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Abstract: We consider the Kac-Ising model in an arbitrary con�guration of local magnetic

�elds � = (�i)i2ZZd , in any dimension d, at any inverse temperature. We investigate the Gibbs

properties of the `renormalized' in�nite volume measures obtained by block averaging any of

the Gibbs-measures corresponding to �xed �, with block-length small enough compared to the

range of the Kac-interaction. We show that these measures are Gibbs measures for the same

renormalized interaction potential. This potential depends locally on the �eld con�guration �

and decays exponentially, uniformly in �, for which we give explicit bounds.

I. Introduction

The study of models with Kac-type (= long range) potentials is a rich and fruitful subject in

equilibrium statistical mechanics. Kac-models depend on a parameter  describing the inverse

range of the interaction. They were introduced by Kac [1963] to give a microscopic model in

which the van der Waals theory of phase transitions could be understood. In fact, the famous

Lebowitz-Penrose theorem [LP] states that, for a classical particle system with a Kac-pair-

interaction, the free energy density converges, in the limit  # 0, to the convex envelope of the

mean �eld free energy.

In recent years there has been new interest in the study of Kac lattice-spin models (see e.g.

[COP],[BBP],[CP],[BZ1],[BP]). The challenge in this direction of research is to understand these

models on the level of Gibbs-measures, and not only on the level of thermodynamic potentials,

for small but �nite Kac-parameter . Even the proof of low-temperature ordering in the Kac-

Ising model in more than one dimensions in zero �eld, at temperatures uniform as  # 0, was only

given relatively recently (independently by [CP],[BZ1]). Steps in the direction of a treatment

of not necessarily symmetric long-range models are under way ([BZ3]). New behavior appears

when Kac-versions of models with disorder are investigated. So far, for random models there

are rigorous results about the structure of the low-temperature Gibbs measures only in one

dimension. However, even here adding randomness can inuence the behavior of the system

in an interesting way (see [BGPi] for the Hop�eld-Kac model, see [COPi] for the random �eld

Kac-model).

It is a common step in the analysis of lattice Kac-models to try to describe the system on

the level of local averages of the order parameter in blocks of a scale l � 1

. An analogous

coarse-graining from a continuous-particle system with Kac-potential to a lattice-spin system

was used in the beautiful paper [LMP] to show the existence of a gas-liquid phase transition

(with the distinct phases characterized by di�erent densities).

Such a blocking transformation can be viewed as a `renormalization group transformation'

and be immediately investigated on the in�nite lattice, too. Already from an abstract point of
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view, it is then a natural question to ask whether the resulting image measures will be Gibbsian,

having in mind the numerous examples of non-Gibbsianmeasures emerging in seemingly innocent

places in lattice spin models. In particular we remind the reader that, in short range models,

one of the most prominent examples of non-Gibbsian measures is the Ising model in zero �eld

under block averaging, at low temperature. (This was proved by [EFS] in their `big paper', see

Theorem 4.6 therein.) For a general overview on the problem of non-Gibbsian measures we also

refer to the standard reference [EFS]. For more recent developments, see the review articles [E],[F]

and [DS],[BKL],[MRSM]. In the case of random system, the additional question comes up to

understand the interplay with the disorder variables, and see whether the resulting interactions,

when they exist, are local functions of these variables, too. (For an analysis of a class of di�erent

examples of non-Gibbsian, but weakly Gibbsian measures arising from disordered systems, see

[K5],[K6],[EMK].)

After the blocking is done, the situation should be easier, but it can still be highly nontrivial

to control the phase structure of the blocked measure. We will not discuss this step here. It

should however be clear that it can be very useful from a technical point of view to have at hand a

renormalized Hamiltonian with precise estimates on the decay of the potential. So, the purpose

of this note, is both (1) to present a nicely behaved coarse-graining example of a disordered

system for Gibbs-theory, and also (2) provide concrete information on the given model that can

be explicitly used in a later analysis. Moreover, the technicalities are relatively simple, so our

treatment of the model can also serve as a pedagogical and self-contained example that shows

what ingredients are needed to prove such a result.

Let us now de�ne the model and state our results. Consider the Kac-Ising model in an

arbitrary external magnetic �eld con�guration � = (�i)i2ZZd . The formal Hamiltonian is

H[�](�) = �
�

2

X
i;j

J(i� j)�i�j � �

X
i

�i�i (1.1)

The spin variables � = (�i)i2ZZd take values in f�1; 1gZZ
d

. We consider this formal Hamiltonian

for a �xed value of the inverse temperature � and the Kac-interaction-parameter 0 <  � 1

describing the inverse range of the interaction. The two-spin interaction is given by J(i) =


d
J1(i) where we restrict ourselves to the simplest choice for the Kac-interaction being an

indicator function J1(i) = cd1jij�1, where jij denotes the sup-norm on IR
d. cd = 2�d is the

normalization that is chosen such that
R
J(x)dx = 1 for all , so that the strength of the

interaction of a �xed spin with the others is of the order �, independently of .

