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Abstract

The key question analysed in the paper is: under what condition are the La-

grangian stochastic models stochastically reversible? We show that this property

is deeply related to Thomson's well-mixed condition. Direct and backward in time

Monte Carlo algorithms are suggested. A consistency principle in the turbulent

transport problems and in the �nancial mathematics is analysed to �nd out an

analogy in constructing Lagrangian stochastic models in these two di�erent �elds.

1 Introduction and formulation of the problem

In modern Monte Carlo simulation algorithms, one often uses stochastic Lagrangian mod-

els to simulate individual Lagrangian trajectories and estimate di�erent Lagrangian sta-

tistical characteristics (e.g., see [18]-[24]). We mention, for instance, the dispersion of

particles in turbulent �ows and the dynamics of the bond and stock prices in �nancial

mathematics (e.g., see [21], [11]). The Lagrangian stochastic models have a form of Ito

type stochastic di�erential equation, and they are constructed often in a quite heuristical

way. There exists a more rigorous approach, which is based on an accurate description of

the Eulerian dynamics. This dynamics however includes random �elds, and there arises

a nontrivial problem of consistency between the Lagrangian stochastic models and the

stochastic dynamic models generated by the Eulerian random velocity �elds. The La-

grangian description allows us to analyze directly the motion of material �uid elements.

Importance of the Lagrangian trajectories is that the quantities of practical interest are

expressed through the n-particle statistical characteristics. In particular, the mean con-

centration of a passive scalar and its covariance are de�ned through the one-particle and

two-particle statistical characteristics, respectively, and similarly, a �nancial derivative

can be expressed as an expectation over solutions to a large system of stochastic di�er-

ential equations (SDE) (see [21]). Another example where Lagrangian stochastic models

are used is the Footprint problem. As formulated in the literature (e.g., see [1]-[3], [22]),

this problem essentially deals with the calculation of the contribution to the mean con-

centration and its �ux at a �xed point from a given source of particles.

There are mainly two di�erent approaches: (1) conventional deterministic methods based

on the semi-empirical turbulent di�usion equation and closure assumptions (e.g., see [22])

and (2), stochastic approach which utilizes trajectory simulations (e.g., see [16], [17]-[24]

and [12]). The deterministic approach directly deals with the equation governing the

mean concentration, but it is restricted by the use of the Boussinesq hypothesis whose

applicability should be additionally studied. For instance, this hypothesis cannot be true

if the concentration is calculated close to the sources [14]. More generally, the high order

closure methods are developed, but di�erent closure hypotheses also should be made

[14]. Stochastic models do not require any closure hypotheses, and the main di�culty is
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to construct adequate Lagrangian trajectories with the desired statistical characteristics

[15].

There are two main approaches in constructing stochastic methods. The �rst one is

based on Monte Carlo simulation of the Eulerian random velocity �elds (e.g., see [8], [16],

[5]). Second approach treats the stochastic Lagrangian trajectories as solutions to the

stochastic generalized Langevin equation (e.g., see [23], [19], [17]). The �rst approach

is more rigorous, but generally it requires a lot of computer time. In addition, it needs

a detailed information about statistical characteristics of the whole velocity �eld. In

contrast, the second approach needs only one-point probability density function (pdf) of

the Eulerian velocity �eld, and is much more e�cient in numerical calculations. It should

be noted however, that this approach is rigorously justi�ed only in the case of stationary

isotropic turbulent �ow. Even in the case of homogeneous but unisotropic turbulence the

justi�cation problem remains unsolved; in particular there are several di�erent stochastic

models which satisfy the well-mixed condition [23], [10],[18].

In this paper we concentrate around the consistency principle for the stochastic La-

grangian models in the turbulent transport problems, and extend it to more general

SDE, e.g., to the evaluation of derivatives in the �nancial mathematics. We emphasis a

deep interrelation between the well-mixed condition due to Thomson and the Girsanov

transformation. A backward theoretically zero-variance stochastic model for evaluation

of the solution at a �xed point is constructed. We remark that Thomson's backward

algorithm leads to a control variate estimator. It is interesting to note that recently,

when our paper was in its almost �nal form, we have found two remarkable papers where

special cases were studied. The �rst paper [7] was written by Kolmogorov in 1937, and a

generalization of Kolmogorov's result [25] was published by Yaglom in 1949. The authors

are answering the question: when a di�usion process is reversible provided there exists a

stationary distribution of the di�usion process under study.

