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AUTOMATIC BANDWIDTH CHOICE AND 
CONFIDENCE INTERVALS IN NONPARAMETRIC 

REGRESSION 

Michael H. Neumann 
Institut fiir Angewandte Analysis und Stochastik, 

Berlin 

Abstract 
In the present paper we combine the issues of bandwidth choice and construction of con-
fidence intervals in nonparametric regression. We modify the fa-consistent bandwidth 
selector of Hardle, Hall and Marron (1991) such that it is appropriate for heteroscedastic 
data and show how one can adapt the bandwidth g of the pilot estimator m9 in a reasona-
ble data-dependent way. Then we compare the coverage accuracy of classical confidence 
intervals based on kernel estimators with data-driven bandwidths. We propose a method 
to put undersmoothing with a data-driven bandwidth into practice and show that this 
procedure outperforms explicit bias correction. 
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1. INTRODUCTION 

We assume observations 

Yi =m(xi)+si, i= l, ... ,n, 

where the errors Si are independently, not necessarily identically distributed with zero 
mean and variance v( xi) . The nonrandom design points xi are assumed to be spaced 
on the unit interval [O, 1], x1 < x2 < · · · < Xn. 

We aim at defining an interval estimator for the regression function m at some interior 
point x 0 of this interval. As a starting point we estimate m( x 0 ) by a Gasser-Muller 
kernel estimator mh(x0), see Gasser and Muller (1979) [3]. 
There exists already a very developed theory for confidence intervals based on kernel 
estimators with nonrandom bandwidths. Under assumptions on the decay of the band-
widths it is shown that these methods are consistent and, moreover, there are rates for 
the errors in coverage probability calculated. Hall (1991) [8] for confidence intervals for 
a density and Hall (1992) [9] for intervals in regression with i.i.d. errors found optimal 
rates for the bandwidths involved in the confidence interval procedure by optimizing the 
coverage accuracy. On the other hand, the majority of the available literature does not 
take into account the bandwidth choice that is necessary for practical applications. Some 
exceptions we are aware of are papers of Faraway and Jhun (1990) [2] for density estima-
tion and Faraway (1990) [1] for the regression case, where the bandwidth as well as the 
quantile for confidence bands are obtained on the basis of the same bootstrap sample. 
However, the authors do not provide any rigorous result on the real coverage probability 
in comparison to the prescribed level. 
Usually the first step in constructing asymptotic confidence intervals consists in the defini-
tion of an asymptotically normally distributed pivotal quantity. There are two commonly 
used methods to deal with the bias of the initial estimator mh( xo), undersmoothing and 
explicit bias correction on the basis of yet another kernel estimator. In Hall (1991 and 
1992) [8], [9] it is shown that the undersmoothing method leads to a better coverage accu-
racy. An analogous result is proved in Neumann (1992) (15] for the case of not necessarily 
identical error distributions, again for kernel estimators with nonrandom bandwidths. 
However, it does not seem to be clear at all, how we could choose an undersmoothed 
bandwidth in a reasonable way from the data. The problem is, that only rates but not 
the corresponding constants are known for bandwidths optimizing the coverage accuracy, 
so that we have no hint how to choose them for a fixed sample size n. So it seems that 
there is no reliable substitute for bandwidths chosen by some criterion connected to the 
risk behavior of the corresponding estimator. 
The practical bandwidth choice will be the main goal of the present paper. Whereas 
we can apply the bias correction method with usual bandwidth selectors at all stages, 
we replace the pure undersmoothing method by a two-step procedure that yields the 
same rates for the coverage accuracy. As an estimator of the optimal global bandwidth 
we employ here with some minor modifications the yin-consistent bandwidth selector of 
Hardle, Hall and Marron (1991) [5], [HHM91] hereafter, based on plug-in estimates of the 
integrated variance and the integrated squared bias of mh . To make this method fully 
data-driven, we propose a method how the bandwidth of the pilot estimate m9 needed 
for the bias estimation can be optimally chosen from the data. 
The second step in getting confidence intervals is the recognition of the distributions of 
the abovementioned pivotal quantities. A simple approach is given by a normal approxi-
mation, which provides rates of at best O((nht 1l 2 ), as shown in several papers. In the 
present paper we restrict our considerations exclusively on a distribution recognition via 
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Edgeworth expansions for the pivotal quantities. Recently, the application of bootstrap 
techniques in general, and in the context of heteroscedastic error distributions the wild 
bootstrap proposed by Hardle and Mammen (1990) [7] in particular, has become quite 
popular, see also the paper of Hardle, Huet and Jolivet (1992) [6]. However, in Neumann 
(1992) [15] it is shown that we obtain via Edgeworth expansions the same rate for the 
recognition of the distribution. Since on the other hand the quantiles via Edgeworth ex-
pansions are explicitly given, there seems to be no need for the computationally more 
involved bootstrap. 
We derive the quantiles on the basis of expansions for pivotal quantities with nonrandom 
bandwidths. The distributions of the pivotal quantities with data-dependent bandwidths 
are approximated on the basis of expansions for quantities with nonrandom bandwidths. 
We show that the resulting upper rate bound is the same up to a factor of order n6 for 
arbitrarily small o > 0 as we would obtain by the (formal) Edgeworth expansion of the 
pivotal quantity. 