The aim of the paper is to study the `renormalization group map' given by l-block-averaging

which is de�ned as follows. Partition the lattice ZZd into blocks of sidelength l. Each of these

blocks will be labelled by an index x, where we identify x with a coordinate vector in ZZ
d. Then
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the block-average map is just

(�i)i2x 7! mx ((�i)i2x) =
1

ld

X
i2x

�i (1.2)

from f�1; 1gl
d

! f�1;�1 + 2
ld
; : : : ; 1g. Following common notation, the last sum is over those

sites i in the original lattice that lie inside a block with label x on the coarse-grained lattice. We

also write �x = (�i)i2x (and �x = (�i)i2x) to denote the collection of Ising spins (resp. external

�elds) in the block x. Let us denote by the symbol Tl the corresponding map on the in�nite

volume con�guration spaces, obtained by application of (1.2) independently over the blocks.

As usual in Kac-models, it is then straightforward to extract a main part for the corre-

sponding hypothetical coarse-grained energy function (say, in �nite volume). What is less clear

is the behavior of the error terms (the `blocking error') and whether they give rise to a nicely

absolutely convergent potential. In this context we have the following explicit result.

Theorem 1: Assume that � 2 IR
ZZd is an arbitrary external �eld con�guration and �[�] is

any of the in�nite volume Gibbs-measure for the corresponding d-dimensional Kac-Hamiltonian

(1.1). Suppose that the block length l 2 f2; 3; 4; : : :g is less or equal than the range of the

interaction 1

and, moreover, that the parameters l; �;  are such that the `expansion parameter'

�(�; ; l) :=
X
x2ZZd

�
exp
�
�

X
i;j:

i2x;j20

jJ(i� j)� J(lx)j
�
� 1

�
(1.3)

is less or equal than �
� � 0:110909:::.

Then, the l-coarse-grained measure Tl�[�] is a Gibbs-measure for an Hamiltonian with ex-

ponentially decaying interactions.

This Hamiltonian has the form

H
ren[�] ((mx)x2ZZd)

= �
0

0
@1

4

X
x;y2ZZd

Jl(x� y)(mx �my)
2 +

X
x2ZZd

f�;l[�x](mx)

1
A�

X
A:A�Zd

UA(�A;mA)
(1.4)

Here �
0 � �l

d is the renormalized inverse temperature. The single site potentials are given by

the `�nite block free-energies'

f�;l[�x](mx) = �
1

�ld
log�0[�x] (mx(�x) = mx)�

m
2
x

2
(1 + �l) (1.5)

where �
0[�x](�x = !x) =

Q
i2x

exp(��i!i)

2 cosh(��i)
is the product measure obtained by putting the Kac-

coupling J equal to zero, and 1 + �l =
P

z2ZZd Jl(z) is close to one for l small.
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The multi-body potentials UA stem from the expansion of the `blocking error'. They are

non-zero only for jAj � 2 and satisfy the bound

X
A:A3x

jUA(�A;mA)j

�
�
�

�(�; ; l)

�jAj�1

� a
� � 0:633 (1.6)

independently of x and of the external �elds �.

Remark: Note that we did not make any assumption on the random �eld con�guration.

Of course, in the `true' random �eld model, one is interested in the behavior of the system for

typical con�gurations � that are drawn from an i.i.d. distribution on the in�nite lattice. (See

[BK],[AW] for mathematical results on the random �eld Ising model, see [K3] for the continuous

spin version.) The Gibbs measures of untypical con�gurations can of course have very di�erent

properties. Even though, our theorem states that the map from Hamiltonian to renormalized

Hamiltonian stays simple. As long as there is smallness of the parameter �(l; �; ) it is irrelevant

whether the original system undergoes a phase transition or not.

Remark: The condition on the parameters essentially means that �0l has to be small

enough, see (2.28).

Remark: The �rst two terms in the formula are what one expects to describe the lead-

ing order behavior of the Kac-model. The �rst term favors con�gurations of constant block-

magnetisations mx, with the scaled range of interaction l. The single site potentials given by

f�;l[�x](mx) favor con�gurations close to its minima, which are determined by �x, the value of

the external �elds on the block. For vanishing external �elds, the potential converges with l " 1

to the free-energy function of the Curie-Weiss model whose minima are the (one or two) possible

values of the magnetization. More generally, for an i.i.d. random � the functions f�;l[�x](mx)

converge a.s. to the non-random free-energy function of the Curie Weiss random �eld model.

About this simple model very explicit information is known, see e.g. [AP],[APZ],[K1],[K2].

So we see that we are here in a particularly nice situation where the renormalized Hamil-

tonian is given by a main part obtained by a straightforward computation and corrections that

are quickly decaying and explicitly controlled. Let us just mention some results of an analo-

gous character in di�erent lattice models. [BCO] were able to treat the entire high-temperature

phase of the l-blocked Ising model with Gaussian scaling by elaborate expansions and provided

explicit control on the non-Gaussian terms of the resulting potential when l " 1. In [K3], [K4]

single-site coarse-grainings from random continuous spin-systems to discrete ones (that turned

out to be Gibbsian) were used to analyse the phase-structure. It might seem somewhat sur-

prising that the construction of the full renormalized potential for a lattice Kac system was not

formally investigated before; but say in [BZ1] the problem was bypassed by di�erent methods

and controlling the `blocking-error' by uniform bounds.
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The proof of the theorem, given in the next chapter, relies on a suitable polymer expansion

of the `blocking error'. We do the coarse graining of the original model in �nite volume for any

given �xed Ising-boundary condition. We show convergence of the expanded blocking terms,

uniformly in the volume, the boundary condition, and the con�guration of the external �elds

(See Proposition 2.1). For this we employ a general explicit convergence criterion for long-range

graphs on the lattice, given in the appendix, which is responsible for the numerical constants

occuring in the Theorem. Uniformity in the volume, for all boundary conditions, then implies the

in�nite volume result for all Gibbs measures, with the same bounds, by the general Proposition

2.2.

