x))

i
d3j(~x) ; i; j = 1; 3 ; (2.17)
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e
ij
(~x) =

1

2

�
@u

i

@~x
j

+
@u

j

@~x
i

�
(~x) ; i; j = 1; 3 : (2.18)

Consequently, we get (without summation convention)

e
ii
(~x) =

@u
i

@~x
i

(~x) ; i = 1; 3 ; (2.19)

e
ij
(~x) = e

ji
(~x) = 1

2

n
N
i
(x3(~x)) d1j(~x) + B

i
(x3(~x)) d2j(~x)

+
h
� 0
i
(x3(~x)) + x1(~x)N

0

i
(x3(~x)) + x2(~x)B

0

i
(x3(~x))

i
d3j(~x)

+N
j
(x3(~x)) d1i(~x) + B

j
(x3(~x)) d2i(~x) +

h
� 0
j
(x3(~x))

+ x1(~x)N
0

j
(x3(~x)) + x2(~x)B

0

j
(x3(~x))

i
d3i(~x)

o
; i; j = 1; 3 : (2.20)

If �; � > 0 denote the Lamé constants of the material, the bilinear form governing

the equations of linear elasticity is de�ned on the subspace ~Z� ~Z � H1(~
)3�H1(~
)3

of functions having zero traces on the �bases� of the rod ~
 , i.e. on F (!(0)) [
F (!(L)) . We have (with summation convention):

B(�u; �v) =

Z
~


h
� e

pp
(�u) e

qq
(�v) + 2� e

ij
(�u) e

ij
(�v)
i
d~x : (2.21)

Notice that �u given by (2.9) belongs to ~Z , and we shall take the test functions

�v 2 ~Z in a similar form by replacing the unknown mappings N
i
; B

i
; �

i
, respec-

tively, by some arbitrary mappings M
i
; D

i
; �

i
2 H1

0 (0; L) ; i = 1; 3 . In this way,

we perform a projection of B onto the (in�nite dimensional) subspace Z � ~Z of all

mappings �u given by (2.9) with �coe�cients� �� ; �N; �B 2 H1
0 (0; L)

3 . We underline

that this is essentially the same procedure as in the �nite element method (where

�nite dimensional subspaces appear), and some convergence and approximation re-

sults are proved by Trabucho and Viaño [19] in a di�erent setting. By the above

choice, it is obvious that the space Z can be identi�ed with H1
0(0; L)

9 . A standard

change of variables, and (2.9), (2.16), give

B(�u; �v) =

Z
F (
)

h
� e

pp
(�u) (F �x) � e

qq
(�v) (F �x) + 2� e

ij
(�u) (F �x) � e

ij
(�u)(F �x)

i
d~x

= �

Z



3X
i;j=1

h
N
i
(x3)h1i(�x) +B

i
(x3) h2i(�x) +

�
� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3i(�x)

i

�
h
M

j
(x3) h1j(�x) + D

j
(x3) h2j(�x) +

�
�0
j
(x3) + x1M

0

j
(x3) + x2D

0

j
(x3)

�
h3j(�x)

i

�
��� det J(�x)

��� d�x + �

Z



X
i6=j

h
N
i
(x3) h1j(�x) + B

i
(x3) h2j(�x) +

�
� 0
i
(x3) + x1N

0

i
(x3)

+ x2B
0

i
(x3)

�
h3j(�x) + N

j
(x3) h1i(�x) + B

j
(x3) h2i(�x) +

�
� 0
j
(x3) + x1N

0

j
(x3)+
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+ x2B
0

j
(x3)

�
h3i(�x)

ih
M

i
(x3) h1j(�x) + D

i
(x3) h2j(�x) +

�
�0
i
(x3) + x1M

0

i
(x3)

+ x2D
0

i
(x3)

�
h3j(�x) + M

j
(x3) h1i(�x) + D

j
(x3) h2i(�x) +

�
�0
j
(x3) + x1M

0

j
(x3)

+ x2D
0

j
(x3)

�
h3i(�x)

i��� det J(�x)
��� d�x + 2�

Z



3X
i=1

h
N
i
(x3) h1i(�x) + B

i
(x3) h2i(�x)

+
�
� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3i(�x)

ih
M

i
(x3) h1i(�x) + D

i
(x3) h2i(�x)

+
�
�0
i
(x3) + x1M

0

i
(x3) + x2D

0

i
(x3)

�
h3i(�x)

i��� det J(�x)
��� d�x : (2.22)

We have the following result.