Let us consider a passive scalar dispersed by the turbulent incompressible velocity �eld in

the surface layer of the atmosphere. The passive scalar is assumed to follow the streamlines

of the �ow We assume that the source of particles is quite arbitrary, for instance, it might

be situated on the surface or in the space, or even at given points. Let us denote by q(x; t)
the spatial-temporal density distribution function of the source, i.e., the number of emitted

particles per unit volume in a unit time interval at the phase point (x; t). For simplicity, we

assume that initially, the spatial density of particles is zero. The particles are transported

by a 3D turbulent velocity �eld u(x; t) in the surface layerD = fx = (x1; x2; x3) : x3 � 0g.
Let us denote by X(t;x0; t0) and V(t;x0; t0) the Lagrangian spatial coordinates and the

velocity, respectively. Here and throughout the paper we use the boldface characters for

vectors, e.g., a = (a1; a2; a3).

The mean concentration at (x; t) is de�ned by [14]:

hc(x; t)i =

tZ
0

dt0

Z
D

dx0 q(x0; t0)pL(x; t;x0; t0); (1.1 )

where pL(x; t;x0; t0) = hÆ(x�X(t;x0; t0))i is the probability density function (pdf) of the
particle's coordinate at the time t which was started in the point x0 at the time t0, Æ(�) is
the Dyrac delta-function. Here and throughout the paper we use the notation h�i for the
averaging over the samples of the turbulent velocity �eld.
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Let pL(x;u; t;x0; t0) = hÆ(x � X(t;x0; t0))Æ(u � V(t;x0; t0))i be the pdf of the spatial-

velocity phase point. In the analysis, it is convenient to deal with a general quantity, the

spatial-velocity distribution of an ensemble of particles:

p(x;u; t) =

tZ
0

dt0

Z
D

dx0 q(x0; t0)pL(x;u; t;x0; t0) : (1.2 )

From (1.1) and (1.2) we �nd

hc(x; t)i =
Z
IR

3

p(x;u; t)du :

It is of practical interest to calculate the mean concentration and relevant �uxes for

arbitrarily situated surface sources. In the literature, this problem is called a footprint

problem (e.g., see [22], [1], [3]). Note that in this problem, the mean concentration and

�uxes are evaluated at a �xed point. We consider a more general quantity:

(p; h) =
Z
IR

3

du

TZ
0

dt

Z
D

dx p(x;u; t)h(x;u; t); (1.3 )

where h(x;u; t) is an arbitrary function which can be chosen relevant to the quantity of

interest. For instance, in the case h(y;u; s) = Æ(y�x)Æ(s�t) we have (p; h) = hc(x; t)i. If
h(y;u; s) = uiÆ(y�x)Æ(s� t), then (p; h) = Fi(x; t) is the concentration �ux in direction

i. Thus we concentrate on the problem of calculation of the quamtity (p; h).

2 Stochastic Lagrangian algorithm

To construct algorithms based on the representations given above, we need samples of

the Lagrangian trajectories X(t) = X(t;x0; t0), t � t0. Ideally, if we had samples of the

Eulerian velocity u(x; t), the trajectories could be simulated by solving the problem

dX(t)

dt
= u(X(t); t); t > t0 X(t0) = x0 : (2.1 )

In practice one uses approximate models of the Eulerian velocity �eld. For instance, ran-

domized models of the Gaussian velocity �elds are used (e.g., see [16]). This approach is

well developed and justi�ed only in the case of homogeneous turbulence while inhomoge-

neous case requires further development. In general inhomogeneous case one uses another

approach based on stochastic di�erential equation of Langevin type governing directly the

Lagrangian trajectory. This equation has the form (see, for instance, [23], [19], [18]):

dY(t) = V(t)dt;

dV(t) = a(t;Y(t);V(t))dt+
q
C0�"(Y(t); t) dW(t); (2.2 )

where the function a = (a1; a2; a3) is to be de�ned in each speci�c situation, C0 is the

universal Kolmogorov constant (C0 � 4 � 6), and �"(x; t) is the mean dissipation rate of
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the kinetic energy of turbulence, and W(t) is the standard 3D Wiener process. In this

section, we deal with the general scheme.

Note that to complete the description of the Lagrangian stochastic model, we need to

de�ne the behaviour of (Y(t);V(t)) in the neighbourhood of the boundary � = fx =
(x1; x2; x3) : x3 = 0g, see for details [12].