Acknowledgments:

The author thanks A.Bovier for stimulating discussions and suggestions. This work was sup-

ported by the DFG Schwerpunkt `Wechselwirkende stochastische Systeme hoher Komplexit�at'.

II. Proof of the theorem: Expansion of the blocking-error

The proof of the theorem relies on the following �nite volume result.

Denote the �nite volume Gibbs measures of the Kac-model (= original system) with bound-

ary condition �� and �eld con�guration � in the volume ��ZZd by

�
��
ZZdn�

� [��](f) =

P
��

f(����ZZdn�)e
�H�[��](��j��ZZdn�)P

��
e
�H�[��](��j��ZZdn�)

(2.1)

where f is any spin observable and H�[��](��j��ZZdn�) is the restriction of the in�nite volume

Hamiltonian (1.1) to �. As usual, it is obtained by keeping only pairs fi; jg in the �rst sum and

i in the second sum that are not contained in the complement of �, and substituting ��i for sites

i outside �.

Proposition 2.1: Assume that l; �;  are as in the hypothesis of Theorem 1, that is l � 1

,

l 2 f2; 3; 4; : : :g and �(�; ; l) =
P

x2ZZd

�
e
�
P

i;j:i2x;j20
jJ(i�j)�J(lx)j

� 1

�
� �

� � 0:110909:::.

Let V�ZZd denote a �nite volume in the coarse-grained lattice and � = fi 2 ZZ
djx(i) 2 V g

be the corresponding set of sites in the original lattice.

Then, the corresponding �nite volume coarse-grained measure with boundary condition ��ZZdn�

has the representation

�
��
ZZdn�

� [��](mV (��) = mV ) =
exp

�
�H

��
ZZdn�

;ren

V [��] (mV )
�

P
~mV

exp
�
�H

��
ZZdn�

;ren

V [��] ( ~mV )
� (2.2)
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Here the `�nite-volume renormalized Hamiltonian' is given by

H
��
ZZdn�

;ren

V [��] (mV )

= �
0

0
@1

4

X
x;y2V

Jl(x� y)(mx �my)
2 +

X
x2ZZd

f
��
ZZdn�

�;l
[�x](mx)

1
A�

X
A:A�V

U
��
ZZdn�

A (�A;mA)
(2.3)

with renormalized inverse temperature �
0 = �l

d and `�nite block free-energies' incorporating the

�nite volume corrections given by

f
��
ZZdn�

�;l [�x](mx) = �
1

�ld
log �

0;��
ZZdn�

x [�x]
�
mx(�x) = mx

�
�

m
2
x

2

X
y2V

Jl(x� y) (2.4)

where

�
0;��

ZZdn�

x [�x]
�
�x = !x

�
:=
Y
i2x

exp
�
�
�
�i +

P
j2ZZdn� J(i� j)��j

�
!i

�
2 cosh

�
�
�
�i +

P
j2ZZdn� J(i� j)��j

�� (2.5)

is the product measure obtained by putting the Kac-coupling J equal to zero inside �, but keeping

the couplings to the boundary.

The multi-body potentials U
��
ZZdn�

A are non-zero only for jAj � 2. They are independent on

the boundary condition ��ZZdn� for d(A; V c) > 1
l

and we have the bound

X
A:A3x

���U ��
ZZdn�

A (�A;mA)
��� � �

�

�(�; ; l)

�jAj�1

� a
� � 0:633 (2.6)

uniformly in x, the boundary condition ��ZZdn� and in the external �elds �.

Remark: Apart from boundary-corrections the �nite-volume coarse-grained Hamiltonian

is of the desired form given in Theorem 1. Note that the interaction term is only between mx's

for sites that lie in the volume V . The main inuence of the Ising-boundary condition is in the

f -terms acting as local potentials on the coarse-grained variables. E.g., for mainly plus boundary

Ising spins this potential will favor positive values of mx, for x close to the boundary.

Proof: It is convenient to collect the linear parts of the RF-Kac-Hamiltonian including the

boundary terms and de�ne measures that just contain these parts. This is the reason for de�n-

ing the measures (2.5). We denote more generally by �
0;��

ZZdn�

� [��](�� = !�) the corresponding

product measure on the Ising con�gurations in the whole of �. Then we can rewrite the ex-

pectation of any observable f w.r.t. the �nite volume Gibbs-measures in the volume � with

boundary condition ��ZZdn� in the form

�
��
ZZdn�

� [��](f) =

R
�
0;��

ZZdn�

� [��](d��)f(����ZZdn�)e
�
2

P
i;j2�

J(i�j)�i�j

R
�
0;��

ZZdn�

� [��](d��)e
�
2

P
i;j2�

J(i�j)�i�j
(2.7)

6



Here we have achieved that external �elds and boundary conditions are absorbed in our new

a-priori measures. We introduce non-normalized mV -weights by the constrained expectations