Theorem 2.1 Assume that 0 < C � 1� �(x3) x1 � a(x3) x2 � m ; 8 �x 2 
 . Then,

the bilinear form B is coercive and bounded on H1
0 (0; L)

9 .

The argument follows the same steps as in the proof given by Ciarlet [9] for the case

of plane arches.

We start with the following new inequality:

Lemma 2.2 There are c1 > 0 ; c2 > 0 such that

B(�u; �u) � c1

����u
���2
H

1

0
(0;L)9

� c2

����u
���2
L
2(0;L)9

; (2.23)

where �u , given by (2:9), is identi�ed with the vector (�1 ; �2 ; �3 ; N1 ; N2 ; N3 ; B1 ; B2;

B3) 2 H1
0 (0; L)

9 .

Proof. By virtue of (2.22), (2.12), and since !(x3) � !; 8 x3 2 [0; L] , we have

B(�u; �u) � � c

Z
!�[0;L]

X
i6=j

h
N
i
(x3) h1j(�x) + B

i
(x3) h2j(�x) +

�
� 0
i
(x3) + x1N

0

i
(x3)

+ x2B
0

i
(x3)

�
h3j(�x) + N

j
(x3) h1i(�x) + B

j
(x3) h2i(�x) +

�
� 0
j
(x3) + x1N

0

j
(x3)

+ x2B
0

j
(x3)

�
h3i(�x)

i2
d�x + 2� c

Z
!�[0;L]

3X
i=1

h
N
i
(x3) h1i(�x) + B

i
(x3) h2i(�x)

+
�
� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3i(�x)

i2
d�x :

Consequently, usual binomial inequalities imply that

1

� c
B(�u; �u) � 1

2

Z
!�[0;L]

X
i6=j

h�
� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�
h3j(�x)

+
�
� 0
j
(x3) + x1N

0

j
(x3) + x2B

0

j
(x3)

�
h3i(�x)

i2
+

Z
!�[0;L]

3X
i=1

h�
� 0
i
(x3) + x1N

0

i
(x3)

+ x2B
0

i
(x3)

�
h3i(�x)

i2
d�x � Cj�uj2

L
2(0;L)9 ; (2.24)
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where we have used that h
ij
2 L1(
) ; i; j = 1; 3 , which follows from (2.10)�(2.12),

(2.16), and from the regularity of the curve ��( � ) and of the Darboux frame.

We denote, for simplicity, z
i
= � 0

i
+ x1N

0

i
+ x2B

0

i
; i = 1; 3 .

We make an algebraic computation:

1

2

h
(z1 h32 + z2 h31)

2 + (z2 h33 + z3 h32)
2 + (z1 h33 + z3 h31)

2
i

+
3

2
(z21 h

2
31 + z22 h

2
32 + z23 h

2
33)

=
1

2
z21 h

2
32 +

1

2
z22 h

2
31 +

1

2
z22 h

2
33 +

1

2
z23 h

2
32 +

1

2
z21 h

2
33 +

1

2
z23 h

2
31 + z1 z2 h31 h32

+ z2 z3 h32 h33 + z1 z3 h31 h33 +
3

2
(z21 h

2
31 + z22 h

2
32 + z23 h

2
33)

=
1

2
(z21 + z22 + z23)(h

2
31 + h232 + h233) +

1

2
(z1 h31 + z2 h32)

2

+
1

2
(z1 h31 + z3 h33)

2 +
1

2
(z2 h32 + z3 h33)

2 :

Hence, we can infer from (2.24) that

1

c �
B(�u; �u) � 1

4

Z
!�[0;L]

3X
i=1

�
� 0
i
(x3) + x1N

0

i
(x3)

+ x2B
0

i
(x3)

�2 3X
i=1

h23i(�x) d�x � Cj�uj2
L
2(0;L)9 : (2.25)

Examining (2.11), we see that, under the assumption of the theorem,

3X
i=1

h23i =
1

(1� �(x3) x1 � a(x3) x2)2

3X
i=1

t
i
(x3)

2 =
1

(1� �(x3) x1 � a(x3) x2)2

� � > 0 (2.26)

for some � > 0 , since j�tj
IR

3 = 1 .