Obviously, (Y(t);V(t)), the solution to (2.2) is only an approximation of the solution to

(2.1): it is impossible to exactly satisfy V(t) = u(X(t); t), X(t) = Y(t). However certain
consistency between the Eulerian and Lagrangian description should be satis�ed.

Two consistency criteria used in the literature are:

(A) Consistency with the Kolmogorov similarity theory,

(B) Consistency with Novikov's integral relation.

Here (A) reads

h(dVi)
2i = C0�"dt; (i = 1; 2; 3); hdV1 dV2i = hdV1 dV3i = hdV3 dV2i = 0;

where dVi are the components of the increments of the Lagrangian velocity, �" is the mean

rate of the dissipation of turbulence energy, C0 is the universal constant (e.g., see [14],

[19], [23]).

Note that (A) implies (e.g., see [23]) that in (2.1), all the velocity components have the

same intensity of the �uctuated part.

Novikov's integral relation has the form [15]

pE(u;x; t) =
Z
R3

pL(x;u; t;x0; t0)dx0: (2.3 )

Here pE is the probability density function of the Eulerian velocity u, in the �xed point

x, at the time t, and pL is the joint pdf of the true Lagrangian phase point (Y;V) de�ned
by the trajectory started at x0. We recall that the �ow is assumed to be incompressible.

Thus the consistency with the Novikov relation (2.3 ) means that the pdf of the model

trajectory governed by (2.2), say p̂L, satis�es

pE(u;x; t) =
Z
R3

p̂L(x;u; t;x0; t0)dx0: (2.4 )

Note that (2.4) and the Fokker-Planck-Kolmogorov equation for p̂L lead to the well-mixed

condition due to D. Thomson [23]:

@pE

@t
+ ui

@pE

@xi
+

@

@ui
(aipE) =

C0�"

2

(
@
2
pE

@u21

+
@
2
pE

@u22

+
@
2
pE

@u23

)
: (2.5 )

Here we use the summation convention. In [18], the authors study a horizontally homo-

geneous turbulent �ow which implies that pE does not depend on x1; x2. Generally, the

main problem is that (2.5) does not de�ne the coe�cients ai of the model (2.2) uniquely.

Indeed, even for the homogeneous turbulence, in [20] two di�erent choices of ai are pre-

sented, both satisfying the well-mixed condition (2.5) but whose statistical characteristics
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are di�erent. For the Gaussian form of pE, one of appropriate techniques of getting the

coe�cients ai is given in [23]. In the nongaussian 3D case there is no appropriate choice

of these coe�cients. In 2D a nongaussian case was treated by Flesch and Wilson in [1].

These authors mentioned that the two di�erent models do not lead to essentially di�erent

results in the case of Gaussian pE. As reported in [1], the same is true for two models

considered in [20].

In [18], a proper choice of the coe�cients ai in a general case of pdf pE is suggested. The

derivation is based on some assumptions which ensure a unique choice of the model.

3 Backward trajectory estimators

In this section we treat the problem of evaluation of the integral:

Ih;q =
Z
D

dy

TZ
0

dt

Z
D

dy0

tZ
0

dt0h(y; t)q(y0; t0)p
f(y; t;y0; t0); (3.1 )

where D is a domain in IRn, T > 0, h and q are functions de�ned in D � [0; T ], and
p
f(y; t;y0; t0) = hÆ(y � Yy0;t0

t )i is the transition density of the n-dimensional di�usion

process Y
y0;t0
t , the solution to

dYi(t) = Ai(Y(t); t)dt+ �ij(Y(t); t)dWj(t); t > t0; Y(t)j
t=t0

= y0: (3.2 )

Here and throughout the paper we keep to use the notation h i for the averaging over

solutions of stochastic di�erential equations.

We assume that the boundary of D is impenetrable, i.e., the trajectories determined by

(3.2 ) do not reach the boundary. The Direct Monte Carlo estimator for evaluating the

integral (3.1) is straightforward:

Ih;q =
Z
D

dy0

TZ
0

dt0

Z
D

dy

TZ
t0

dt h(y; t)q(y0; t0)p
f(y; t;y0; t0)

= IE
n q(~y0; ~t0)
p0(~y0; ~t0)

TZ
~t0

h(Y~y0;~t0
t ; t) dt

o
:

Here p0(y0; t0) is an arbitrary pdf in D � [0; T ] consistent with the function q(y0; t0) in
the sense that p0(y0; t0) > 0 if q0(y0; t0) 6= 0, and the expectation is taken over all sample

points (~y0; ~t0) and sample trajectories Y
~y0;~t0
t , ~t0 � t � T ; the random points ~y0; ~t0 are

distributed with p0(y0; t0).