2. A FULLY DATA-DRIVEN BANDWIDTH SELECTOR 

As already mentioned, all kernel estimators included in the procedure should be equipped 
with data-driven bandwidths. Although the coverage accuracy is the main criterion for 
the performance of our methods, we choose the bandwidths according to the risk behavior 
of the corresponding estimator, since a specific choice for confidence interval purposes 
seems to be unrealistic from the practical point of view. Since only the behaviour of 
mh at x0 influences the properties of the confidence interval, it seems to be on first sight 
reasonable to seek for an estimate of the locally optimal bandwidth. On the qther hand, 
we agree with Hardle and Bowman (1988) [4] who claim that the potential advantages 
of local adaptive bandwidth selection in the context of confidence intervals are not clear. 
Roughly speaking, the initial estimator mh(x0 ) will only serve as a vehicle to introduce 
a nondegenerate noise structure, whereas its bias will be corrected with the help of a 
second estimator m9 • On the other hand, since our methods are based on Edgeworth 
expansions of pivotal quantities with nonrandom bandwidths, we can expect a better 
coverage accuracy for intervals with random bandwidths that are very close to some 
fixed one. 
For fixed h, the mean squared error of mh(x0 ) = E W(x0 , h)iYi can be written as 
MSE(h) = Vh+B~, where Vh = E~=1 W(xo,h)tv(xi) and Bh = E~= 1 W(xo,h)im(xi)-
m(xo). 
We estimate Vh simply by 

(2.1) 

where 

(2.2) 

and where m denotes yet another kernel estimator. Anticipating the following results we 
remark that the consistency of the bandwidth selector considered in this section as well 
as of the confidence intervals in the next section require a higher degree of smoothness for 
m than the basic kernel estimator mh can exploit. We assume throughout the present 
paper that m is ( r + s) -times continuously differentiable and therefore we take m as a 
kernel estimator m1 with an ( r + s )-th order kernel and a bandwidth f, which is for 
simplicity chosen by cross-validation. 
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The bias B h will be approximated by an estimator of the form 
n 

(2.3) Bh,g = 2: W(xo, h)i mg(xi) - mg(xo)' 
i=l 

where m9 (x) is another kernel estimator with weights W(x,g)i based on an s-th order 
kernel w and a bandwidth g. 
Now we intend to modify the bandwidth selector of [HHM91] such that it takes into 
account the possible heteroscedasticity of the data. An even more important issue is the 
data-dependent choice of the bandwidth of the auxiliary estimator m9 , which is used for 
the estimation of the bias. 
We are going to estimate the bandwidth h0 that is optimal with respect to the mean 
integrated squared error (MISE) of mh, where the integration is because of boundary 
effects restricted to some interval { c, d] with 0 < c < d < 1 that should include for our 
purposes the point x0 • The MIS E splits up into an integrated variance part 

IV(h) = [t W(x, h)1v(x;) dx = f, [ W(x,h):dx v(x;) 
c i=l i=l c 

and an integrated squared bias part 

ISB(h) = [ (t, W(x, h);m(x,) - m(x)r dx. 

We estimate IV(h) analogously to (2.1) by 

JV(h) = f, [ W(x,h)1dx fi;. 
i=l c 

(2.4) 

Provided an appropriate choice of g, the quantity 

d(n )2 n 
ISB(h,g) = 1 ~W(x,h),m.9(x,)- m.9 (x) dx = '~' A(h,g);;YiY; 

with 

A(h,g)i; 

= [ (~w(x,h).W(x.,g); - W(x,g);) (~w(x,h)1 W(x1,g); - W(x,g);) dx, 

could already serve as an estimator of ISB(h). As remarked by [HHM91], such an 
estimator is biased due to the variance of the diagonal terms and therefore it is natural 
to estimate IS B( h) by 

n 

(2.5) ISB(h,g) = ISB(h,g) - 2: A(h,g)ii Vi. 
i=l 

An alternative approach in the framework of density estimation is proposed by Sheather 
and Jones (1991) [12], [16]. They recognize that the non-stochastic term. bias has the 
opposite sign to the bias due to the smoothing, and they choose the auxiliary bandwidth 
such that these terms cancel. However, an appropriate choke of this bandwidth requires 
the estimation of higher derivatives, and if enough smoothness is present to do this 
reasonably well, then we could use it in a different way to improve on the whole procedure 
at other stages. 
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Now we have with IV(h) + ISB(h,g) a pattern to estimate MISE(h), but it remains 
to fix an appropriate value of g. This problem was not solved in an entirely satisfactory 
way in [HHM91], and the authors conjectured that there is no substitute for trying some 
number of different g's. Assuming slightly more regularity than in [HHM91], namely 
m E C 2r+"[O, 1] instead of m E C 2rAr+"[O, 1], we obtain that the term of order O(n- 1 ) 

of the mean squared error of ISB(h,g) as an estimator of ISB(h) does not depend on 
g, whereas the smallest two of the remaining terms do. These terms can be used to get 
a reasonable, asymptotically optimal choice for g. 
The assumptions needed for the following lemma as well as for the assumptions in the 
sequel are given in the Appendix. 

Lemma 2.1. Assume (Aa), (ABw ). Then 

(i} E (18B(h,g) - ISB(h)f 
h4rC(h)n- 1 

+ 4h"' g2
' 1<;>.~ (1d m<,+•l( :l: )m(r)(") dx r 

+ 2h4'n-2g-(4r+t)1<; l (v(x )/d(x ))2 da: j (j W(r)(y)ii/'l(y + z) dy )'dz 

+ o(h4r(g2" + n-29-(4r+l))), 

where C(h) is bounded and Kr = f zrw(z) dz, A,, = f z"w(z) dz, 
{ii} 

1 

(
(4r + 1) t.(v(x)/d(x)) 2 J(f {jj(r)(y)iiJ(r)(y + z)dy) 2dz _2) r.+rr+r ( ( )) 

g opt = d n 1 + 0 1 . 
4s.X~(fc m(r+.s)(x)m(r)(x)dx)2 · 

Let g be any consistent estimator of 9opt , which satisfies at least 

P ( c ~ n1/(.s+2r+i/2)9 ~ c) = O(n-1) 

for some positive constants c and C. Now we define h as a measurable minimizer of - - -MISE(h,g) = IV(h) + ISB(h,g), whose existence is ensured by a Lemma of Jennrich 
(1969) [11]. 