Let us also note that, owing to (2.1), we have

Z
!�[0;L]

�
� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3)

�2
d�x

= meas(!)j�
i
j2
H

1

0
(0;L) +

Z
!

x21 dx1 dx2 jNi
j2
H

1

0
(0;L) +

Z
!

x22 dx1 dx2 jBi
j2
H

1

0
(0;L) ;

i = 1; 3 ; (2.27)

with meas(!) denoting the Lebesgue measure in IR2 of the domain ! .
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By combining ( 2.25)�(2.27), we end the proof. 2

Lemma 2.3 If B(�u; �u) = 0 , then �u = 0 .

Proof. If B(�u; �u) = 0 , we obtain for a.e. �x 2 
 that

N
i
(x3) h1i(�x) + B

i
(x3) h2i(�x) + z

i
h3i(�x) = 0 ; 8 i = 1; 3 ; (2.28)

N
i
(x3) h1j(�x) +B

i
(x3) h2j(�x) + N

j
(x3) h1i(�x) + B

j
(x3) h2i(�x)

+ z
i
h3j(�x) + z

j
h3i(�x) = 0 ; i 6= j ; i; j = 1; 3 ; (2.29)

with z
i
as in the previous proof.

Multiply (2.29) by h3i(�x) and (2.28) by h3j(�x) (j is �xed!) and subtract. Then

multiply (2.28) by h3i(�x) for i = j , and add to the previous results, obtained for

i 6= j . We get:

~�( �N; �B) + z
j

3X
i=1

h23i(�x) = 0 ; 8 j = 1; 3 ; (2.30)

with ~�( �N; �B) some linear mapping of the vectors �N; �B . Taking into account (2.11)

and j�tj
IR

3 = 1 , (2.30) gives:

� 0
i
(x3) + x1N

0

i
(x3) + x2B

0

i
(x3) = �( �N; �B) ; 8 i = 1; 3 ; (2.31)

with � a clear modi�cation of ~� .

For any i , we give to (x1; x2) 2 ! three di�erent pairs of values, and we obtain

a linear di�erential system in normalized form with zero initial conditions, since

�
i
; N

i
; B

i
2 H1

0 (0; L) ; 8i = 1; 3 . Then, the unique solution is identically zero and

this gives that �u = 0 in 
 as claimed. Here, we have again used that the coe�cients

h
ij

are bounded. 2

Proof of Theorem 2.1. Assume, by contradiction, that for any " > 0 there is

u
"
= (� "1 ; �

"

2 ; �
"

3 ; N
"

1 ; N
"

2 ; N
"

3 ; B
"

1 ; B
"

2 ; B
"

3) 2 H1
0 (0; L)

9 such that

0 � B(u
"
; u

"
) � "ju

"
j2
H

1

0
(0;L)9 :

Without loss of generality, we may take ju
"
j
H

1

0
(0;L)9 = 1 , and we denote by û the

weak limit in H1
0 (0; L)

9 , on a subsequence of fu
"
g .

The weak lower semicontinuity of the quadratic form gives

0 � B(û; û) � 0 ;

i.e. B(û; û) = 0 and û = 0 by Lemma 2.3.

We get that u
"
! 0 weakly in H1

0 (0; L)
9 and, by compact imbedding, strongly in

L2(0; L)9 . We use Lemma 2.2 for u
"
, and we pass to the limit in the inequality

(2.23) to obtain that

" � B(u
"
; u

"
) � c1ju"j2

H
1

0
(0;L)9 � c2ju"j2

L
2(0;L)9 = c1 � c2ju"j2

L
2(0;L)9 :

8



Consequently, we obtain the contradiction

0 � c1 ;

which ends the proof of Theorem 2.1.