In the evaluation of the linear functional (p; h) de�ned in (1.3), two functions are involved:
the source q(x0; t0) and the detector function h(x;u; t). In the case when the detector is

a delta function, the direct algorithm described above cannot be practically used. Then,

a backward in time stochastic di�erential equation comes in play.

A backward estimator can be obtained by a generalization of Thomson's approach [23].

Assume that we have a positive function �(y; t) de�ned on D� [0; T ] as a solution to the
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equation
@�

@t
+

@

@yi
(Ai�) =

1

2

@
2 (Bij�)

@yi@yj
; (3.3 )

where �ik�kj = Bij. Let pb(y0; t0;y; t) = hÆ(y0 � Z
y;t
t0
)i be the transition density of the

di�usion process Z
y;t

t0
, 0 � t0 � t which is de�ned by

dZi = A
�

i (Z; t0) dt0 + �ij(Z; t0)
 

dWj(t0); t0 < t; Z(t) = y: (3.4 )

Here

A
�

i (y; t) = Ai(y; t)�
1

�(y; t)

@

@yj
(Bij(y; t)�(y; t)): (3.5 )

In (3.4), the di�erential
 

d W means that here the backward Ito integral is taken1.

It is convenient to rewrite (3.4) in an integral form:

Zi(t0) = yi �

tZ
t0

A
�

i (Z; s)ds�

tZ
t0

�ij(Z; s)
 

dWj(s) :

We assume, that the solutions to (3.4 ) do never reach the boundary of D. Then the

following statement is true.

Theorem 1. Let �(y; t) be a positive solution to (3.3). The equality

�(y0; t0)p
f(y; t;y0; t0) = �(y; t)pb(y0; t0;y; t) (3.6 )

is a necessary and su�cient condition for the unique de�nition of the di�usion process

Z
y;t
t0

through (3.4) with the shift term given by (3.5).

Proof. First remark that the function pb and

F (y0; t0;y; t) =
�(y0; t0)

�(y; t)
p
f(y; t;y0; t0)

satisfy the equations

Ly0;t0F = 0; Ly0;t0p
b = 0

where the operator Ly0;t0 acts on a function g(y0; t0) as follows:

Ly0;t0g =
@g

@t0
+

@

@y0i
(A�i g) +

1

2

@
2(Bijg)

@y0i@y0j
:

1The backward Ito integral is de�ned by

tZ
s

�(�)
 

dW (�) :=

T�sZ
T�t

�(T � �) dWT (�);

s � t � T; WT (�) := W (T )�W (T � �) is a standard Wiener process. This integral does not depend on

the choice of T . For details see, e.g., [9].
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Since the values of the functions F and pb at t0 = t coincide:

p
b(y0; t;y; t) = F (y0; t;y; t) = Æ(y � y0);

we conclude that F � p
b, provided that the equation Ly0;t0g = 0 with initial condition

g(t;y0) = Æ(y0 � y) has a unique solution. This implies that the equality (3.6 ) is true.

Now we note that Ly0;t0p
b = 0 is true. Indeed, pb satis�es the �rst Kolmogorov equation

in backward coordinates t00 = T � t0; y
0

0 = �y0, which results in Ly0;t0p
b = 0 when back

to the direct coordinates.

The equality Ly0;t0F = 0 then follows from (3.3), the inverse Kolmogorov's equation

@p
f (y; t;y0; t0)

@t0
+ Ai(y0; t0)

@p
f

@y0i
+

1

2
Bij(y0; t0)

@
2
p
f

@y0i@y0j
= 0 ;

and the expression for A�i (y0; t0) through Ai and Bij given above. To �nd that (3.5) is the

unique right choice, just apply the operator Ly0;t0 to both sides of (3.6) and rearrange the

terms. In more details, this kind of transformation is presented in Theorem 2 (formula

(4.8)) in a similar situation. Theorem is proved.