Remark. Analogously to Theorem l in [HHM91] one can prove that 

h - h0 -- = Op (n-~), 
ho 

where fl. = 1/2 /\ s/(s + 2r + 1/2). 

The next point concerns the appropriate choice of the bandwidth g for the local bias 
estimator Bh,g· First we infer from Lemma 6.2 that 

...... J tz ( hz - Y y-1 ( ) Bh,g - Bh = w(z) Jo (r _ l)! m~r)(x0 + y) - m(r)(x0 + y) dy dz+ 0 p (n- 2g- 1
) 

holds. Since h ~ g holds for h and g of optimal orders, the task of estimating Bh is 
nearly equivalent to the estimation of m<r)(x0 ) by m~r>(x0). Because an optimal local 
bandwidt.h 9opt( x0 ) seems to be difficult to adapt, we intend to use an estimator of 
the optimal global bandwidth g~r,.s) in this case. Miiller and Stadtmiiller ( 1987) [13] 
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provided a nice idea to adapt such a quantity, which can be applied also in the case of 
heteroscedasticity. They observed that 

g~r,&) = Cr,&(w)C(m,v)n-:i(,.+1
•5+ 1 (l + o(l)) 

holds with some constant Cr,& that depends on the kernel function w but not on the 
unknown functions m and v. On the other hand, the optimal global bandwidth for an 
estimator of m itself with an ( r + s )-th order kernel w has the form 

g~o,r+a) = Co,r+a(w)C(m, v)n-:1H1•>+1 (1 + o(l)). -Now we can estimate g~o,r+a) by some asymptotically optimal bandwidth g~o,r+a), and 
then we obtain a consistent estimate of g~r,a) by 

g-. = Cr,a ( w) 
9
(0;+;> . c (-) 0 ' O,r+a W 

(2.6) 

what spares us the more involved direct estimation of the constant C(m, v). 

3. CONFIDENCE INTERVALS FOR m(xo) 

3.1. Construction principles for confidence intervals. All commonly used me-
thods to establish confidence intervals are based on the principle to estimate first m(x0 ) 

by an initial estimator m(xo) and to estimate then the distribution of m(xo) - m(xo). 
It will be distinguished between pivotal and nonpivotal methods. For the related problem 
of bootstrap confidence intervals in density estimation Hall (1992) [10] pointed out that 
pivotal methods, which are based on a quantity v- 1/ 2 ( J- 19) that contains an estimator 
V of the variance of J, should be preferred to nonpivotal methods, which are simply 
based on an estimation of the distribution of ( J _ 19) . Heuristically, this superiority seems 
to transfer to intervals based on Edgeworth expansions. If one reconstructs the unknown 
distribution, then one has to estimate the first cumulants of the quantity under considera-
tion. In case of non pivotal methods one estimates the cumulants of ( J-19) once, whereas 
in case of pivotal methods bias and variance of :0 are already estimated in a first step 
and one can easily take the influence of these estimates into account in the distribution 
recognition step. In the present paper we restrict ourselves to pivotal methods. 
The main problem with confidence intervals in nonparametric regression rests on the fact 
that a consistent estimator of m( x0 ) is necessarily biased. Strictly speaking, MIS E-
optimal estimators have bias and standard deviation of the same order. There are two 
common methods to deal with this problem, undersmoothing and subsequent bias correc-
tion. Hall (1991 and 1992) [8], [9] shows in situations closely related to ours that the first 
method leads to a better asymptotic coverage accuracy, at least in the case of nonrandom 
bandwidths. 
An important goal of the present paper is, to provide methods, where all bandwidths 
are chosen by the data in a reasonable way. The only available guideline for a favourable 
choice seems to be the risk behaviour of the corresponding estimators and, hence, the 
bandwidths we deal with are of MIS E -optimal order, which means that bias and stan-
dard deviation of the estimator can be expected to be of the same order. Therefore, we 
cannot apply the undersmoothing method in its pure form. 
In contrast, it is possible to construct a bias corrected pivotal quantity on the basis 
of MIS E -optimal kernel esti:i;nators by a normalization of the initial estimator with 
estimates of its bias and variance. Now it seems to be more natural to estimate the bias 
first and to divide then the corrected quantity by an estimator of its standard deviation. 

5 



It turns out that this method is equivalent to undersmoothing and, in accordance to the 
existing theory, we obtain a better coverage accuracy as by the first method. 

3.2. Asymptotic distributions of the pivotal quantities. As already announced, 
we consider the simple bias-corrected pivotal quantity 

T - mh(xo) - Bh,g - m(xo) - 2:: Wh,g,iCi + bh,g 
h,g - ---1;2 - ---1;2 vh vh (3.1) 

where i\ and Bh,g are defined by (2.1) and (2.3), respectively, and 
bh,g = 2:: W h,9 ,,;m(x,;) - m(x0 ) denotes the remaining bias. Further, we obtain a method 
equivalent to undersmoothing by estimating the whole variance of the numerator of Th,g 
instead of that of mh(x0 ). In this case the usual condition h ~ g, which is introduced 
to keep the variance of the bias estimator of smaller order than that of mh(x0 ), is no 
longer necessary and we optimize g with respect to the asymptotic coverage accuracy 
by choosing it of the same oder as h . Since there is no other guideline for doing this in 
practice, we set simply g = h, where h will be chosen later by some data-dependent 
rule. 
Note that the roles of Bh,g and Bh,h are very different. Whereas the quantity Bh,g in 
Th,g estimates the bias, the term Bh,h in Uh reduces only the non-stochastic part of 
mh(xo), which provides a new estimator mh(xo) - Bh,h with a squared bias of smaller 
order than its variance. 
With W h,i = W h,h,i and bh = bh,h we get the pivotal quantity 

(3.2) 2:: W h,ici + bh 
uh = -::::.112 

vh 
where f" h = 2:: w!,i~h. To obtain .knowledge about the asymptotic distributions of the 
pivotal quantities we intend to apply Edgeworth expansions as far as possible. For that 
we approximate the quantities of interest by certain smooth functions of random vectors. 
Using results of Skovgaard (1981 and 1986) [17], [18] we can prove then the validity of 
these (formal) expansions. To draw conclusions from the size of the difference of two ran-
dom variables to the difference of their cumulative distribution functions in a convenient 
way we introduce the following notation. 