According to the linear elasticity system and to our assumptions, the displacement

�u , de�ned by (2.9), is obtained as the solution of the variational equation:

B(�u; �v) =

Z



f
`
(�x)
�
�
`
(x3) + x1M`

(x3) + x2D`
(x3)

� ��� det J(�x)
��� d�x

+

Z
@


g
`
(�x)
�
�
`
(x3) + x1M`

(x3) + x2D`
(x3)

� ��� det J(�x)
���
q
�
i
(�x) gij(�x) �

j
(�x) d�; (2.32)

where (�
i
) is the unit outside normal to @
 and the summation convention is used.

We recall that ( ~f
i
)
i=1;3 and (~g

i
)
i=1;3 are the body forces, respectively the surface

tractions, acting on the curved rod ~
 , and we have denoted by �f = (f
`
)
`=1;3 and

�g = (g
`
)
`=1;3 the quantities:

�f(�x) = ~f(F �x) ; �g(�x) = ~g(F �x) : (2.33)

The coe�cients gij(�x) are obtained as (Ciarlet [10])

�
g
ij
(�x)
�
i;j=1;3

= J(�x)T J(�x) ; (2.34)

�
gij(�x)

�
i;j=1;3

=
�
g
ij
(�x)
�
�1

i;j=1;3
: (2.35)

The right-hand side in (2.32), and the relations (2.33)�(2.35), are due to a standard

change of variable ~
 7! 
 in the integrals

Z
~


~f
i
~v
i
d~x +

Z
~�

~g
i
~v
i
d~� ; (~v

i
)
i=1;3 2 H1(~
)3 ; ~v

i
= 0 on F

�
!(0) [ !(L)

�
;

which express the action on the rod ~
 .

It should be noted that at least Lipschitz regularity is necessary for the part of @


where the tractions are nonzero, which represents a hypothesis on the �variation� of

the cross sections !(x3) . If ! is constant and @! is smooth, then (2.32) is fully

justi�ed.

Corollary 2.4 Under the above assumptions, equation (2.32) has a unique solution

in H1
0 (0; L)

9 .

9



3 A direct approach

In this section, we study general rods associated with the three-dimensional curve
�� : [0; L] ! IR3 ; �� 2 W 2;1(0; L)3 , with ��00 piecewise continuous, parametrized

with respect to the arc length which are no more assumed to lie on some given

surface. In this setting, it is possible to de�ne the Frenet frame with normal and

binormal vectors in L1(0; L)3 . However, this property is not enough for the study

of the corresponding geometric transformation de�ning the rod and of the associated

di�erential equations, and that is why the standard assumption in the literature is
�� 2 C3[0; L]3 .

We de�ne a new Lipschitzian local frame, simple to use in numerical computations,

and requiring just �� 2 W 2;1(0; L)3 . Our construction also applies to curves from

C1[0; L]3 , but in this case the local basis vectors are in C[0; L]3 . In particular,

we notice that all the vectors of this basis have the same regularity as the tangent

vector.

For any s 2 [0; L] , we de�ne as in Section 2, �t(s) = ��0(s) , the unit tangent vector

to �� , and �t 2 W 1;1(0; L)3 .

Let fs
i
g ; i = 0; N + 1 , be a partition of the interval [0; L] with s0 = 0 and s

N+1 =

L , and with a su�ciently small norm in the sense that

����t(si) � �t(s
i+1)

���
IR

3

< Æ ; 8 i = 0; N ; (3.1)

with Æ > 0 �small�. This can be obtained due to the assumed uniform continuity of
�t( � ) in [0; L] .

For i = 0; N + 1 , we de�ne the vectors

~n(s
i
) =

8<
:
�
0;��03(si); �02(si)

�.p
�03(si)

2 + �02(si)
2 if

�
�02(si); �

0

3(si)
�
6= (0; 0) ;�

0; �01(si); 0
�.����01(si)

��� otherwise :
(3.2)

We have: ���~n(si)
���
IR

3

= 1 ; ~n(s
i
) ? �t(s

i
) ; i = 0; N + 1 : (3.3)

We can also assume that the angle between ~n(s
i
) ; ~n(s

i+1) is acute, i.e. that

h~n(s
i
) ; ~n(s

i+1)i � 0 ; i = 0; N : (3.4)

This can simply be achieved by changing ~n(s
i+1) into �~n(s

i+1) , if necessary, and

iterating the process from s1 to s
N+1 . We denote by �n(s

i
) the thus obtained

vectors.