Now, we present the backward Monte Carlo algorithm based on the property (3.6). We

proceed as follows: substitute the expression for pf from (3.6) into (3.1), then

Ih;q =
Z
D

dy

TZ
0

dt

Z
D

dy0

tZ
0

dt0h(y; t)q(y0; t0)
�(y; t)

�(y0; t0)
p
b(y0; t0;y; t): (3.7 )

Let r(y; t) be a probability density in D � [0; T ] consistent with h�, i.e., r > 0 if h� 6= 0.
Then from (3.7) we get

Ih;q = IE

8><
>:
h(~y; ~t)�(~y; ~t)

r(~y; ~t)

~tZ
0

q(Z~y;~t
t0
; t0)

�(Z~y;~t
t0
; t0)

dt0

9>=
>; :

Here the expectation is taken over the random points (~y; ~t) distributed in D� [0; T ] with

density r(y; t), and backward trajectories Z
~y;~t
t0
, 0 � t0 � ~t.

4 Transformed direct trajectories

Let us introduce two di�erential operators, LA
y;t and L�A

y;t, acting on a function g(y; t),
y = (y1; : : : ; yn) through

LA
y;t g =

@g

@t
+

@

@yi
(Aig)�

1

2

@
2(Bijg)

@yi@yj
; (4.1 )

and

L�A
y;t g =

@g

@t
+ Ai(y; t)

@g

@yi
+

1

2
Bij(y; t)

@
2
g

@yi@yj
: (4.2 )
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Let us introduce, along with the forward in time di�usion process Y governed by (3.2),

a new forward in time di�usion process Ŷ de�ned by the following stochastic di�erential

equation

dŶi(t) = Âi(Ŷ(t); t)dt+ �̂ij(Ŷ(t); t)dWj(t); t > t0; Ŷ(t)
���
t=t0

= y0; (4.3 )

and let pf
�
(y; t;y0; t0) = hÆ(y � Ŷy0;t0

t )i be the transition density of the n-dimensional

di�usion process Ŷ
y0;t0
t , the solution to (4.3).

Our goal is to derive the form of the coe�cients Âi and �̂ij from the following assumption.

We suppose that at the time t, the �particles� are distributed in the phase space with a

probability density function proportional to ��(y; t). Our assumption then reads:

p
f
�
(y; t;y0; t0)�

�(y0; t0) = p
f (y; t;y0; t0)�

�(y; t): (4.4 )

Below we show that there exists such a choice of the function ��(y; t) and coe�cients Âi,

�̂ij. Indeed, let �
� be a positive solution to

L�A
y;t �

�(y; t) = 0: (4.5 )

Theorem 2. The equality (4.4) with the function ��(y; t) satisfying (4.5) is a necessary

and su�cient condition for the unique de�nition of the di�usion process Ŷi through (4.3)

with

Âi(y; t) = Ai(y; t) +
Bij(y; t)

��(y; t)

@�
�

@yj
; �̂ij(y; t) = �ij(y; t): (4.6 )

Proof. Assume (4.4) is true. We prove that (4.6) is the unique right choice.

Let us apply the operator LÂ
y;t to both sides of (4.4). Since, by de�nition,

LÂ
y;t p

f
�
(y; t;y0; t0) = 0; (4.7 )

we conclude

LÂ
y;t [p

f (y; t;y0; t0)�
�(y; t)] = 0:

Equivalent transformations yield

LÂ
y;t[ p

f(y; t;y0; t0)�
�(y; t)] = �

�(y; t)LA
y;t p

f(y; t;y0; t0) + p
fL�A

y;t�
�(y; t)

+
@

@yi

h
�
�

p
f(Âi � Ai)� B̂ij p

f
@�
�

@yj

i
(4.8 )

�
�
�

2

@
2(pf (B̂ij � Bij))

@yi@yj
+
p
f

2
(B̂ij �Bij)

@
2
�
�

@yi@yj
= 0:

By the de�nition, LA
y;t p

f(y; t;y0; t0) = 0 and L�A
y;t�

�(y; t) = 0. Therefore the appropriate

choice of the coe�cients Âi and B̂ij is given by (4.6 ). Note that this choice is unique

because the relation (4.4) implies that the coe�cients Âi and B̂ij are uniquely related to

the di�usion process whose transition density is pf
�
.
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We prove now that (4.4) is true if the di�erential equation (4.3) governing the di�usion

process Ŷ is de�ned by the coe�cients (4.6) provided the function �� is a positive solution

to (4.5). Let

F (y; t;y0; t0) =
p
f (y; t;y0; t0)�

�(y; t)

��(y0; t0)
:

We now prove that the F � p
f
�
. Indeed, the function pf

�
(y; t;y0; t0) satis�es the equation

(4.7). The same equation is satis�ed by the function F (y; t;y0; t0) which can be seen from

the transformations (4.8). Therefore, F � p
f
�
, since these functions coincide at t = t0. Of

course it is assumed that the problem LÂ
y;t  (y; t) = 0;  (y; t0) = Æ(y� y0) has a unique

solution.