Z
��
ZZdn�

� [��](mV ) :=

Z
�
0;��

ZZdn� [��](d��)1mx(�x)=mx8x2V e

�

2

P
i;j2�

J(i�j)�i�j
(2.8)

so that the desired image measure we would like to control becomes

�
��
ZZdn�

� [��](mV (��) = mV ) =
Z

��
ZZdn�

� [��](mV )P
~mV

Z
��
ZZdn�

� [��]( ~mV )
(2.9)

Now comes the blocking. To rewrite the non-normalized weights (2.8) use the constraint to get

Z
��
ZZdn�

� [��](mV ) = e

�l2d

2

P
x;y2V

J(l(x�y))mxmy

�

Z
�
0;��

ZZdn� [��](d��)
Y
x2�

1mx(�x)=mx
e

�
2

P
x;y2V

P
i;j:

i2x;j2y

(J(i�j)�J(l(x�y)))�i�j (2.10)

The trick is to make the last line into an expectation w.r.t. a probability measure. Write

�
0;��

ZZdn�

� [��](d��jmV ) :=
Q

x2V �
0;��

ZZdn�

x [�x](d�xjmx) where the last terms denote blockwise

independent probability measures on the original spins conditioned on their magnetization, i.e.

Z
�
0;��

ZZdn�

� [�x](d�xjmx)f(�x) =

R
�
0;��

ZZdn� [�x](d�x)1mx(�x)=mx
f(�x)R

�
0;��

ZZdn� [�x](d�x)1mx(�x)=mx

(2.11)

We put

I
��
ZZdn�

l [�x](mx) := �
1

ld
log �

0;��
ZZdn�

x [�x] (mx(�x) = mx) � 0 (2.12)

By dropping the superscript we denote the quantity obtained by putting the boundary condition

��ZZdn� equal to zero. Of course, for sites x suÆciently far away from the boundary of V , the

boundary condition is not felt anymore, and the two quantities coincide.

This function is the �rst part of the free-energy-like function (2.4) occuring as single site-

potential. For large l (and vanishing or random �) it becomes close to a rate function. In this

way we can write the constrained weight (2.8) in the form

Z
��
ZZdn�

� [��](mV ) = e

�0

2

P
x;y2V

Jl(x�y)mxmy�l
d
P

x2V
I
��
ZZdn�

l
[�x](mx)

�

Z
�
0;��

ZZdn�

� [��](d��jmV )e

�
2

P
x;y2V

P
i;j:

i2x;j2y

(J(i�j)�J(l(x�y)))�i�j
(2.13)

The negative exponent of the exponential in the �rst line equals the renormalized Hamiltonian

(2.3) up to the U -terms. To see this, use the equation 2mxmy = �(mx � my)
2 + m

2
x + m

2
y

and de�nition (2.4). The next line of (2.13) gives corrections. Now, the whole story is that

these corrections can be expressed as a convergent series of interaction potentials for the block
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variables. In order to do this we perform a high-temperature-type expansion and produce a

polymer-partition function, with weights depending locally on the mx's and �x's. This is seen

as follows:

We de�ne the set of pairs on the coarse-grained lattice between which an interaction can

take place, i.e.

B;l := ffx; yg; x; y 2 V : 9i 2 x;9j 2 y : J(i� j) 6= J(l(x� y))g (2.14)

Note that, for l � 1

, only interactions between di�erent sites x, y occur. With this de�nition

we can rewrite the blocking corrections given by the second line in (2.13) asZ
�
0;��

ZZdn�

� [��](d��
��m�)

Y
fx;yg:fx;yg2B;l

�
e
�
P

i;j:i2x;j2y
(J(i�j)�J(l(x�y)))�i�j

� 1 + 1

�

=
X

B:B�B;l

Z
�
0;��

ZZdn�

� [��](d��
��m�)

Y
fx;yg:fx;yg2B

�
e
�
P

i;j:i2x;j2y
(J(i�j)�J(l(x�y)))�i�j � 1

�

(2.15)

For a set of bonds B we denote the corresponding vertex set by X(B) := fx 2 V : 9y 2

V; fx; yg 2 Bg. The simple but crucial point is that the �0-integration factorizes over connected

components of the graph (X(B); B). This allows to do an expansion in the usual way. The

interesting points being left are to get reasonable bounds to prove convergence and to keep track

of the dependence on external �elds and boundary condition.

More precisely, we write B = P1 [ : : : [ Pn for the unique decomposition into connected

components and call the Pi's polymers. So, a polymer is a connected subgraph of (X(B;l);B;l).

We write P � P;l � P;l(V ) for the set of all such polymers in V . There is the obvious notion

of pairwise compatibility: P1; P2 are compatible i� X(P1) \X(P2) = ;.

So we can continue to write the last expression as a sum over pairwise compatible families

of polymers with m- dependent activities of the formZ
�
0;��

ZZdn�

� [��](d��
��m�)e

�
2

P
x;y2V

P
i;j:i2x;j2y

(J(i�j)�J(l(x�y)))�i�j

=
X

(P1;:::;Pn)c

nY
i=1

�
��
ZZdn�

Pi
[�X(Pi);mX(Pi)]

(2.16)

This is the formulation of a polymer partition function, of the form given in appendix (A.1).