On each interval [s
i
; s

i+1] , we build the function

�m
i
(s) = �n(s

i
) +

s � s
i

s
i+1 � s

i

h
�n(s

i+1) � �n(s
i
)
i
; i = 0; N : (3.5)

10



Clearly, �m
i
(s

i
) = �n

i
(s

i
) ; �m

i
(s

i+1) = �n
i
(s

i+1) , and the function �m(s) = �m
i
(s) ; s 2

[s
i
; s

i+1] , is Lipschitz in [0; L] . Moreover, we have

��� �mi
(s)
���
IR

3

�
p
2

2
; 8 s 2 [0; L] ; 8 i = 0; N : (3.6)

Inequality (3.6) is a consequence of elementary geometric arguments in the triangle

with two unit edges �n(s
i
) ; �n(s

i+1) and with an acute angle, using (3.4). We just

notice that j �m
i
(s

i
)j
IR

3 is the length of the line segment connecting arbitrary points

on the �basis� of this triangle with its �top� point, whence (3.6) easily follows.

Assume, for the moment, that �m(ŝ) is collinear with �t(ŝ) , for some ŝ 2 [0; L] .

Since j�t(ŝ)j
IR

3 = 1 , we get from (3.5) that

�n(s
i
) +

ŝ � s
i

s
i+1 � s

i

h
�n(s

i+1) � �n(s
i
)
i
= �

��� �mi
(ŝ)
���
IR

3

�t(ŝ) ; (3.7)

where i is �xed such that ŝ 2 [s
i
; s

i+1] . We multiply (3.7) by �t(ŝ) and apply (3.6),

the triangle inequality, and the Cauchy�Schwarz inequality, to obtain that

p
2

2
�

�� �m
i
(ŝ)
���
IR

3

�
�
1 � ŝ � s

i

s
i+1 � s

i

� ����t(ŝ) � �t(s
i
)

���
IR

3

+
ŝ � s

i

s
i+1 � s

i

����t(ŝ) � �t(s
i+1)

���
IR

3

� Æ : (3.8)

Here, we have also used (3.1) and (3.3).

As (3.8) is a contradiction for Æ �small�, we infer that �m(s) and �t(s) are linearly

independent vectors for any s 2 [0; L] . We thus can apply the Schmidt orthogonal-

ization process to them and construct:

~n(s) = �m(s) �
D
�m(s) ; �t(s)

E
�t(s) ; (3.9)

�n(s) = ~n(s)
.
j~n(s)j

IR
3 ; s 2 [0; L] : (3.10)

Notice that ~n(s) 6= (0; 0; 0) due to the linear independence and, moreover, j~n(s)j
IR

3 �
constant > 0 due to its continuity.

This shows that �n(s) as de�ned by (3.9), (3.10) has the same smoothness as �t(s)

since �m(s) is Lipschitzian. We have proved:

Theorem 3.1 If �� 2 C1[0; L]3 (W 2;1(0; L)3) then �n 2 C[0; L]3 (W 1;1(0; L)3) ,

and j�n(s)j
IR

3 = 1 ; h�n(s); �t(s)i = 0 ; s 2 [0; L] . The vector function �b = �t ^ �n has

the same regularity properties and completes the local frame.

Remark. There are alternative ideas for the construction of normal vectors �n . For

instance, starting with a smooth regularization ��
"
of �� , to use the Frenet frame

for ��
"
and the Schmidt orthogonalization for the pair �t ; �n

"
, with �n

"
the normal

11



corresponding to ��
"
. However, the procedure given in Theorem 3.1 seems to be

more appropriate for numerical implementation.

