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Abstract

We review recent results established in the literature via the optimal control

approach to di�erential equations, and we show that a systematic study of

general variational inequalities associated to fourth-order operators can be

performed by similar methods.

1 Introduction

Optimal control approaches associated to domain decomposition methods or to �c-

titious domains methods are well-known in the scienti�c literature devoted to nu-

merical methods for di�erential equations. They may be viewed as applications of

the general least squares minimization procedure, and we quote the works of Lions

and Pironneau [11], Glowinski, Lions and Pironneau [6], Neittaanmäki and Tiba

[13], for recent advances in this area.

It turns out that in certain important examples, arising for instance in mechanics,

standard variational formulations based on the minimization of energy can be ad-

vantageously replaced by appropriate optimal control formulations that yield the

existence and the uniqueness of the solution under low regularity conditions on the

coe�cients, i.e. on the geometric parameters of the problem. Other useful conse-

quences of this new approach concern general results on the continuous/di�erentiable

dependence of the solution on these parameters and, even, explicit solutions (in the

case of arches) obtained via duality theory in optimal control. These theoretical de-

velopments are important in the setting of shape optimization problems in structural

mechanics.

In Section 2, we shall give a brief presentation of some recently obtained results along

these lines, following the works of Sprekels and Tiba [14], [15], [16], Ignat, Sprekels

and Tiba [10], Arn utu, Langmach, Sprekels and Tiba [1]. Although complete

proofs are not included for the sake of brevity, most relevant arguments are carefully

described, and precise quotations of the literature are indicated.

In Section 3, we shall study variational inequalities associated to fourth-order di�er-

ential operators, emphasizing the applications to obstacle-type problems for clamped

arches and plates. We underline that our approach is constructive and easily imple-

mented using piecewise linear �nite elements in the computations.

Finally, we notice that our optimal control variational formulation for di�erential

systems provides, via the corresponding Pontryagin maximum principle, a nonstan-

dard decomposition of the original equations, which is at the core of our argument.
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2 The optimal control approach

We start with a simpli�ed model (Bendsoe [3]) of a clamped plate, with variable

thickness u 2 L
1(
)+ , and with normalized mechanical constants,

�(u3�y) = f in 
 ; (2.1)

y =
@y

@n
= 0 on @
 : (2.2)

Here, 
 is a bounded Lipschitzian domain in IR
N (for N = 2 , the plate model is

obtained), f 2 L
2(
) denotes the load and y 2 H

2

0
(
) the de�ection.

We also consider the distributed control problem (" > 0 is a �small� parameter),

Min

8<
: 1

2"

Z
@


�
@y

@n

�2

d� +
1

2

Z



` h
2
dx

9=
; ; (2.3)

subject to

�y = ` g + ` h in 
 ; (2.4)

y = 0 on @
 : (2.5)

Here ` = u
�3 2 L

1(
)+ , and g is de�ned by �g = f in 
 ; g = 0 in @
 .

If 0 < m � u �M a.e. in 
 then ` � M
�3 a.e. in 
 , and the coercivity of (2.3)

gives the existence of a unique optimal pair [y" ; h"] 2 [H2(
)\H1

0
(
)]�L

2(
) . It
is unique by the strict convexity.

The Pontryagin maximum principle for the unconstrained optimal control problem

(2.3)�(2.5) is given by (2.4), (2.5), and, for some p" 2 H
1(
) , by:

�p" = 0 in 
 ; (2.6)

p" =
1

"

@y"

@n
on @
 ; (2.7)

p" + h" = 0 a.e. in 
 : (2.8)

The pair [0 ; �g] gives the cost 1

2

Z



` g
2
dx in (2.3), independently of " > 0 . This

shows that [y" ; h"] are bounded with respect to " > 0 since ` � M
�3

> 0 a.e. in


 , as noticed before. Moreover, again due to (2.3),
@y"

@n
! 0 strongly in L

2(@
) .

From (2.6), (2.8), we get that h" is harmonic, which is preserved by passing to the

limit in the weak topology of L
2(
) . A simple limitting argument in (2.3)�(2.5),

and the de�nitions of ` ; g , give:

Theorem 2.1 The solution of (2.1), (2.2) is the limit of the optimal states y" in

H
2(
) \H

1

0
(
) weak, for "! 0 .
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This result was established in the paper of Arn utu, Langmach, Sprekels and Tiba

[1]. It is also valid for simply supported plates, i.e. with (2.2) replaced by

y = �y = 0 on @
 : (2.2)'

The above discussion shows that the original fourth-order boundary value problem

(2.1), (2.2) is equivalent with (2.4), (2.5), with h some harmonic mapping in L
2(
) ,

and with the extra condition
@y

@n
= 0 on @
 .