Definition 3.1. Let {Yn} and {Zn} (Zn ~ 0 a.s.) be sequences of random variables, 
and let {in} be a sequence of positive reals. We write 

Yn = O(Zn, in) 

if 
P(IYnl > CZn) < Gin 

holds for n ~ 1 and some C < oo . 

This notion differs obviously from the usual OP, which would provide a similar property 
for an arbitrary constant i instead of Gin on the right-hand side. As a rule, for arbitrary 
o, .A > 0 we can conclude under sufficiently strong moment conditions on the distributions 
of the errors by Markov's and Whittle's inequalities that 

(3.3) 
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and 

(3.4) 

hold uniformly over an E lRn and arbitrary (n X n)-matrices An, where f = (e1 , ... ,en)'. 
Furthermore, we obtain similar assertions for random quantities an and An, which is 
made rigorous by Lemma 6.1 in the Appendix. 
The following lemma shows that 8 is an appropriate concept for the calculation of 
the cumulative distribution function of quantities that do not immediately admit an 
Edgeworth expansion. 

Lemma 3.1. Let {Xn} be a sequence of random variables that admit the Edgeworth 
expansion 

P(Xn < t) = 'P(t) + Pn( t)<f>(t) + 0( Un) 
with some polynomials Pn of bounded order with bounded coefficients. Further, we assume 
Yn = O(Tn1)')'n2) . Then 

P(Xn + Yn < t) = P(Xn < t) + 0( Un+ 1'nl + 1'n2) · 

The proof of this lemma follows immediately from the inequalities 

P(Xn < t-C1n1)-P(IYnl < C1n1) ~ P(Xn+Yn < t) ~ P(Xn < t+C1ni)+P(IYnl < C1n1) 

and the Lipschitz equicontinuity of the functions 'P(t) + Pn(t)<f>(t). 

4. COVERAGE ACCURACY OF THE CONFIDENCE INTERVALS 

4.1. Coverage accuracy in case of nonrandom bandwidths. First, we approxi-
mate the cumulative distribution functions of the pivotal quantities with nonrandom 

. bandwidths via Edgeworth expansions. The following proposition serves then as a star-
ting point to derive formulas for quantities with data-driven bandwidths. 

Proposition 4.1. Assume (Aa), (AE) and h = ~(n) and g = g(n) to be nonrandom. 
( i) If nh -t oo, g -t 0 and h / g -t 0 as n -t oo , then 

P(T11.,9 < t) = bh,g 2t2 + 1 
'P(t) - V11.1/2 </>(t) + Pn 6 <f>(t) 

_ ~ V11., 9 - Vh t<f>(t) + O(g211 + (h/g)2cr+1> + (nht1) 
2 V11. 

holds uniformly over each compact set t E T , where 
Pn = vh-312 Li W(xo, h)~ Ee~ and v h,g =Li w!,g,i v(xi). 

(ii) If nh -t oo and h -t 0 as n -t oo, then 

b 2t2 + 1 
P(U11. < t) = 'P(t)...., _1~2 ¢(t) + Pn 6 </>(t) + O(h211 + (nht 1) 

V11.11. I 

. . --3/2 -3 
holds uniformly over each compact set t E T, where Pn = v h,h E w h,i E er . 

The proof of this proposition is essentially the same as that of Proposition 3.2 in [15] and 
may be sketched, w.l.o.g. for (i), as follows. First we approximate Th,g by 
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Be Lemma 3.2 in [15] we have 

( 4.1) 

The vector Sn = ( I:i W h,g,iC:i, I:i W( x0 , h )~c:r) 
/ 

is a sum of independent random vectors 
and admits in accordance to results of Skovgaard (1986) an Edgeworth expansion with a 
residual term of order 0 ((nht 1- 0) for some o > 0. Since Th,g is a smooth function of 
Sn, we infer from Theorem 3.2 and Remark 3.4 in Skovgaard (1981) the validity of the 
formal Edgeworth expansion of 'h,9 • To identify the expansion, we must calculate the 
cumulants of Th,g, which has already been done in [15]. By Lemma 3.1 we conclude from 
( 4.1) that the expansions of Th,g and Th,g are identical up to a term of order 0( ( nh )-1), 

which completes the proof. 
For the rest of this subsection we assume that the nonrandom bandwidths h and g are 
chosen of the same order as h and g described above, namely h ~ n- 1/( 2r+l) and 
g ~ n-1/(2(r+a)+l). Now it is easy to see that 

bh,g = O(hrg.s), bh = O(hr+.s), 

and 

- -1/2 vh, v h,h ~ (nh) , 
Pn, Pn = O((nht 112

) 

Vh, 9 - Vh = O((h/gy+1 ). 
vh 

If u1_a denotes the (1- a:)-quantile of the standard normal distribution then we obtain 

( 
....... --1;2 ) p m(xo) E (mh(xo) - Bh,g - U1-a vh , 00) 

( 4.2) P(Th,g < U1-a) 