Here the polymer activity of a polymer P is given by

�
��
ZZdn�

P [�X(P );mX(P )]

=

Z
�
0;��

ZZdn�

� [�X(P )](d�X(P )

��mX(P ))
Y

fx;yg:fx;yg2P

�
e
�
P

i;j:i2x;j2y
(J(i�j)�J(l(x�y)))�i�j

� 1

�

(2.17)
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The activity depends on the coarse-grained �eld m and external �eld � only on the values for

x's in the vertex-set X(P ). The dependence on the boundary condition �� is only for X(P ) near

to the boundary.

We want to perform the corresponding cluster-expansion for the logarithm of this polymer

partition function. This is nothing but the Taylor-expansion when the polymer-activities are

treated as independent (complex) variables �P . General information on its structure and an

explicit convergence criterion is given in Proposition A.1 in the appendix. To control the ex-

pansion we need estimates on the magnitude of the polymer weights. We employ a uniform

bound for the terms under the integral that is valid on each pair of cubes x, y, uniformly in the

spin-con�gurations. Using jex � 1j � e
jxj � 1 we have����e�

P
i;j:i2x;j2y

(J(i�j)�J(l(x�y)))�i�j
� 1

����
� e

�
P

i;j:i2x;j2y
jJ(i�j)�J(l(x�y))j

� 1 =: e��x;y

(2.18)

This immediately gives an estimate that doesn't depend on the integrals any more, and hence������ZZdn�P [�X(P );mX(P )]
��� � e

�
P

b:b2P
�b
; (2.19)

independently of the values of m, �, and ��. In our case where the Kac-interaction is given in

terms of the characteristic function J(ji� jj) = cd
d1ji�jj� 1


we have that e��b = e

�l2dcd
d

� 1,

independently of b unless it is zero. Looking at the de�nition of the `expansion parameter' (1.3)

the Proposition A.1 now ensures convergence of the expansion under the assumption �(�; ; l) �

�
�.

In our case, the activities are functions of m, �, ��, and consequently the cluster-weights are

functions of them, too. Indeed, we can write the logarithm of (2.16) as a cluster-sumX
C

�
��
ZZdn�

C (�X(C);mX(C)) (2.20)

where the sum is over all indecomposable sets C of polymers. We have written X(C) =

[P :P2CX(P ). Since the cluster-weights are just sums over terms in the Taylor-expansion, the

local dependence on external �eld and boundary condition of the polymer-weights immediately

carries over to the cluster-weights �
��
ZZdn�

C
(�X(C);mX(C)), as indicated. These facts, are collected

in Proposition A.1 in the appendix.

Finally we resum over the clusters with �xed vertex sets X(C) to obtain the representation

for the logarithm of the blocking error of the desired form

log

Z
�
0;��

ZZdn�

� [��](d��jmV )e

�
2

P
x;y2V

P
i;j:

i2x;j2y

(J(i�j)�J(l(x�y)))�i�j

=
X

A:A�V

U
��
ZZdn�

A (�A;mA)
(2.21)
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where

U
��
ZZdn�

A (�A;mA) =
X

C:X(C)=A

�
��
ZZdn�

C (�X(C);mX(C)) (2.22)

From the general decay estimate on cluster-sums given in appendix (A.4) we immediately get

the decay-estimate on the potentials of the form

X
A:A\fx;yg6=;

���U ��
ZZdn�

A (�A;mA)
��� ���

�

�jAj�1

�
X

C:C icp fx;yg

j�
��
ZZdn�

C (�X(C);mX(C))j

�
�
�

�

�jCj
� a

�

(2.23)

for any polymer fx; yg. This, in particular, implies the desired estimate (2.6) and thus �nishes

the proof of proposition 2.1. }

Remark: The reader might �nd it instructive to write down the exact expression of the

pair-interactions in the potential U . It is easy to see by summing the terms in the Taylor-

expansion containing just a given polymer-weight �fx;yg that

U
��
ZZdn�

fx;yg
(�fx;yg;mfx;yg)

= log

Z
�
0;��

ZZdn�

x [�x](d�x
��mx)

Z
�
0;��

ZZdn�

y [�y](d�y
��my)e

�
P

i;j:i2x;j2y
(J(i�j)�J(l(x�y)))�i�j

(2.24)

(Here we have used the form �fx;yg =
R
e
::: � 1 and that the sum of terms corresponding only

to the single bond polymer-weight in the Taylor expansion of the logarithm of the partition

function is log(1 + �fx;yg) = log
R
e
:::.)

We can get a uniform bound on this pair potential which is better than what would fol-

low from (2.6) by using the uniform bound �l
2d
cd

d on the modulus of the argument of the

exponential under the integral in (2.24). So we have

���U ��
ZZdn�

fx;yg
(�fx;yg;mfx;yg)

��� � cd�
0(l)d (2.25)

In particular we get from this and (2.6) for the higher terms that

X
A:A3x

���U ��
ZZdn�

A (�A;mA)
��� � cd�

0(l)dv;l + a
�

�
�(�; ; l)

��

�2

(2.26)

where

v;l := #
n
x 2 ZZ

d : 9i 2 x;9j 2 0 : J(i� j) 6= J(lx)
o

(2.27)

is the number of sites that can interact with a given site via pair-interactions at all. To check the

quality of our estimates note that
P

x2V

P
A3x jUAj=jAj is an upper bound on the modulus of

10



the logarithm of (2.16), the `total blocking error in �'. Thus, jV j=2 times the r.h.s. of (2.26) is

an upper bound on the total blocking error. But, cd�
0(l)dv;ljV j=2 is precisely the upper bound

on would get on the total blocking error by doing a uniform estimate in the argument of the

exponential in the last line of (2.13) in the whole of �, without expansion. So, the only di�erence

is in the higher order terms and we have lost very little by summing back the expansion.