Assume that `n ! ` weakly� in L
1(
) , and denote by yn the solution of (2.1),

(2.2) associated to un = `
�

1

3

n , and by hn the corresponding harmonic mappings

appearing in (2.4). It is a standard argument to see that fyng is bounded in

H
2

0
(
) and that fhng is bounded in L

2(
) ; moreover, they weakly converge, on

a subsequence, to the limits y 2 H
2

0
(
) , respectively h 2 L

2(
) . The di�culty

to pass to the limit in the equations is related to the products u
3

n�yn or `n hn

appearing in (2.1), respectively (2.4), and to the weak convergence. However, as

hn ; h are harmonic, the solid mean property gives that hn(x) ! h(x) ; 8 x 2 
 ,

and the Egorov theorem shows that hn ! h strongly in L
s(
) ; 8 s < 2 . Then, we

clearly get that `n hn ! ` h weakly in L
2(
) , and we can pass to the limit in (2.4).

Notice that the weak limit of un is in general di�erent from `
�

1

3 , but we have:

Theorem 2.2 Assume that `n ! ` weakly� in L
1(
) . If y = limyn in H

2

0
(
)

weak, then it satis�es the equation

�(`� 1�y) = f in 
 : (2.1)'

This result gives the �continuous� dependence of the solution on the coe�cient in

(2.1), in the weak� topology of L
1(
) . It was established in Sprekels and Tiba

[15] and has important consequences in the existence theory for shape optimization

problems or in homogenization problems for plates.

We now consider the di�erentiability with respect to the coe�cient ` :

Theorem 2.3 The mappings ` 7! y and ` 7! h are Gâteaux di�erentiable from

L
1(
) into H

2(
) and L
2(
) , respectively, and the directional derivatives at ` in

the direction v 2 L
1(
) satisfy:

��y = ` �h + v(h + g) in 
 ; (2.9)

�y =
@�y

@n
= 0 on @
 ; (2.10)

��h = 0 in 
 : (2.11)

The solution [�y ; �h] of (2.9)�(2.11) is unique in H
2

0
(
)� L

2(
) .

This result was established in Ignat, Sprekels and Tiba [10], and an essential in-

gredient in the necessary estimates is the observation that the decomposition of
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(2.1) provided by (2.4) has the orthogonality property �y?h , in the L
2(
) -inner

product. Theorem 2.3 allows the writing of the optimality conditions in shape

optimization problems for plates, without di�erentiability assumptions on the co-

e�cients. The obtained gradient can be used in numerical experiments. We also

stress that the approximation of (2.1), (2.2) via (2.3)�(2.5) is a simple and e�cient

method for the computation of solutions to plate equations. Numerical examples

related to Theorems 2.1�2.3 can be found in the work of Arn utu, Langmach,

Sprekels and Tiba [1].

Remark. The variant of the control variational approach given by (2.3) includes

the penalization in the cost of one of the boundary conditions (2.2). In the sequel,

we brie�y describe another variant based on the use of constrained control problems.

With this aim, we now consider the Kirchho��Love model for clamped arches:

1Z
0

�
1

Æ
(v0

1
� c v2) (u

0

1
� c u2) + (v0

2
+ c v1)

0 (u0
2
+ c u1)

0

�
ds

=

1Z
0

(f1 u1 + f2 u2) ds ; 8 u1 2 H
1

0
(0; 1) ; 8 u2 2 H

2

0
(0; 1) : (2.12)

Above, ' : [0; 1] ! IR
2 is the parametrization of a smooth clamped arch with the

curvature denoted by c , and with the (constant) thickness given by
p
Æ . The map-

pings v1 2 H
1

0
(0; 1) ; v2 2 H

2

0
(0; 1) are the tangential and the normal components

of the deformation, while [f1 ; f2] is a similar notation for the load, in the local sys-

tem of axes. A thorough presentation of the model for ' 2 C
3(0; 1) via Dirichlet's

principle and Korn's inequality may be found in Ciarlet [5].

