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Abstract

Finite-di�erence analysis of transmission lines including lossy materials and

radiation e�ects leads to a complex eigenvalue problem. A method is presented

which preserves sparseness and delivers only the small number of interesting

modes out of the complete spectrum. The propagation constants are found

solving a sequence of eigenvalue problems of modi�ed matrices with the aid of

the shift-and-invert mode of the Arnoldi method. In an additional step non

physical Perfectly Matched Layer modes are eliminated.
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1 Introduction

Microwave circuits are used in mobile communications, radio links, sensors, and

automotive systems. The commercial applications cover the microwave and lower
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millimeter-wave range, i.e., the frequencies between 1 GHz and about 80 GHz. For

special applications in radioastronomy and optoelectronic devices also higher fre-

quencies up to 1 THz and at 300 THz are used, respectively.

Basic elements of microwave integrated circuits are their transmission lines, whose

propagation behavior has to be determined accurately. The propagation behavior

of the transmission lines can be calculated by applying Maxwell's equations to the

in�nitely long homogeneous transmission line structure and solving an eigenvalue

problem [1].

For numerical treatment, the computational domain has to be truncated by electric

or magnetic walls or by a so-called absorbing boundary condition simulating open

space. A very e�cient formulation for the latter case is the Perfectly Matched

Layer (PML). These layers consist of an arti�cial material with complex anisotropic

material properties [2]. The PML provide absorbing properties for any frequency,

polarization and angle of incidence.

In the presence of losses or absorbing boundary conditions the matrix of the eigen-

value problem becomes complex. The system matrix is sparse and of high order.

This requires e�cient solvers that preserve sparseness and deliver only the small

number of interesting modes out of the complete spectrum.

In earlier time- and memory-consuming methods [1] and [3] the complete set of

eigenvalues and of corresponding propagation constants was computed and sorted

in order to select the desired propagation constants. In the previous papers [4]

(lossless case) and [5] (lossy case including PML) the authors presented a method

which avoids the computation of all eigenvalues to �nd the few required propagation

constants. The sparse-storage technique is applied. The computing times increase

with the frequency and using PML. A feasible computation is possible for frequencies

up to 600 GHz. In order to reduce the numerical e�ort and to simulate circuits for

higher frequencies a new method is presented here.

Using an estimation for the maximum value of the real part and a preset maxi-

mum value of the imaginary part the region containing the interesting propagation

constants is de�ned as a rectangle F̂ . Using conformal mapping relations between

the plane of propagation constants and the plane of eigenvalues the rectangle F̂ is

mapped into an area F which is bounded by parabolas. A method is presented

which �nds the eigenvalues of this area solving a sequence of eigenvalue problems of

modi�ed matrices with the aid of the shift-and-invert mode of the Arnoldi method

[6].

Special attention is paid to the so-called Perfectly Matched Layer boundary condi-

tions, which in�uence the mode spectrum in a signi�cant way [7]. Particularly, the

problem of detecting the desired modes out of the mode spectrum is treated.
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2 Boundary Value Problem

The structures under investigation can be described as an interconnection of in-

�nitely long transmission lines, which have to be longitudinally homogeneous. The

junction, the so-called discontinuity, may have an arbitrary structure. Cross-sectio-

nal planes, the so-called ports, are de�ned on the transmission lines. The whole

structure may be surrounded with an enclosure. A three-dimensional boundary

value problem can be formulated using the integral form of Maxwell's equations in

the frequency domainI
@


~H � d~s =

Z



|![�] ~E � d~
;
I
[


([�] ~E) � d~
 = 0; (1)

I
@


~E � d~s = �
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|![�] ~H � d~
;
I
[


([�] ~H) � d~
 = 0; (2)

~D = [�] ~E; ~B = [�] ~H; [�] = diag (�x; �y; �z) ; [�] = diag (�x; �y; �z) ; (3)

in order to compute the electromagnetic �eld. The PML's are �lled with an arti�cial

material with complex anisotropic material properties. Therefore, the quantities are

diagonal complex tensors. At the ports p the transverse electric �eld ~Et(zp) is

given by superposing transmission line modes ~Et;l(zp). On all other parts of the

computation domains surface the tangential electric or magnetic �eld is assumed to

be equal zero.