It is a simple geometric fact that there is a dimensional dependent constant c0d s.t. v;l �

c
0
d(l)

�(d�1) (see e.g. Lemma 2.1 [BZ1]). So we have that

�(�; ; l) � v;l

�
e
�0cd(l)

d

� 1
�
� c

0
dcd�

0
l � e

�0cd(l)
d

(2.28)

using that ejxj � 1 � jxjejxj. This shows that �0� has to be small enough for the expansion to

work.

Remark: One may ask what happens in the case l >
1

where blocks are larger than

the range of the interaction, forgetting about the smallness of  and the motivation of taking

l-averages to analyse the Kac-limit. This is of a di�erent nature altogether. We remind the

reader that, by a result of van Enter, Fernandez, Sokal, there is provably non-Gibbsianness in

the usual nearest-neighbor Ising model in zero �eld, for all even l, at suÆciently low temperature

(see Theorem 4.6 in the big paper [EFS]). Of course, at suÆciently high-temperature there will

be again Gibbsianness in the Kac-model: An expansion of the couplings between neighboring

blocks as indicated by the formal equation

e

�
2

P
i;j

J(i�j)�i�j+�
P

i
�i�i

=
Y
x

e

�
2

P
i;j2x

J(i�j)�i�j+�
P

i2x
�i�i

�
Y

fx;yg;x 6=y

�
e
�
P

i2x;j2y
J(i�j)�i�j

� 1 + 1

� (2.29)

where only neighboring x; y occur, would provide us with an exponentially decaying �-dependent

potential if the `expansion parameter'
P

x2ZZd;x6=0

�
e
�
P

i;j:i2x;j20
J(i�j)

� 1

�
is smaller than a

suitable constant. This is seen as in the proof of our Theorem. Noting that the number of pairs

of spins at sites in neighboring blocks having non-zero interaction with range 1= is of the order

(ld�1
=)2 this immediately implies existence of a convergent interaction potential for �ld(l)d�2

suÆciently small. For better results, more elaborate expansions would have to be done.

Now, to carry over the results of Proposition 2.1 to the in�nite volume and prove the

theorem, we use the following general fact about Gibbs-measures under block transformations.

11



It says that control of the coarse-grained measure uniform in the �nite volume, gives Gibbsianness

with the same estimates in in�nite volume.

Proposition 2.2: Suppose that �
��
ZZdn�

� ( � ) are local speci�cations, not necessarily translation

invariant, for a lattice spin system with �nite local spin-space. Fix l and suppose that we are

given arbitrary local maps �x 7! mx(�x), for all l-blocks x. Assume that we have the �nite

volume Gibbs-type representation

�
��
ZZdn�

� (mV (��) = mV ) =
e
�
P

A�V
�
��
ZZdn�

A
(mV )

P
~mV

e
�
P

A�V
�
��
ZZdn�

A
( ~mV )

(2.30)

where V�ZZd denotes a �nite volume in the coarse-grained lattice, and � = fi 2 ZZ
djx(i) 2 V g

is the corresponding set of sites in the original lattice.

Assume that the above `�nite-volume potential' �
��
ZZdn� has the following properties.

(i) It is absolutely uniformly summable, for all �xed boundary conditions ��, uniformly in the

volume �, i.e. that we have for all x 2 ZZ
d

sup
�

X
A:A3x

k�
��
ZZdn�

A k1 <1 (2.31)

(ii) It converges to an in�nite volume potential

lim
�"ZZd

�
��
ZZdn�

A = �A (2.32)

for all �xed A�ZZd and boundary conditions ��.

Then, for any Gibbs-measure � on the original system, corresponding to the local speci�ca-

tion �
��
ZZdn�

� (��), the renormalized measure T� is a Gibbs-measure for the limiting interaction

potential � = (�A)A�ZZd .

The proof will be given in a moment. Assuming this result, the proof of Theorem 1 is

immediate: The convergence of the renormalized potentials (2.32) is readily checked by the

explicit expressions (2.4),(2.5),(2.22) with (2.17). In fact, in our case of a Kac-interaction given

by a characteristic function, the potentials even become �-independent for � large enough.

Uniform absolute summability at every site x is clear by the explicit estimate (2.6).