Let � : [0; 1] ! IR denote the angle between the tangent vector to the arch (given

by '
0 ) and the horizontal axis. If ' is smooth, then �

0 = c . We also consider the

orthogonal matrix

W (t) =

 
cos �(t) sin �(t)

� sin �(t) cos �(t)

!
(2.13)

and the functions ` ; h ; g1 ; g2 constructed from f1; f2 2 L
2(0; 1) as follows:

g1 = Æ ` ; � g
00

2
= h ; g2(0) = g2(1) = 0 ; (2.14)

�
`

h

�
(t) = �

tZ
0

W (t)W�1(s)

�
f1(s)

f2(s)

�
ds : (2.15)

We de�ne the constrained control problem

Min

8<
: 1

2 Æ

1Z
0

u
2
ds +

1

2

1Z
0

(z0)2 ds

9=
; ; (2.16)
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subject to u 2 L
2(0; 1) ; z 2 H

1

0
(0; 1) , such that the mappings [v1 ; v2] given by

�
v1

v2

�
(t) =

tZ
0

W (t)W�1(s)

�
u+ g1

z + g2

�
(s) ds (2.17)

satisfy v1(1) = v2(1) = 0 in the sense that

1Z
0

W
�1(s)

�
u(s) + g1(s)

z(s) + g2(s)

�
ds =

�
0

0

�
: (2.18)

We underline that relations (2.13)�(2.18) are meaningful under the mere assumption

that � 2 L
1(0; 1) . Then, [v1 ; v2] 2 L

1(0; 1)2 represent the mild solution of the

Cauchy problem (written formally)

v
0

1
� c v2 = u + g1 in [0; 1] ; (2.19)

v
0

2
+ c v1 = z + g2 in [0; 1] ; (2.20)

v1(0) = v2(0) = 0 : (2.21)

The constraint (2.18) is a terminal state constraint, expressed as a control constraint,

since the state system (2.17) is in explicit form and the matrix W (t) is nonsingular.

We denote by [uÆ ; zÆ] 2 L
2(0; 1)� H

1

0
(0; 1) the unique optimal control associated

to (2.16)�(2.18). It exists due to the coercivity of the cost functional and since the

pair [�g1 ; �g2] is clearly admissible. We also denote by [vÆ
1
; v

Æ
2
] 2 L

1(0; 1)2 the

optimal state corresponding to [uÆ ; zÆ] via (2.17).

Theorem 2.4 If � 2 W
2;1(0; 1) , then [vÆ

1
; v

Æ
2
] is the solution of (2.12).

We brie�y indicate the argument:

We get c 2 W
1;1(0; 1) , and (2.17) can be written in the strong form (2.19)�(2.21).

The same holds for (2.15).

The Euler equation associated to (2.16)�(2.18) is

1

Æ

1Z
0

uÆ � ds +

1Z
0

z
0

Æ �
0

ds = 0 ; (2.22)

for any [� ; �] 2 L
2(0; 1)�H

1

0
(0; 1) such that

1Z
0

W
�1(s)

�
�(s)

�(s)

�
ds =

�
0

0

�
: (2.23)

For any u1 2 H
1

0
(0; 1) ; u2 2 H

2

0
(0; 1) , we introduce

~� = u
0

1
� c u2 2 L

2(0; 1) ; (2.24)
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~� = u
0

2
+ c u1 2 H

1

0
(0; 1) ; (2.25)

and we have, consequently, that

�
u1

u2

�
(t) =

tZ
0

W (t)W�1(s)

�
~�(s)
~�(s)

�
ds : (2.26)

As u1(1) = u2(1) = 0 , we see that [~� ; ~�] given by (2.24), (2.25), satisfy (2.23) and

may be used in (2.22), whence

0 =
1

Æ

1Z
0

�
(vÆ

1
)0 � c v

Æ
2
� g1

��
u
0

1
� cu2

�
ds+

1Z
0

�
(vÆ

2
)0 + c v

Æ
1
� g2

�
0
�
u
0

2
+ c u1

�
0

ds

=
1

Æ

1Z
0

�
(vÆ

1
)0 � c v

Æ
2

��
u
0

1
� c u2

�
ds +

1Z
0

�
(vÆ

2
)0 + c v

Æ
1

�
0
�
u
0

2
+ c u1

�
0

ds

�
0Z

0

`

�
u
0

1
� c u2

�
ds �

1Z
0

h

�
u
0

2
+ c u1

�
ds ; (2.27)

where we have used (2.19), (2.20) and (2.14). By partial integration in the last two

terms in (2.27), and by (2.15), we recover from (2.27) the equation (2.12).

Remark. Theorem 2.4 shows that the constrained control problem (2.16)�

(2.18) is a weak formulation of the Kirchho��Love model under very low geometric

regularity assumptions. Other arguments along these lines can be found in Sprekels

and Tiba [16], Ignat, Sprekels and Tiba [10].