Remark 1. Note that it is possible to derive di�erent relations similar to (4.4 ). To

this end, we use a backward di�usion process. Let us de�ne a transition density function

p
b
1(y0; t0;y; t) by

@p
b
1

@t0
+

@

@y0i
(A0ip

b
1) +

1

2

@
2(Bijp

b
1)

@y0i@y0j
= 0; p

b
1(y0; t;y; t) = Æ(y0 � y);

where

A
0

i(y; t) = Ai(y; t)�
@Bij(y; t)

@yj
;

i.e., pb1(y0; t0;y; t) is a pdf of a di�usion process Ẑy;t(t0) de�ned as the solution to the

problem

dẐi(t0) = A
0

i(Ẑ(t0); t0)dt0 + �ij(Ẑ(t0); t0)
 

dWj(t0);

0 � t0 � t; Ẑ(t0)
���
t0=t

= y:

The functions pf(y; t;y0; t0) and p
b
1(y0; t0;y; t) are related by

p
f(y; t;y0; t0) = p

b
1(y0; t0;y; t) exp

�
�

tZ
t0

�(s)ds
�
; (4.9 )

where

� =
@Ai

@yi
�

1

2

@
2
Bij

@yi@yj
:

The proof is similar to that of Theorem 2. Indeed, let

F = p
b
1(y0; t0;y; t) exp

�
�

tZ
t0

�(s)ds
�
:

The functions pf and F satisfy the same equation

L�A
y0;t0

p
f(y; t;y0; t0) = 0; L�A

y0;t0
F = 0:

Since the values of the functions F and p
b
1 coincide at t0 = t (that is, they equal to

Æ(y0 � y)), we conclude that F = p
b
1.

9



Analogous to (4.9), we can get another equality which relates the forward and backward

pdf's:

p
b
1(y0; t0;y; t)�1(y; t) = p

f
�
(y; t;y0; t0)�1(y0; t0): (4.10 )

Here �1 is a positive solution to the equation

@�1

@t
+

@

@yi
(�1A

0

i) +
1

2

@
2(Bij�1)

@yi@yj
= 0:

In conclusion let us note that the relation (4.4) follows from (4.10) and (4.9).

5 Applications in stochastic �nance theory

5.1 Valuation of �nancial derivatives

In many cases, for instance, in �nancial mathematics, the functional of interest are aver-

ages of the direct trajectories, but the variance of the estimators is too large. An approach

to decrease the variance based on the Girsanov transformation can be used (e.g., see [13]).

We will show that the approach presented in the previous sections leads to the same trans-

formed stochastic di�erential equation obtained by Girsanov transformation to ensure a

zero variance. However we suggest a special constructive choice of the function in the

Girsanov transformation which leads to a control variate estimators.

In the stochastic �nance theory (e.g., see [21]), the valuation of wide class of derivatives

is based on the calculation of the expectation

u(y0; t0) = IE f(Yy0;t0
t )

over the solutions to a forward in time stochastic di�erential equation of type (3.2); here

f(y) is a payo� function given at a time t.

Thus, the function u(y0; t0) solves the problem

L�A
y0;t0

u = 0; u(y; t) = f(y): (5.1 )

As we have shown above, a di�erent probabilistic representation of this problem can be

obtained using the relation (4.4):

u(y0; t0) = �
�(y0; t0)IE

(
f(Ŷt0;y0

t )

��(Ŷt0;y0
t ; t)

)
: (5.2 )

Remarkably, the variance of this estimator can be made zero if we assume that the solution

u(y0; t0) is known to within a constant factor c not depending on (y0; t0). Indeed, this

follows from the choice ��(y0; t0) = cu(y0; t0). This choice is possible since the condition
(4.5) is satis�ed. Since u(y; t) = f(y) we put c = �

�(y; t)=f(y).

Thus theoretically, the variance can be made zero. This can be used in Monte Carlo

calculations in a standard manner, by constructing an approximation of ��. Note that
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analogous results can be obtained by applying the Girsanov transformation, however

more interesting is to �nd a constructive choice of the functions � and �� which lead to a

reduction of the variance.