Remark. In the case �� 2 C1[0; L]3 , Theorem 3.1 provides a nondi�erentiable

local frame, which is not su�cient for the geometrical description and the solution

of the di�erential equations associated to curved rods. However, it is simple to see

that, even for rods with �corners� (for instance a rectangular thin frame of metal),

one can provide a description of ~
 as in (2.2)�(2.4) with �� smooth, since we allow

the cross sections !( � ) to be nonconstant � see (2.1). Taking into account the

di�culty of the asymptotic theory for curved rods, Trabucho and Viaño [15, � 38],

when the thickness of the rod tends to zero, the reparametrization of a rod with

corners via smooth �� may become very complicated, or hypothesis (2.1) may be

violated, etc. We shall analyze this question in a subsequent work.

Remark. With the local basis provided by Theorem 3.1, the same arguments as

in Section 2 work for proving the coercivity, and the deformation of the curved rod

is computed in a similar way. It is only here that the piecewise continuity of ��00 is

necessary.

4 Numerical examples

We have tested both modelling approaches indicated in this paper on a large class

of examples involving various geometrical shapes for the line of centroids, various

cross sections and several types of applied forces.

As three-dimensional curves, we have considered the spiral

��(t) =

�
cos

tp
2
; sin

tp
2
;

tp
2

�
; (4.1)

lying on the cylinder x21 + x22 = 1 and clamped at the endpoints,

T1 = � �p
2
; T2 =

�p
2
; (4.2)

T1 = 0 ; T2 = 8 �
p
2 : (4.3)

The example (4.1), (4.2) was also discussed by Arunakirinathar and Reddy [3],

and by Chapelle [7], by using the Frenet frame, while our method is based on the

Darboux frame, as explained in Section 2.

Another form of the line of centroids (a �decreasing� spiral) is given by

��(t) =

�
� (6� � t)2

20
cos t ; � (6� � t)2

20
sin t ; t

�
; t 2 [0; 4�] ; (4.4)

which is inspired by the modern access to the new dome-shaped cupola of the Re-

ichstag in Berlin. In this case, we have tested the direct geometrical approach

12



from Section 3, although it is clearly possible to de�ne a surface ( a paraboloid)

including �� as given by (4.4). Notice, as well, that the parametrization (4.4) is

not with respect to the arc length, and the standard reparametrization is given by

s(0) = 0 ; s0 = j��0j
IR

3 ; ��1(t) = ��(s�1(t)) . While this relation is di�cult to integrate,

in general, we remark that in the direct approach of Section 3, just ��01 =
��0=j��j

IR
3 is

needed, which is very easy to obtain.

Our choice of cross sections includes:

a) � disk of radius 0:3 centered in the points of ��( � ) :

x21 + x22 � 0:32 ;

b) � elliptical crown, centered in the points of ��( � )

0:32 � x1

1

2

+
x2

16

2

� 0:52 ;

c) � rectangle with dimension 0:6� 0:2 centered in the points of ��( � ) .
The curved rods described above were �subjected� to distributed forces of the fol-

lowing types:

� torsional force

f(x1; x2; x3) = (� x2; x1; 0) ; x3 2
�
� �p

2
;
�p
2

�
; (4.5)

� torsional force in two opposite directions

f(x1; x2; x3) =

8><
>:

(� x2; x1; 0) ; x3 2
h
� �p

2
; 0
i
;

(x2;� x1; 0) ; x3 2
h
0;

�p
2

i
;

(4.6)

� pushing in one or two opposite given directions

f(x1; x2; x3) = (0; 0; 1) ; x3 2
�
� �p

2
;
�p
2

�
; (4.7)

f(x1; x2; x3) =

8>><
>>:

(0; 0; 1) x3 2
�
T1;

T1 + T2

2

�
;

(0; 0;� 1) x3 2
�
T1 + T2

2
; T2

�
;

(4.8)

f(x1; x2; x3) =

�
(0; 0;� 1000) ; x3 2 [2�; 3�] ;

(0; 0; 0) otherwise ;
(4.9)

� tangential forces

f(x1; x2; x3) =

8>><
>>:

��0(x3) ; x3 2
�
T1;

T1 + T2

2

�
;

� ��0(x3) ; x3 2
�
T1 + T2

2
; T2

�
;