We also notice that the constraint (2.18) is a�ne and �nite dimensional. This allows

a complete solution of the control problem via duality theory, Barbu and Precupanu

[2]. In the work of Ignat, Sprekels and Tiba [10] the dual control problem giving

the (two-dimensional) Lagrange multiplier is explicitly derived, and the results are

used for numerical experiments with Lipschitzian arches, i.e. for ' 2 W
1;1(0; 1)2 .

Moreover, by writing a Pontryagin-type maximum principle for the problem (2.16)�

(2.18), continuity and di�erentiability of the solution [vÆ
1
; v

Æ
2
] with respect to the

parameter � 2 L
1(0; 1) can be studied. In this way, in Ignat, Sprekels and Tiba

[10], a complete theoretical and numerical analysis of shape optimization problems

associated with Kirchho��Love arches is performed.

Remark. For the plate equation (2.1), (2.2), the corresponding constrained control

problem is

Min

8<
:1

2

Z



` h
2
dx

9=
; ;

subject to (2.4), (2.5) and to the constraint

@y

@n
= 0 on @
 : (2.28)
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We notice that (2.28) is a�ne, but in�nite dimensional. A dual control problem

(unconstrained!) can be obtained, but it remains an in�nite dimensional optimiza-

tion problem. Consequently, it is not possible to �nd an explicit solution, in general,

and a standard treatment is to employ the penalization of (2.28) in the cost, as in

(2.3).

3 Variational inequalities for fourth-order di�eren-

tial operators

We shall show that the technique presented in the previous section can also be

applied to establish existence results for general variational inequalities.

We examine �rst the case of clamped plates subjected to unilateral conditions, since

it is more intuitive. We de�ne the control problem with state constraints,

Min

8<
: 1

2"

Z
@


�
@y

@n

�2

d� +
1

2

Z



` h
2
dx

9=
; ; (3.1)

subject to

�y = ` g + ` h in 
 ; (3.2)

y = 0 on @
 ; (3.3)

y 2 K : (3.4)

The notations are the same as in Section 2, and K � H
2(
) is a closed convex subset

such that K \H2

0
(
) 6= ; . Then, the pair [ŷ ; `�1�ŷ � g] , with ŷ 2 K \H2

0
(
) , is

clearly admissible, and the corresponding cost is independent of " > 0 .

We denote by [y" ; h"] 2 H
2(
) � L

2(
) , the unique optimal pair of (3.1)�(3.4)

(recall that ` �M
�3

> 0 in 
 ). We have:

1

2"

Z
@


�
@y"

@n

�2

d� +
1

2

Z



` h
2

" dx �
1

2

Z



` (`�1�ŷ � g)2 dx : (3.5)

Let [z ; v] 2 H
2(
)� L

2(
) be another admissible pair, i.e. satisfying (3.2)�(3.4).

We consider admissible variations of the type

[y" ; h"] + � [z � y" ; v � h"] 2 K (3.6)

with � 2 [0; 1] . By comparing the optimal cost with that associated to (3.6), we

get the inequality

0 � 1

"

Z
@


@y"

@n

�
@z

@n
� @y"

@n

�
d� +

Z



` h" (v � h") dx : (3.7)
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We introduce again the auxiliary function p" 2 H
1(
) given by (2.6), (2.7), and

we underline that this is not the adjoint mapping from control theory, since it does

not take into account the state constraint (3.4). A general discussion about this

approach in state-constrained control problems, in a di�erent setting, may be found

in Bergounioux and Tiba [4].

Inequality (3.7) may be rewritten as

0 �
Z
@


p"

�
@z

@n
� @y"

@n

�
d� +

Z



` h" (v � h") dx : (3.8)

Multiplying by p" in the equation for z � y" and integrating by parts, we obtain

�
Z



p" ` (v � h") dx = �
Z



p"�(z � y") dx = �
Z
@


p"

@

@n
(z � y") d� : (3.9)

Combining (3.8) and (3.9), we can infer that

0 �
Z



` (p" + h") (v � h") dx (3.10)

for any control v admissible for (3.1)�(3.4). Relation (3.10) corresponds to the

Pontryagin maximum principle and can be reformulated as

0 �
Z



(p" + h") (�z � �y") dx : (3.11)

Consider now the special case z 2 H
2

0
(
) . We notice:

�
Z



p"�(z � y") dx =

Z



rp"r(z � y") dx �
Z
@


p"