1 - a:+ O(ga + (nhtl/2) 
1 - a+ 0 ( n- ~< .. +'·>+1 + n- ~ .. +1) 

and 

( 4.3) 

-.-3/2 
E · · d - b ..... fT- 312 ~w( h)3 ..... 3 d .:::::: v....... ~=3w --3 st1matmg Pn an Pn y Pn = vh LI Xo, ivi an Pn = h LI h,h,i vi , 
respectively, and inverting the expansions from Proposition 4.1 we obtain confidence 
intervals 

(
..... ....... ( 2uLa + 1 ....... ) --1;2 ) Ih,g = mh(xo) - Bh,g - 1 + 6 Ph U1-a vh , 00 

and 
- ("" ...... 2uLa + 1::::: -;::.1/2 ) I;,, = mh(xo) - Bh,h - (1 + 6 P;,,)u1-a V h. , oo 

with the coverage probabilities 

( 4.4) 1- a:+ O(ga + (h/gt+1 + (nht 1
) 

1 - a:+ 0 ( n- ~< .. +•>+1) 
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and 

( 4.5) 1- o: + O(ha + (nht 1
) 

1 - o: + 0 ( n - ;:~~ ) 

The equations ( 4.4) and ( 4.5) are also proved in [15]. 

4.2. The effect of the bandwidth choice to the coverage accuracy. Now we 
are going to consider the performance of confidence intervals in practical situations, i.e. 
intervals based on pivotal quantities Th,9 and Uh involving estimators with data-driven 
bandwidths. These quantities do not immediately admit Edgeworth expansions, because 
they cannot be written as smooth functions of a sum of independent random vectors. 
We will use the approximations to Th,g and Uh given by Proposition 4.1 and treat the 
differences between Th,g and Th,g as well as between Uh and Uh by estimates based 
on 0. . 
First, we consider the order of approximation of the optimal bandwidth by their estimates 
considered in Section 2. From here let 5 > 0 be an arbitrarily small quantity, whose 
occurrence is explained by the application of Lemma 6.1. 

Lemma 4.1. Under (Aa) and (ABw) we have 

h - ho _ 0- ( 5 -A . -1) --y;;;-- nn ,n , 

where !::::,. = 1/2 /\ s/(s + 2r + 1/2). 

On the basis of Lemma 6.1 it is easy to see that 

d 
dg {Th,g} 

d 
dh {Th,g} 

and 

d~ {,Oh} 

From the decomposition 

T-.-. - 2uLa + 1 ,D-;; 
h,g 6 h (

T 2uLa + 1 -. ) + 2uLa + 1 (-. -. ) h,g - 6 Ph 6 Ph - Ph 

+ (T-.-. - T-- ) + (T-- - Th 9 ) h,g h,g h,g ' 

· we obtain by the Lemmas 3.1 and 4.1 and by ( 4.4) the following assertion. 

Theorem4.1. :Assume(Aa), (Au), (ABw), (AE) and 19-gol/go=O(n-7 ,n-1
) for 

some 'Y > 0 . Then 

P(m(x0 ) E Jh-.) ,g 
P(m(xo) E Ih0 , 90 ) + 0 (n5n-A) 
1 - o: + O(n- l<,.+'•>+1). 
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For confidence intervals based on the pivotal statistic Uh we can derive in an analogous 
way estimates for the error in coverage probability. However, since Uh yields for nonran-
dom h better rates than Th,g , the error due to the randomness of h i.s not automatically 
majorized by the error in coverage probability of the confidence interval with nonrandom 
bandwidths. Hence, we look for a better approximation to h. The idea is quite simple. 
Neglecting the effect of the estimator mi involved in the vi's, the pivotal statistic Uh 
depends only on O(nh) of the n observations, whereas the bandwidth selector uses all of 
them to a certain amount. We define another bandwidth h by a similar criterion, where 
only the observations in some neighborhood of x0 of size O(ho) are excluded, such that 
the quantity Uh is based on a set of observations disjoint from that used for the choice 
of h. Then the conditional distribution of Uh under h is the same as the unconditional 
distribution of Uh at the point h = h. Thus Proposition 4.1 remains valid for Uh as 
well, and because h approximates h better than h0 , we obtain a better estimate for the 
error in coverage probability as via an approximation to uh by uho . 
Let, for appropriate C, 

. 1 
.6.n = en- 4.-+1 ' 

-We replace MIS E( h, g) by 

( 4.6) M(h) = IV(h) + ISB(h), 

where IV(h) = Ei~J .. t W(x, h)t dx ct+ EiEJ.,. fed W(x, h)t dx v(xi) and 
ISB(h) = l=i,j¢J.,. A(h,go)i;YiY; + E(i,j):iEJ.,.orjEJ.,. A(h,go)i;EYiY; - EA(h,go)iiv(xi) 
and define h as a measurable function with 

h E argminhE.[ho/2,3ho/2]M(h) 

Let the constant C be chosen so large that Uh and M(h) are based on disjoint sets of 
observations. 
Now we can prove analogously to Lemma 4.1 that _ 

(4.7) lh- hi - ( I ) ho = 0 n 6 n -t:i. ' n -1 ' 

where .6.' = (1/2 + 1/(2(2r + 1))) /\ s/(s + 2r + 1/2). 
The additional factor n- 1/ 2( 2r+i) comes into play, because, roughly speaking, the num-- -her of the Yi's included in M(h) - MISE(h,g0 ) is O(n.6.n) rather than O(n) as in -MISE(h,g). 
Again by Lemma 6.1 we obtain 

d~ {Uh}= O(n6h- 1 ,n-1
) and d~ {ph} = O(n6h- 1(nht 1l2,n-1

). 