(4.10)
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� normal forces

f(x1; x2; x3) = �n(x3) ; (4.11)

where �n( � ) is computed from the Darboux frame, i.e. is given by the normal to

the cylinder containing ��( � ) , in the points of the curve ��( � ) . We also mention

that, in all cases where the Darboux frame was applied, the computation of �t ; �n ; �b

and of the quantities det J(�x) ; h
ij
(�x) ; a(x3) ; �(x3) ; c(x3) was performed exactly,

by using Mathematica. The same holds for all the graphical representations. For

the method developed in Section 3, direct numerical calculations have been done to

obtain the above parameters in the discretization points.

In Table 1, we have collected details about the geometrical and mechanical data

assumed in the examples:

Table 1

Example Interval Force Section Curve Scaling

1 (4.2) (4.5) a) (4.1) 50

2 (4.2) (4.6) a) (4.1) 500

3 (4.3) (4.8) a) (4.1) 0.2

4 (4.2) (4.8) a) (4.1) 50

5 (4.2) (4.7) b) (4.1) 50

6 (4.2) (4.5) b) (4.1) 50

7 (4.3) (4.10) a) (4.1) 0.05

8 (4.2) (4.10) a) (4.1) 50

9 (4.3) - (4.10) a) (4.1) 0.05

10 (4.2) - (4.10) a) (4.1) 50

11 (4.2) (4.11) a) (4.1) 10

12 (4.2) - (4.11) a) (4.1) 10

13 (4.3) - (4.11) a) (4.1) 30

14 (4.3) (4.11) a) (4.1) 30

15 (4.4) (4.9) c) (4.4) 300

The Lamé constants were in all the examples �xed as � = 50 ; � = 100 . For

Example 6, we have also represented (in the last two �gures entitled Section 1 and

14



Section 2) the deformation of the cross section in two points, corresponding to the

division points i = 50 and i = 100 . In all the examples, the interval [T1; T2] on

which ��( � ) is de�ned was divided in 200 equal subintervals, i.e. i = 50 and i = 100

correspond to the �rst quarter and to the middle of the curved rod. The scalings

used for the various �gures are intended to obtain a clearer graphical representation,

and the procedure is equivalent to the multiplication of the force by the given factor,

due to the linearity of the equations. In the �gures for Section 1 and Section 2, the

scalings are 20, respectively 10. Notice that the shear and the torsion e�ects are

not represented, since this would require 3D �gures. Our aim in the numerical

simulation was to test the modelling approach, and all experiments have produced

meaningful results from a mechanical point of view. We have avoided the well-

known �locking problem� appearing in the numerical approximation of arches, rods

and shells, Chenais and Paumier [8], Arunakirinathar and Reddy [3], Chapelle [7],

Pitkäranta and Leino [16], by choosing a very �ne division of [T1; T2] in comparison

with the dimension of the cross sections, i.e. by taking �large� cross sections.

Consequently, we have used standard piecewise linear, continuous �nite elements

on [T1; T2] . If V
m
; m = 200 , is the discrete subspace associated to H1

0(T1; T2) ,

then V 9
m

is associated to H1
0 (T1; T2)

9 , and its �nite element basis is constructed in

a canonical way. The rigidity matrix is sparse, and the number of unknowns in the

obtained linear algebraic system (corresponding to (2.32)) was 1791. The integrals

over the cross sections, appearing in the coe�cients, were computed by a change of

variable to polar coordinates, which reduced all the cases to various rectangles and,

then, by classical interpolation methods. Since the dimension was not very big, the

algebraic linear system was solved by the Gaussian elimination method, which is

known to be very stable. In all the computed examples, we have noticed that the

vectors �Nm

�
T1 + T2

2

�
and �Bm

�
T1 + T2

2

�
(the deformations of the �normal� and

�binormal� vectors, in the middle of the rod) are orthogonal.

Finally, we point out that, although the theoretical results allow variable cross sec-

tions, nonzero surface tractions, and not centered line of centroids (see (2.1)), these

elements were not implemented in the numerical examples in order to keep the

complexity of the computations at a reasonable level.
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