@

@n
(z � y") d�

=
1

"

Z
@


�
@y"

@n

�2

d� �
Z



�p"(z � y") dx +

Z
@


@p"

@n
(z � y") d�

=
1

"

Z
@


�
@y"

@n

�2

d� � 0 : (3.12)

By (3.11), (3.12), we infer that

0 �
Z



h"(�z � �y") dx (3.13)

for z 2 H
2

0
(
) admissible. From (3.2), (3.13), and the de�nitions of ` ; g , one easily

obtains thatZ



u
3�y"�(y" � z) dx =

Z



f (y" � z) dx 8 z 2 K \H
2

0
(
) : (3.14)

8



From (3.5), it is obvious that fh"g is bounded in L
2(
) , and by virtue of (3.2),

fy"g is bounded in H
2(
) \H

1

0
(
) . Again (3.5) shows that

@y"

@n
! 0 strongly in L

2(@
) : (3.15)

Then, we have y" ! y
� weakly in H

2(
) , and y
� 2 K\H2

0
(
) . By using the weak

lower semicontinuity of quadratic forms, we can take " ! 0 in (3.14) and �nally

arrive at the result:

Theorem 3.1 The mapping y
� 2 K\H2

0
(
) is the unique solution to the variational

inequalityZ



u
3�y��(y� � z) dx �

Z



f (y� � z) dx 8 z 2 K \ H
2

0
(
) : (3.16)

Remark. The above argument yields the existence of the solution to (3.16)

and its approximation by the control problem (3.1)�(3.4). Uniqueness is obtained

immediately, by contradiction.

Remark. Important examples entering into the formulation (3.16) are the obstacle

problem, obtained for

K = fz 2 H
2(
) \ H

1

0
(
) ; a � z � b a.e. 
g ;

or the variational inequality studied by Glowinski et al. [7] via a direct method,

corresponding to

K = fz 2 H
2(
) \ H

1

0
(
) ; a � �z � b a.e. in 
g :

Here, a ; b are some given mappings such that K is nonvoid. If the boundary

conditions are changed, or if unilateral conditions on the boundary are considered,

then other subspaces of H
2(
) have to be taken into account, and the argument

proceeds similarly. A variational inequality for a partially clamped plate was studied

by an ad-hoc method in Sprekels and Tiba [14].

Remark. Variational inequalities are obtained by imposing constraints in the

variational formulation of the corresponding equation, Lions and Stampacchia [12].

By comparing Theorem 3.1 with Theorem 2.1, we see that this remains valid for

the control variational method, as well.

We now continue the study of variational inequalities associated to Kirchho��Love

arches. We consider the state constrained control problem given by (2.16), (2.17),

and

[v1 ; v2] 2 C ; (3.17)

where C � L
1(0; 1)2 is a closed convex set, compatible with the null initial con-

ditions. Notice that (2.18) is no longer imposed and that relations (2.16), (2.17)

9



correspond to a partially clamped arch (in t = 0 ), while (3.17) will yield the uni-

lateral conditions on the arch, as we shall see in the sequel.

All the notations have the same signi�cance as in Section 2; however, the control

space for z is V = fw 2 H
1(0; 1) ; w(0) = 0g , and the de�nitions of g1 ; g2 are

replaced by

g1 = Æ ` ; � g
00

2
= h ; g2(0) = g

0

2
(1) = 0 ; (3.18)�

`

h

�
(t) =

Z
1

t

W (t)W�1(s)

�
f1(s)

f2(s)

�
ds : (3.19)

As we have no constraints on the control variables u ; z , admissibility may be as-

sumed in connection with (3.17), and we obtain again the existence of a unique

optimal quadruple denoted by uÆ ; zÆ ; v
Æ
1
; v

Æ
2
, in L

2(0; 1)� V � C .
We take admissible control variations of the type

[uÆ ; zÆ] + �[u � uÆ ; z � zÆ] ; � 2 [0; 1] ; (3.20)

with [u ; z] any admissible control. A simple argument yields the Euler inequality

0 � 1

Æ

1Z
0

uÆ(u � uÆ) ds +

1Z
0

z
0

Æ(z � zÆ)
0

ds : (3.21)

Under the regularity assumption W 2 W
2;1(0; 1)4 (as in Theorem 2.4), we shall

show that v
Æ
1
; v

Æ
2
are the solutions of a general variational inequality.