Let us �nally give the

12



Proof of Proposition 2.2: Choose volumes V0�V1�V2. Assuming the Gibbs-type form (2.30)

we have for the conditional expectations

�
��
�2
(mV0(��0

) = mV0 jmV1nV0(��1n�0
) = mV1nV0)

=

P
~mV

2
nV

1

e
�
P

A�V2
���
A(mV0

mV1nV0
~mV2nV1

)

P
~mV0

P
~mV2nV1

e
�
P

A�V2
���
A
( ~mV0

mV1nV0
~mV2nV1

)

=
e

�
P

A�V1
A\V0 6=;

���
A(mV0

mV
1
nV

0
)

< e

�
P

A�V2:A\V0 6=;

A\V2nV1 6=;

���
A(mV0

mV1nV0
~mV2nV1

)

>V2nV1P
~mV0

e

�
P

A�V1
A\V0 6=;

���
A
( ~mV0

mV1nV0
)

< e

�
P

A�V2:A\V0 6=;

A\V2nV1 6=;

���
A
( ~mV0

mV1nV0
~mV2nV1

)

>V2nV1

(2.33)

with the short notation

< f(mV2nV1) >V2nV1 :=

P
~mV2nV1

f( ~mV2nV1)e
�
P

A�V2nV0
���
A(mV1nV0

~mV2nV1
)

P
~mV2nV1

e
�
P

A�V2nV0
���
A
(mV1nV0

~mV2nV1
)

(2.34)

Now, from the summability hypothesis (2.31) follows that by choosing V1 suÆciently large (but

�nite), the exponential in the brackets can be made uniformly arbitrarily close to one and thus

we have
�
��
�2
(mV0(��0

) = mV0 jmV1nV0(��1n�0
) = mV1nV0)

=
e

�
P

A�V
1

A\V0 6=;

�
��
ZZdn�

2

A
(mV

0
mV1nV0

)

P
~mV0

e

�
P

A�V1
A\V

0
6=;

�
��
ZZdn�2

A
( ~mV0

mV
1
nV

0
)

� (1 + o(�1));
(2.35)

uniformly in �2��1.

Let us now assume that, for a given Gibbs-measure �, the boundary condition �� is chosen

s.t. lim�2
�
��
�2

= �. Taking the limit �2 " ZZ
d we recover the renormalized measure T� on the

l.h.s. (noting that the renormalization group transformation is local!) and from the convergence

of the potential to the boundary-independent expression we have the estimate

(T�)(mV0 jmV1nV0) =
e

�
P

A�V1
A\V

0
6=;

�A(mV0
mV1nV0

)

P
~mV0

e

�
P

A�V1
A\V0 6=;

�A( ~mV0
mV1nV0

)
� (1 + o(�1)) (2.36)

Finally we can put �1 " ZZ
d. The last equation shows the continuity of the conditional expec-

tations on the r.h.s. and their convergence to the Gibbs-formula, as desired. }

We don't need it in the paper, but let's make a simple comment on the translation-invariant

case, by which we mean that both the local con�guration of the original system and the map T

are translation-invariant. Assume that we have the representation (2.30) and conditions (2.31)
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and (2.32) only for either 1) periodic boundary conditions or 2) one speci�c boundary condition

�� for which we know that the local speci�cation of the original system converges to a particular

translation-invariant Gibbs-measure �1. Then it follows already that T� is Gibbsian for the

same limiting potential, for all translation-invariant Gibbs measures �.

E.g. for the case of periodic boundary conditions, this is seen as follows. Note that by

compactness there is always a translation invariant weak limit point �1 of the corresponding

�nite volume measures. By the reasoning given in the proof of the proposition, T�1 is Gibbs

for the limiting potential. But from this follows that all renormalized translation-invariant are

Gibbs-measures for the same potential. This is a consequence of the general dichotomy-theorem

for block-transformed translation-invariant Gibbs-measures, by [EFS] (see [EFS] Theorem 3.4),

which states that all renormalized translation invariant Gibbs measures are either Gibbs for the

same potential or not Gibbs at all.

Appendix:

A convergence criterion for cluster-expansions for long-range graphs

Proposition A.1: Suppose that X
(P1;:::;Pn)c

nY
i=1

�Pi (A.1)

is a polymer partition function, where: `Polymers' P are graphs on the lattice ZZd having at least

one edge. Two polymers are called compatible if they have disjoint vertex sets. The sum is over

pairwise compatible families of polymers taken from a �nite subset P of the set of graphs on ZZ
d.

Assume that the (possibly complex) activities �P satisfy the bounds

j�P j � e
�
P

b2P
�b where � :=

X
y:y 6=x

e
��x;y � �

� � 0:110909 (A.2)

for some translation invariant function �b = �x;y � 0 on the set of edges on ZZ
d, where the above

b-sum is over all edges of the graph P .

Then, the cluster expansion converges, i.e. the Taylor-series of the logarithm of the partition

function has the representation

log
X

(P1;:::;Pn)c

nY
i=1

�Pi =
X
C

�C (A.3)

where the sum is over indecomposable subsets C�P. `Indecomposable' means that there do not

exist nonempty C1 and C2 s.t. the pairs P1, P2 are always compatible for P1 2 C1, P2 2 C2. The
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weight �C =
P0

I:I2INP cI

Q
P2P �

IP
P is the sum over all monomials in the Taylor-expansion cor-

responding to multi-indices I with IP � 1 for all P 2 C and cI is the corresponding combinatorial

factor, depending only on the incompatibility relation.