With the decomposition 

..... _ 2uLa + 1 ~ _(Tr;__ 2uLa + 1 ~ ) 2uLa + 1 (~ _ ~ ) (U-. _ U-) 
U:h 6 Ph - u·h 6 Ph + 6 Ph Ph + h h 

we obtain by (ii) of Proposition 4.1, ( 4. 7) and Lemma 3.1 the following theorem. 
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Theorem 4.2. Under (Aa ), (Au), (ABw) and (AE) we have 

P(m(xo) E I,J P(m(xo) E Jh) + 0 ( n° n-Li') 

1 - a: + 0 ( n - ;~~~ + n ° n - Li') . 

5. DISCUSSION 

1) Comparing the results of the Theorems 4.1 and 4.2 we see that the undersmoo-
thing method retains its superiority to the explicit bias-correction also in the case 
of data-dependent bandwidths chosen by the above criteria. 

2) Our estimates via the 8 -calculations seem to be on first sight somewhat rough 
and there arises the question whether we would obtain better estimates by formal 
Edgeworth expansions of the pivotal quantities Th-. and Uh, respectively. Apart 
from the fact that the validity of these expansioii~ is not immediately clear,· it 
turns out that we would obtain the same rates as given by the Theorems 4.1 
and 4.2 with exception of the factor n° . To see this, expand Uh in the Taylor 
series 

-. - (h - h)2 

uh = uh + (h - h) u~1h=h + 2 u~1h=h· , 

where h* is between h and h. The third term on the right-hand side is of 
negligible order. All arguments can be conditioned on h , since the conditional 
distribution of uh is equal to the uncondi~ional distribution of uh at the point 
h = h. If we follow the proof of ( 4. 7), we see that the leading tertn of order 
h0 n-Li' of h - h is given by 

LieJ .. Wi(e~ - v(xi)) + L(i,J):iEJ,.orjEJ .. A(h,go)i.;(m(xi)e; + eim(x;)) 
-M"(h) 

On the other hand, we have 

Uh
l m~(xo) 

= ...... 1/2 vh 
mh(xa)V~ 

2v-;12 , 
which depends mainly on }i's with i E Jn and has an order of magnitude of 
O(h01

). Therefore, the second term of the above Taylor series contributes a term 
of order n-Li' to the first cumulant of Uh, which leads to a difference of order at 
least n-Li' between the Edgeworth expansions of Uh and Uh. 

3) One disappointing fact with confidence intervals in nonparametric regression is 
that we cannot obtain a size of the intervals that shrinks with the same rate as the 
standard deviation of optimal estimators. The reason is that we have actually two 
more or less separate problems, the estimation of m(x0 ) by some estimator m(x0 ) 

as well as the recognition of the distribution of m(x0 ) - m(x0 ), which essentially 
consists in the estimation of the bias Em(x0 ) - m(x0 ). To solve both problems 
satisfactorily, we have to apportion the smoothness assumption for both purposes, 
which requires the application of an suboptimal estimator m( x0 ). 

4) The methods used in the present paper can obviously be applied to kernel esti-
mators with bandwidths chosen by other selectors. In Neumann (1992) (14] it is 
shown that the cross-validation bandwidth hcv can be approximated by some 
random bandwidth h, which is independent of those observations that enter into 
the estimator mh( Xo), to an order of Q (hon-l/(2r+l)?1-o, n->.), which yields finally 
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an error in coverage probability of 0 (n6n- 1!( 2r+i)). Another direction for an ex-
tension are alternative kernel estimators, as e.g. those of N adaraya-Watson type. 

5) Theoretically, it seems to be possible to take the variability of Uh due to the 
randomness of the bandwidth h into account by an Edgeworth expansion for the 
quantity 

U-;, + (h - h) U~lh=h. , 
which approximates Uh better than U-;,. If we approximate h - h also by a 
Taylor series in linear and quadratic forms in f, then we can derive by results of 
Skovgaard (1981) cited above an higher order Edgeworth expansion of Uh that 
can serve as a starting point for the choice of an appropriate quantile. 
On the other hand, it is not clear at all whether this method does pay off for 
moderate sample sizes that can be expected to occur in practical situations. Mo-
reover, the estimation of the terms of the abovementioned Edgeworth expansion 
involves the estimation of terms like M"(h), which seems to be challenging from 
the practical point of view. 

6. APPENDIX 

6.1. Assumptions. Here we list the assumptions needed for the assertions in the pre-
vious sections. 
1) General assumptions ( Aa) 

• The design points Xi= xi(n) are regularly spaced, i.e. J;' d(t) dt = (i-1/2)/n, 
for some positive, continuous density d o~ [O, 1] . 

• w E C0 [-1, ll is a kernel function of order r 2::: 2 
• w E er [-1, 1] is a kernel function of order s 2::: 2 
• mECr+"[0,1] 

2) Assumption for uniform approximations (Au) 
• All moments of the ci 's are uniformly bounded. (If we assume instead that only a 

finite number of moments are bounded, then we have to choose 8 in dependence 
on this number and on the entropy of the families of vectors and matrices as 
indicated in the proof of Lemma 6.1.) 

3) Assumptions especially for the choice of the optimal global bandwidth (ABw) 
• m E C2r+s [O, 1], t (m<r)(x)) 2 dx f. 0, 
t [f ~W:z:,h e~:z:) m(z) dz - m(x)] 2 dx f. 0 for all h > 0 

• v E C0 [0, 1] is bounded from zero 
4) Assumptions for Edgeworth expansions (AE) 

• A sufficiently large number of moments of the ci 's are uniformly bounded. 
• Cramer's condition is uniformly satisfied by the random vectors ai = ( ei, ct, cf)' 

in some neighborhood of x 0 , i.e. 

sup sup IE exp{ it' ai}I < 1 
i:l:z:i-:col5C lltll>b 

for some C > 0 and all b > 0 . 