Fix any [w1 ; w2] 2 C \ [V � U ] , with U = fz 2 H
2(0; 1) ; z(0) = z

0(0) = 0g . The
corresponding controls, generating w1 ; w2 via (2.16), (2.17), are

� = w
0

1
� c w2 � g1 2 L

2(0; 1) ; (3.22)

� = w
0

2
+ c w1 � g2 2 V ; (3.23)

(due to the regularity of W ). Moreover, vÆ
1
; v

Æ
2
satisfy (2.19)�(2.21).

Using (3.22), (3.23), and (2.19)�(2.21), in (3.21), we obtain

0 � 1

Æ

1Z
0

�
� g1 + (vÆ

1
)0 � c v

Æ
2

��
w
0

1
� c w2 � (vÆ

1
)0 + c v

Æ
2

�
ds

+

1Z
0

�
� g2 + (vÆ

2
)0 � c v

Æ
1

�
0
�
w
0

2
+ c w1 � (vÆ

2
)0 � c v

Æ
1

�
0

ds : (3.24)
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We compute �rst the terms:

� 1

Æ

1Z
0

g1

�
w
0

1
� c w2 � (vÆ

1
)0 + c v

Æ
2

�
ds +

1Z
0

g
00

2

�
w
0

2
+ c w1 � (vÆ

2
)0 � c v

Æ
1

�
ds

= �
1Z

0

`

�
w
0

1
� c w2 � (vÆ

1
)0 + c v

Æ
2

�
ds �

1Z
0

h

�
w
0

2
+ c w1 � (vÆ

2
)0 � c v

Æ
1

�
ds

= �
1Z

0

f1 (w1 � v
Æ
1
) ds �

1Z
0

f2(w2 � v
Æ
2
) ds : (3.25)

In (3.25), we have repeatedly integrated by parts, and we have made use of (3.18),

(3.19). Combining (3.24) and (3.25), we have proved the following result:

Theorem 3.2 If W 2 W
2;1(0; 1)4 , then v

Æ
1
; v

Æ
2
given by (2.16), (2.17), (3.17)

satisfy

1

Æ

1Z
0

�
(vÆ

1
)0 � c v

Æ
2

��
(vÆ

1
)0 � c v

Æ
2
� w

0

1
+ c w2

�
ds

+

1Z
0

�
(vÆ

2
)0 + c v

Æ
1

�
0
�
(vÆ

2
)0 + c v

Æ
1
� w

0

2
� c w1

�
0

ds

�
1Z

0

f1(v
Æ
1
� w1) ds +

1Z
0

f2(v
Æ
2
� w2) ds ; (3.26)

for a.e. [w1 ; w2] 2 C \ [V � U ] .

Remark. If the convex C includes null conditions at the point t = 1 , then we

obtain a variational inequality for a clamped arch. Theorem 3.2, compared with

Theorem 2.4, is an example of how the spaces (for the state and for the control)

should be adapted when di�erent boundary conditions are imposed. The method

introduced in this section allows for general unilateral conditions and various bound-

ary conditions. We conjecture that it also allows the extension of Theorem 2.2 to

the case of variational inequalities. Concerning the di�erentiability properties dis-

cussed inTheorem 2.3, it is known that, generally, they are not valid for variational

inequalities.

Remark. In the case of fourth-order ordinary di�erential equations, the works

of Hlavacek, Bock and Lovisek [8], [9], Sprekels and Tiba [16] discussed variational

inequalities associated to beam models. Theorem 3.2 seems to be a �rst result

in the literature related to arches submitted to unilateral conditions. The problem

(2.16), (2.17), (3.17) is a new weak formulation of the variational inequality (3.26),

valid for W 2 L
1(0; 1)4 .
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We close this presentation with some short examples. If C has the form:

C = L
1(0; 1) � fv2 2 L

1(0; 1) ; � � v2 � � a.e. in (0; 1)g ;

then we have an obstacle problem for the normal component of the de�ection (�

and � are some given mappings such that C allows null initial conditions for v2 ).

Obstacle problems for the tangential component or for both components are obtained

similarly.

Under the smoothness hypothesis W 2 W
2;1(0; 1)4 , the solution [vÆ

1
; v

Æ
2
] is in

V � U , and we can impose from the beginning that C is a closed convex subset of

V � U . One situation of interest is given by:

C =
n
[v1 ; v2] 2 V � U ; v1(1) � r

o
with r 2 IR a given constant. This represents a partially clamped arch with a

unilateral condition on the tangential component in the end point t = 1 . Similar

formulations may easily be written for the normal component or for both, or in other

points, and so on.
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