Indeed, we will show below that the function u(Ŷt0;y0
t ; t)=��(Ŷt0;y0

t ; t) is a martingale, thus

presenting a reasonable choice of the free function h(y; t) in the Girsanov transformation.

The same can be done in the backward algorithm. Indeed, let v(y; t) be the solution to

LA
y;tv = 0; v(y0; t0) = f(y0): (5.3 )

In this case we have by (3.6)

v(y; t)=
Z
dy0 f(y0) p

f(y; t;y0; t0)=
Z
dy0 v(y0; t0)

�(y; t)

�(y0; t0)
p
b(y0; t0;y; t):

Consequently,

v(y; t) = IE�(y; t); �(y; t) = �(y; t)
v(Zy;t

t0
; t0)

�(Zy;t
t0
; t0)

: (5.4 )

Similarly, if we choose �(y; t) = cv(y; t) (c = �(y0; t0)=f(y0)), we get the zero variance.

5.2 Use of Girsanov Transformation

Note that the crucial point in the backward algorithm is the relation (3.6) which is proven

in Theorem 1 for the special choice of the drift coe�cient (3.5).

It is convenient to work here with the inverse time, so let us introduce the variables:

t
0 = T � t, y0 = �y. In these variables the problem (5.3) reads

@v

@t0
+

@

@y
0

i

(Aiv) +
1

2

@
2(Bijv)

@y
0

i@y
0

j

= 0; v(y0; t0)j
t0=Tb

= f(y0);

0 � t
0 � Tb � T � t0:

It will not cause confusion, if we omit, in what follows, the prime sign of the variables y

and t. Simple algebra gives:

L�A
0

y;t v(y; t) + �v(y; t) = 0; (5.5 )

where

A
0

i(y; t) = Ai(y; t) +
@Bij

@yj
; �(y; t) =

@Ai

@yi
+

1

2

@
2
Bij

@yi@yj
:

Here the operator L�A
0

y;t , adjoint to L
A0

y;t is de�ned as in (4.2). The probabilistic represen-

tation for the solution to (5.5) has the form [4]:

v(y; t) = IE(y;t)

n
f(Ẑy;t(Tb))�1(Ẑ

y;t
; Tb)

o
(5.6 )

where

�1(Ẑ
y;t
; �) = exp

� �Z
t

�(Ẑy;t(s); s)ds
�
;
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and the stochastic process Ẑy;t(s) is de�ned as the solution to the problem

dẐi(s) = A
0

i(Ẑ(s); s)ds+ �ij(Ẑ(s); s)dWj(s);

0 � s � Tb; Ẑ(s)
���
s=0

= y:

We now use the Girsanov transformation [6] to turn to a di�erent stochastic di�erential

equation with a free chosen vector function h(y; t). Let us introduce a random process
~Zy;t(s) as the solution to the problem

d ~Zi(s) =
�
A
0

i(~Z(s); s)� �ij(~Z(s); s)hj(~Z(s); s)
�
ds+ �ij(~Z(s); s)dWj(s);

0 � s � Tb;
~Z(s)

���
s=0

= y; (5.7 )

where hj(y; t) is an arbitrary function entering the Girsanov transformation of one stan-

dard Wiener process to another one. Let us de�ne a random process �2(~Z
y;t(s); s) as the

solution to the problem

d�2(~Z
y;t(s); s) = �2(~Z

y;t(s); s)hj(~Z
y;t(s); s) dWj(s); �2(~Z

y;t(s); s)
���
s=0

= 1;

and the random process

�(~Zy;t(s); s) = �1(~Z
y;t
; s)�2(~Z

y;t(s); s):

Note that this process solves the problem

d�(~Zy;t(s); s) = �(~Zy;t(s); s)
�
�(~Zy;t(s); s)ds+ hj(~Z

y;t(s); s) dWj(s)
�

�(~Zy;t(s); s)
���
s=0

= 1:

We show now that v(~Z(s); s)�(~Z(s); s) is a martingale. Indeed, it is su�cient to show

that the shift term in d [v(~Z(s); s)�(~Z(s); s)] vanishes. The Ito formula yields:

d [v(~Z; s)�(~Z; s)] = �(~Z; s)

�

(
@v

@s
+ A

0

i(~Z; s)
@v

@zi
+

1

2
Bij(~Z; s)

@
2
v

@zi@zj
+ v(~Z; s)�(~Z; s)

)
ds

+ �(~Z; s)

(
@v

@zi
�ij(~Z; s) + v(~Z; s)hj(~Z; s)

)
dWj(s): (5.8 )

In view of (5.5) the shift term in this expression vanishes.