6.2. Some technical lemmas. 

Lemma 6.1. (uniform 0-approximation} 
Let A 11 = {a~n)}oee and Anxn = {A~n)hee be families of n-vectors and (n X n)-
matrices, respectively. Further, define the €-entropy Ee(Anxn) of Anxn, as the minimal 
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number of (nxn)-matrices Ai with the property that each A E Anxn can be approximated 
by some Ai with llA-All ~ E. Analogously we define the E -entropy EE(An) of An. 
Assume (Au),En-1/:z-ti(An) = O(n>-) and En-1-ti(Anxn) = O(n>-) for som·e {3 > O,.A < 
oo. Then 
(i) SUPeeeHlla~n)ll + n-P)- 1 la~n)'fl} = O(n5 , n--Y), 

(ii) SUPeeeH tr(A~n) A~n)') + n-Pt1 !§.1 A~n)§. - E§.1 A~n)fl} = O(n5 , n--Y) 
holds for appropriate o > 0 and / < oo , which can be chosen arbitrarily small and large, 
respectively, if all moments of the £i's are uniformly bounded. 

Proof. For a one-element set 0 = {00 } we obtain (i) and (ii) by Markov's and Whittle's 
inequalities, see Whittle (1960) [19]. For general 0 we derive (i) and (ii) on the basis of 
that set of vectors and matrices, just given by the definition of the n- 1/ 2-.8-entropy and 
n- 1-.e- entropy( respectively. Let ~ denote this parameter from the approximating grid 
with lla~n) - a;>ll ~ n- 1! 2-P. By Markov's, Whittle's and Bonferroni's inequalities we 
obtain that, for appropriate positive o and /, 

ll(a~n))'fll < ll(ar>)'fll + lla~n) - ar>11 llfll 
0 (no Ila~) II+ n-1/2-.en1/2+5) 

0 ( n511a~n)ll +no n-,6) 

holds uniformly over BE 0 with a probability exceeding 1- O(n--Y), which implies (i). 
(ii) can be proved analogously. O 

The next lemma improves the residual term of order n- 1 given in [3] for the expectation 
of Gasser-Muller kernel estimators. 

Lemma 6.2. Let W:z;,h be uniformly (in x and h) Lipschitz continuous of order 1 and 
let {gn} be a sequence of twice differentiable functions. Further assume that the design 
satisfies the condition ·given in ( Aa) . Then 

n 

L W(x, h);9n(x;) 
j=l 11

1 (z-x) 
0 

hw:z;,h -h- 9n(z)dz 

+ 0 (n- 2h- 1 sup {lg~(z)I} + n- 2 sup {lg~(z)I}) . 
· O~z~l O~z~l 

The proof of this lemma is straightforward and therefore omitted. 

6.3. Proofs. 

Proof of Lemma 2.1. The calculations are very similar to these in the proof of Theorem 1 
in [HHM91]. Therefore we indicate only the sources of the terms in (i). Some of these 
formulas will be used in the course of the proof of Lemma 4.1. First, we approximate the 
entries of the matrix A( h, g) by 

A;; = g~::, (s; - s,_,)(s; - s;_1 ) j u;<d(x)WM(x + "'• ~ "';) dx 

(6.1) ( 
h2r ) + 0 . g2r+l n-2 if Ix. - x · I < Cg 

' J - ' 
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whereas Ai; = O holds if lxi - x31 >Cg. Further, we have by m E c2r+"[O, 1] 

(6.2) 
(A(h,g)m)i = C(h,i)n- 1h2r + O(n- 1h2rg") + O(n- 3 hr-lg-r-l + n-3 hr-3 ). 

Now we split up 

(6.3)Var (ISB(h,g)) 
= Var (§.1 A(h, gk) + 4 Var (m' A(h, g)§.) + 4 Gov (§.1 A(h, gk, m' A(h, g)§.), 

where m = (m(x1 ), ... , m(xn))', and estimate the terms· on the right-hand side separa-
tely. Those terms, which enter into. the formula (i) are underlined. We have 

i,j 

(6.4) · 2-f+,n- 21<~ [ (~) 
2 

dx j (j W(r)(y)w«>(y + z) dy) 
2 

dz (1 + o(l)). 

Further, we obtain by (6.2) 

Var(m'A(h,gk) = m'A(h,g)Diag[v(x1), ••• ,v(xn)]A(h,g)m 
(6.5) = h4r C3 (h )n- 1 + 0 (h4rn- 1g") 

and, by (6.1), 

(6.6) 

where the residual terms will be both majorized by the underlined term in (6.4). By 

Var (lslJ(h,g)) = Var (ISB(h,g)) 

+ 0 ( Jvar(ISB(h,gh/Var('E,A.;V;) + Var (L, A,,v,)) 
and 

we see that the remaining residual terms do not enter into the asymptotic formula. 
Finally, we have 

(6.7) 

EI8B(h,g) - ISB(h) = m'A(h,g)m - ISB(h) + E°EAii(vi - vi) 

= 2h2rg"K:A., J m(r+a>(x)m(r)(x) dx (1 + o(l)) 

+ O(n-2) + 0 (h2rn-3/29 -2r-l), 

which completes the calculations needed for the proofof (i). D 
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Proof of Lemma 4.1. First, we investigate how well MISE(h) is approximated by its 
estimate MiSE(h,g). Let VY,;= tw(x,h)tdx. We split up 

Jv(h) - IV(h) = L Wi(c; - v(xi)) 
i 

+ L Wi(m(xi) - mj{xi)) 2 

i 

+ 2 LWic;i(m(xi) - LW(xi, /)1m(x1 )) 
i j 

- 2 I: Wic;i L W(xi, f)ic;i 
i j 

= Tl+···+ T4. 