~Et(zp) =

m(p)X
l=1

wl(zp) ~Et;l(zp); ~E � ~n = 0 or ~H � ~n = 0: (4)

The transverse electric mode �elds are the solutions of an eigenvalue problem for

the transmission lines. Starting from the Maxwellian equations (1), (2) each of

these equations is solved on a three-dimensional grid. Using the Finite Integration

Technique [8] in the frequency domain (FDFD for Finite-Di�erence method in the

Frequency Domain) [9] Equations (1), (2) are transformed into a set of Maxwellian

grid equations

ATDs=�
~b = |!�0�0DA�~e; BDA�~e = 0; (5)

ADs~e = �|!DA�
~b; ~BDA�

~b = 0: (6)

The vectors ~e and ~b contain the components of the electric �eld intensity and the

magnetic �ux density of the elementary cells, respectively. The diagonal matrices

Ds=�, DA�, Ds, and DA� contain the information on cell dimension and material.

A, B, and ~B are sparse and contain the values 1, �1, and 0 only. Eliminating the

components of the magnetic �ux density from the two equations of the left-hand

side of (5), (6) we get the system of linear algebraic equations

(ATDs=�D
�1
A�
ADs � k20DA�)~e = 0; k0 = !

p
�0�0; (7)

which have to be solved using the boundary conditions. k0 is the wavenumber in

vacuum.
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3 Eigen Value Problem

Because the transmission lines are longitudinally homogeneous any �eld can be

expanded into a sum of so-called modal �elds which vary exponentially in the lon-

gitudinal direction
~E(x; y; z) = ~E(x; y)e�|kzz: (8)

A substitution of ansatz (8) into the system of linear algebraic equations (7) and the

elimination of the longitudinal electric �eld intensity components by means of the

electric-�eld divergence equation BDA�
~e = 0 (see (5)) gives an eigenvalue problem

C~e = ~e;  = �4 sin2(hkz) � �4(hkz)
2 = u+ |v: (9)

~e consists of components of the discretized eigenfunctions ~E. 2h is the length of

an elementary cell in z-direction. The sparse matrix C is in general nonsymmetric

complex. We can use the approximation sin(x) � x in (9) if we choose h to be small

enough, which is anyway necessary to get small discretization errors. The relation

between the propagation constants kz and the eigenvalues  is nonlinear, and can

be expressed as

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (10)

A propagation constant kz and its corresponding eigenfunction is called a mode. We

are interested only in the modes with the smallest magnitude of imaginary part, but

possibly with large real part of their propagation constant.

For our method we must limit the search for propagation constants by a maximum

value kf of their real part. A reasonable estimation of this maximum value is derived

for the lossy case including PML for inhomogeneously �lled waveguides in [5]

<(kz) � kf = !<(
p
�m�m): (11)

�m and �m are properties of the material that yields the largest value of the right-

hand side of Equation (11). Using a maximum value kf of the real part and a preset

maximum value �m of the imaginary part of the propagation constant the region

containing the interesting propagation constants is de�ned as a rectangle F̂ (see Fig.

(2)) bounded by the lines

� = �kf and � = ��m: (12)

We consider the plane of eigenvalues (-plane) and the plane of propagation con-

stants (kz-plane). The conformal mapping relations between the - and the kz-plane

are (see (9) and (10))

u = �4h2(�2 � �2); v = 8h2��: (13)
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Using the inverse of the mapping (13) the lines (12) of the kz-plane are transformed

into the parabolas (see Fig. (1), (2))

v = �4hkf

q
u+ 4h2kf

2 and v = �4h�m
p
�u+ 4h2�m2; (14)

respectively. That means, we have to �nd all eigenvalues of the region bounded by

the parabolas (14).

The eigenvalues are obtained as follows. q points

P̂k(�k; �m); k = 1(1)q; �1 > 0; �q = kf ; (15)

are de�ned on the interval [0; kf ] of the line � = �m. The distance between the

points have not to be equidistant. The points P̂k are transformed into the points

Pk of the -plane. They are located on the parabola ((14), right formula). The q

circles Ck of the -plane

(u+mk)
2 + v2 = rk

2; rk =
p

(=(Pk))2 + (mk �<(Pk))2; k = 1(1)q; (16)

with

m1 = 0; mk =
(<(Pk+1))

2 � (<(Pk))
2 + (=(Pk+1))

2 � (=(Pk))
2

2j<(Pk+1)� <(Pk)j
; (17)

centered on the u-axis cover the region bounded by the parabolas (14).

l points Qi are de�ned on the periphery of Ck in order to �nd all eigenvalues, located

in the circle Ck. The matrix C is extended by the diagonal matrix Q (see (19)) which

consists of the set E with the l complex elements Qi. The q eigenvalue problems

( �C �mkI)~e = ( �mk)~e; k = 1(1)q; (18)

with �C =

�
Q

C

�
; Q = diag(Q1; :::; Ql); (19)

are solved with the aid of the implicitly restarted Arnoldi method. The number m

of eigenvalues to be computed must be l on the �rst call to the Arnoldi procedure.

m is raised by l for so long until at least one value Qi 2 E was found. Separating the

new values on each eigenvalue problem k, we are sure to have found all eigenvalues

which are located in the corresponding circles Ck. Applying (13) the circles Ck are

transformed into Cassini curves Ĉk

(�2 + �2)2 �
mk

2h2
(�2 � �2) =

rk
2

16h4
�

mk
2

16h4
; (20)

which cover the rectangle F̂ containing all desired propagation constants.