It is proven that v(~Z(s); s)�(~Z(s); s) is a martingale, hence

v(y; t) = IE(y;t)

n
v(~Zy;t(s); s)�(~Zy;t(s); s)

o
(5.9 )

for any s 2 [0; Tb]. Here we used the property �(~Z; s)
���
s=0

= 1:

Thus (5.9 ) gives us a series of probabilistic representations depending on the arbitrary

function h(y; t). It is now of interest to �nd an appropriate choice of this function. One

of possible approach would be to �nd h(y; t) for which the unbiased random estimator

�(y; t) = f(~Zy;t(Tb))�(~Z
y;t(Tb); Tb); v(y; t) = IE(y;t)�(y; t)

12



has a zero variance. We will show now that such a choice exists. Indeed, note that the

variance of �(y; t) is zero if we force the coe�cient at the Wiener increment in (5.8 ) to

be zero:

�(~Z; s)
@v

@zi
�ij(~Z; s) + v(~Z; s)�(~Z; s)hj(~Z; s) = 0:

From this we get

hi(~Z; s) = �
1

v(~Z; s)

@v(~Z; s)

@zj
�ij(~Z; s): (5.10 )

Remark 2. Note that for this special choice of h(y; t) and for �(y; t) = const � v(y; t)
the process ~Zy;t(s) coincides with the process Zy;t(s) de�ned by (3.4 ). Indeed, in the

coordinates (y0; t0), these processes are governed by stochastic di�erential equations whose
drift terms coincide and are equal to

A
�

i (y
0

; t
0) = A

0

i(y
0

; t
0)� �ijhj(y

0

; t
0)

= Ai(y
0

; t
0) +

1

�(y0; t0)

@

@y0j

�
Bij(y

0

; t
0)�(y0; t0)

�
:

Statement 1. The random processes v(Zy;t(s); s)=�(Zy;t(s); s) and u(Ŷ; t)=��(Ŷ; t) are
martingales.

Indeed,

d

h
v=�

i
(Z; s) =

1

�

h
LA
z;sv(Z; s)

i
dt�

v

�2

h
LA
z;s�(Z; s)

i
dt

+
1

�

h @v
@zi

�
v

�

@�

@zi

i
�ij dWj :

Since � is a positive solution to (3.3 ), and v solves the problem (5.3 ), we �nd that the

shift term vanishes, hence, the martingale property is proven.

Analogously, u=�� is a martingale. Indeed, by de�nitions of the functions u and �
� we

conclude that the shift term in

d

h
u=�

�

i
(Ŷ; t) =

1

��

h
L�A
y;tu(Ŷ; t)

i
dt�

u

��2

h
L�A
y;t�

�(Ŷ; t)
i
dt

+
1

��

h @u
@yi

�
u

��

@��

@yi

i
�ij dWj : (5.11 )

vanishes, hence, u=�� is a martingale.

It is interesting to note that if we use in the Girsanov transformation the function h as in

(5.10) but replacing the unknown function v with the known function �, then we come to

a control variate estimator in (5.9). Indeed, by (5.11) and by the de�nition of the random

process Zy;t given in (3.4) we get:

v(y; t) = IE(y;t)

(h
�(Zy;t

; s) + v(Zy;t(s); s)� �(Zy;t
; s)

i �(y; t)

�(Zy;t; s)

)

= �(y; t) + IE(y;t)

(h
v(Zy;t(s); s)� �(Zy;t

; s)
i �(y; t)

�(Zy;t; s)

)
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for any s 2 [t; T ]. This is the standard control variate estimator which leads to a variance

reduction if the function � is a reasonable approximation to the function v. This shows

that Thomson's algorithm results in the control variate estimator with the function �

equal to the pdf pE.

6 Conclusion

Lagrangian stochastic models for the particle's transport and �nancial derivatives are

constructed on the basis of statistically reversible stochastic di�erential equations. Direct

and backward in time Monte Carlo algorithms are suggested.

The backward algorithm originally presented by Thomson is extended to more general

case when the transport in the phase space is described by a general stochastic di�erential

equation. It is shown that a special choice of the shift term leads to a zero variance Monte

Carlo estimators both for the concentration and �nancial derivatives. We suggest a special

choice of the Girsanov transformation which leads to the control variate estimator which

present a constructive variance reduction technique.
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