By means of Lemma 6.1 we can easily estimate the terms T1 through T4 • Let for conve-
nience h be first restricted to the interval [n- 1 , 1/2]. Using Wi = O(n- 2h- 1 ) we get 

Tl = 0 ((nht1na-1/2,n->.). 

By n- 1 2:(m(xi)-mj{xi))2 = 0 ((nJ)- 1 +J2(r+5 ),n->-) and[= fo+O (!;12n°,n->-) 
with some fo::::: n- 1/( 2(r+ 5 )+1) we obtain 

and 

Ta = i5 ( ~ (W,[m(x;) - ~ W(x;, f);m(x; )])
2 
n6

, n->.) 

= 0 (n-2h-1n1/2[r+6no,n->-) 

= 0 ((nht 1n-1l 2n- 2 < .. +~j+ 1 n5 ,n->.). 

If we write T4 in the form §.1 M(h, /)§.,we obtain by the relation tr(M(h, !)' M(h, !)) = 
O(n- 1 (nh)- 2(nf)- 1 ) and Whittle's inequality for quadratic forms the following estimate 

T4 < I§_' M(h, J)§_ - E §_1 M(h, fkl1=TI + E §_l,M(h, fklf=f 

= i5 ( Jtr(M(h,f)' M(h,J))n6
, n->.) + 0 ( ~ Wj W(x;J);) 

= O ((nht 1n-1!2n- 2< .. +~j+1n5 ,n->-) + O ((nht 1n- 2C!~~a 1 ,n->-). 

Next, we decompose 

ISB(h,g) - ISB(h) = §.1A(h,g)§. - L A(h,g)iiv(xi) 

+ L A(h,g)ii(v(xi) - vi) 
i 

+ 2m'A(h,g)§. 
+ m'A(h,g)m - ISB(h) 

= Ts+···+ Ts. 
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By (6.1) we see 

Ts = o(/EA(h,g)f,n6,n-') 
= [J (h2rn-1g-2r-1/2no,n->..). 

Analogously to the estimation of N(h) - IV(h) we obtain 

and 

Ts = [J ( h2rn-2-g-2r-1n1/2no, n->..) 

[J (h~rn-1g-2r-1/2(ngt1/2no, n->..), 

T1 = 0 (llA(h, g)mjjn6 , n->..) 
0 (h2rn-1/2no,n->..) 

0 (h2rg8, n->..) . 

Analogous estimates can be derived for h E [O, n-1), where 0(1)-terms take the place of 
the (nh)- 1-terms. It is known that 

(6.8) MISE(h) ~ C (h2r + ((nht 1 /\ 1)), 
which implies in conjunction with the above calculations that -MISE(h,g) - MISE(h) _ 0- ( -t:i. 6 ->..) 

MISE(h) - n n ,n . 

On the other hand, we have MISE(ho) = O(n-~:+1 ), which implies by (6.8) that 

(6.9) 

For brevity we set M(h) = MiBE(h,g) and M(h) = MISE(h). Because of M'(h)jh=h = 
M'(h)ih=ho = 0 we obtain 

0 (.M - M) 
1 

(h) + ( M'(h) - M'(ho)) 

(M - M) 
1 
(h) + (h - h0 )M"(h*) 

for some h* between h0 and ii, which implies 

... (M - M)'(h) 
h - ho = -M"(h*) . 

By straightforward calculations one obtains that 

(6.10) 

holds for h ~ h0 • The term (M - M)'(h) can be splitted up in the same way as M(h) -
M(h). It turns out, that T{ through T~ are of the same order as T1 through T8 , 

respectively, with an additional factor of order h01 • Hence, we have 

(M - M) 
1 
(h) = 0 (n- 1h02n-t:i.n6 , n->..), 

which implies 

D 
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Proof of (4.7). The proof of this equation is very similar to that of Lemma 4.1. 
First, we derive analogously to (6.9) that 

(6.11) 

holds. By M'(h)I -- = M'(h)I - = 0 we obtain 
h=h h=h 

0 (ii-M)
1

(h) + (M'(h)-M'(h)) 

(Ki - M)'(h) + (h- h)M"(h**) 

for some h** between h and h, which implies 

-- - (M - M)'(h) 
h-h= - . 

-M"(h**) 

By (6.10) we can prove due to Lemma 6.1 that M"(h**)- 1 = 0 (nh~, n->.). We have 

Iv(h) - IV(h) 
iEJ.,. 

T; + T2 + T3 + T4 . 

Let h::::::: h0 • By #Jn = O(n~n) we obtain 

(T;)' = 0 ((nht1h-1n-1/2~~/2no,n->.)' 

which differs from Tt by the factor ~~/ 2 • It can be seen that the terms T~ through T~ 
are all majorized by (T;)'. Next, we decompose 

ffB(h,g) - ISB(h,go) 
Ts - E A(h,go)eie; + E A(h,go)iiv(xi) 

i,UJ.,. 

+Ts 
+ m'A(h,g)m - ISB(h) - m'A(h,g0 )m + ISB(h) 
+ 2m' (A(h,g) - A(h,g0 ))§. 
+ 2 E A(h,go)i;m(xi)e; 

(i,j):iEJ.,. or jEJ.,. 

= U1 + · · · + Us. 

The terms Uf , U~ and U~ are of the same order as T~ , T~ and T~ , respectively. 
By (6.2) we conclude that ll(A(h, 9)-A(h, g0 ))mll = 0 (h2rn- 1l 2g~n°, n"""'>.) holds, which 
implies that 

Finally, we have 
U~ = Q (h2rn-lf2h-1~~/2no,n->.). 

Collecting the upper estimates for (T; )' , T~ through T~ and Uf through U~ we obtain 

(ii' - M') (h) = 0 ( n- 1h0 2n-~' n°, n->.) , 

which yields ( 4. 7). D 
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