In general the Arnoldi method does not converge using the regular mode for our

eigenvalue problem. Thus, the shift-and-invert mode is applied with the solution of

systems of linear algebraic equations looking for eigenvalues of largest magnitude.
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We use the combined unifrontal/multifrontal method [10] for the solution of the

partly ill-conditioned nonsymmetric complex linear algebraic equations.

We note, that the assumption sin(x) � x in (9) yields the map (see (13)) between

the circles (16) of the -plane and the well-known Cassini curves (20) in the kz-plane.

But, if we abandon this assumption, we receive a corresponding mapping between

the circles and curves which can be interpreted as modi�ed Cassini curves.

4 Detecting PML Modes

We use the PML in order to calculate the eigen modes of open waveguide structures.

Without the PML the �nite di�erence computational domain has to be surrounded

by either electric or magnetic walls. In this case we would have a huge number of

box modes, which are not an intrinsic property of the waveguide. Since the total

number of modes is constant, the PML cannot remove any mode but only shift them

into other parts of the eigenvalue spectrum. We want to distinguish these PML-

modes from the desired ones. The PML-modes are characterized by their high power

concentration in the PML area. Thus, to eliminate the PML-modes we calculate

the magnitude of the power �ow of each computed mode in the PML (P (PML)), in

the waveguide region (P (WG)), and in the total computational domain (P ):

P = P (PML) + P (WG)

=

Z


(PML)

�
~Et � ~H�

t;m

�
� d~
 +

Z


(WG)

�
~Et � ~H�

t;m

�
� d~
 : (21)

A mode is speci�ed as PML-mode if

r(PML) =
P (PML)

P
> � ; (22)

with values � = 0:2; : : : ; 0:6, found empirically. This criterion works for a wide

frequency range. In the case of very high frequencies, where the physical modes are

strongly radiating, the relation r(PML) of the physical modes and the PML modes

approach each other and the criterion may accept even some PML modes. In this

case, one has to consult additional information, e. g. �eld density plots, in order to

decide which eigenvalues belong to the desired guided modes.

5 Numerical Example

As an example we have calculated the modes of a coplanar waveguide with �nite

substrate height, and �nite ground metallization according to Figure (3 a), for the

frequencies f = 10(10)800 GHz. As the waveguide is symmetrical, only its right-

hand half must be discretized. The computational domain consists of the cross
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section of the waveguide, the ground metallization and the PML regions. The PML's

are bounded with electric walls, while the symmetry plan is formed as a magnetic

wall. The structure is subdivided into nxy = nxny elementary cells. A graded mesh

of nx = 89, ny = 109 cells, including 12-cell PML regions is used in the given

example, so the dimension of the eigenvalue problem is 2nxny � nb = 17955. nb is

determined by the number of cells �lled with perfectly conducting material.

Figures (1), (2) refer to the frequency f = 300 GHz. Three modes were identi�ed as

guided wave modes, according to (22) with � = 0:35. The corresponding propagation

constants are characterized by a +. To go into detail these modes are the parallel

plate line mode (PPL), the coplanar waveguide mode (CPW), and a higher order

mode (HM10) that is caused by the �nite substrate height. In Figure (3 b) a �eld

pattern plot of the CPW mode is given, which illustrates the leakage due to lateral

radiation of this mode. Figure (4) shows the e�ective permittivity of the di�erent

physical modes over the whole frequeny range.

It should be mentioned, that the PML modes can be well separated for frequencies

up to 500 GHz using criterion (22). For higher frequencies some PML modes with

r(PML) < 0:35 arise and one has to separate them by checking the �eld distribution.

Concerning the sequencing technique for the eigenvalue search, one can say that,

especially for high frequencies, the numerical e�ort could be reduced considerably

in comparison to the method presented in [5].
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Figure 1: -plane
            

Figure 2: kz-plane
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Figure 3: Lateral radiation of a coplanar waveguide
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Figure 4: Propagating modes of a coplanar waveguide
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