Moreover, we have the decay-estimate of the form

X
C:C icp P

j�C j

�
�
�

�

�jCj
� a

�jP j; where a
� � 0:633 (A.4)

for any �xed P . Here the sum is over all clusters incompatible with P , i.e. containing at least

one polymer incompatible with P and we have put jCj =
P

P2C jP j where jP j is the number of

bonds of the polymer P .

Proof: The proof is based on the Kotecky-Preiss convergence-criterion [KP] for abstract poly-

mer models plus a little combinatorics. A very nice and simple proof of the KP-criterion (with

slightly weaker bounds) can be found in [BZ2] (see also [S]). It says that the hypothesis

X
P 0:P 0 icp P

j�P 0 jea(P
0)+Æ(P 0) � a(P ) (A.5)

where a(P ) and Æ(P ) are weight-functions on the set of polymers, implies convergence of the

cluster expansion. Furthermore it gives the estimateX
C:C icp P

j�C je
Æ(C) � a(P ) (A.6)

for any P 2 P, where Æ(C) =
P

P2C Æ(P ).

In our present, possibly long-range case, we choose the weight-functions as a(P ) = ajP j and

Æ(P ) = ÆjP j with a; Æ > 0 (whose values will be �xed later), and estimate

X
P 0:P 0 icp P

j�P 0 jea(P
0)+Æ(P 0) �

X
x:x2X(P )

X
P 0:X(P 0)3x

j�P 0 je(a+Æ)jP
0 j

(A.7)

where X(P ) is the vertex set of P . This is a certain overestimation that could be improved

upon for short-range models. If we think of long range models where the number of bonds that

can emanate from a vertex is large, and the nearest bonds don't have a large relative weight,

the loss is very small. So we see that the hypothesis of the KP-criterion is implied if the last

P
0-sum is less or equal than a=2. By the form of the bound on the activities we assume, this is

true if X
P :X(P )3x

e
�
P

b:b2P
(�b�a�Æ) �

a

2 (A.8)

We need an upper bound on the sum of the l.h.s. in terms of the bound on � given our hypothesis.

This is provided by the following combinatorial Lemma.
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Lemma A.2: Put b(t) :=
P

P :X(P )3x e
�
P

fx;yg2P
tx;y

where tx;y are translation-invariant.

Then the bound
P

y:y 6=x e
�tx;y � 1

e
implies that b(t) � h

�1
�P

y:y 6=x e
�tx;y

�
�1, with the function

h : [1; e]! [0; 1
e
], given by h(y) := log y

y

Remark: Note that h is a strictly increasing one-to-one mapping from [1; e] to [0; 1
e
] and

we have x � h
�1(x) � 1 = x + : : : for x small. So, the Lemma shows that, for small enough

weights, the sum over all polymers containing a given site, is essentially given by the sum over

all single-bond polymers.

Proof: We restrict the maximal number of edges in the polymers occurring in the sum, and

put bn(t) :=
P

P :X(P )3x;1�jP j�n e
�
P

fx;yg2P
tx;y

. We proceed by induction over n.

We start with the case n = 1. Then we have b1(t) =
P

y:y 6=x e
�tx;y which is smaller than

the r.h.s. of the inequality we claim, because x � h
�1(x)� 1.

Next we assume that the desired equality holds for bn. We want to show that it holds for

bn+1. Now, every polymer containing the site x with at most n+ 1 bonds can be decomposed

(in a possibly non-unique way) into a bond emerging from x going to some other site y and a

polymer containing the site y with at most n bonds. So, we have the inequality

bn+1(t) �
X
y:y 6=x

e
�tx;y

 
1 +

X
P :X(P )3y;1�jP j�n

e
�
P

b2P
tb

!

+
1

2!

X
y
1
:

y
1
6=x

X
y
2
:

y
2
6=x;y

1

e
�tx;y

1 e
�tx;y

2

 
1 +

X
P :X(P )3y1;1�jP j�n�1

e
�
P

b2P
tb

!

�

 
1 +

X
P :X(P )3y2;1�jP j�n�1

e
�
P

b2P
tb

!

+ : : :+

+
1

k!

X
y1:y1 6=x

: : :

X
yk:yk 6=x

e
�tx;y1 : : : e

�tx;yk

kY
i=1

 
1 +

X
P :X(P )3y1;1�jP j�n�k

e
�
P

b2P
tb

!
+ : : :

(A.9)

Bounding the r.h.s. by an exponential gives

bn+1(t) �

nX
k=1

1

k!

0
@ X
y:y 6=x

e
�tx;y

 
1 +

X
P :X(P )3x;1�jP j�x

e
�
P

b2P
tb

!1
A
k

� exp

0
@ X
y:y 6=x

e
�tx;y (1 + bn(t))

1
A� 1;

(A.10)
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by translation-invariance. Using the induction hypothesis on bn we have from this

bn+1(t) � exp

0
@ X
y:y 6=x

e
�tx;y h

�1

 X
y:y 6=x

e
�tx;y

!1
A� 1 = h

�1

 X
y:y 6=x

e
�tx;y

!
� 1 (A.11)

due to the property of the function h
�1. This concludes the proof of Lemma (A.2). }

From the lemma we have

X
P :X(P )3x

e
�
P

b:b2P
(tb�a�Æ) � h

�1

0
@ X
y:y 6=x

e
�(�x;y�a�Æ)

1
A� 1 (A.12)

So, (A.8) is implied if the r.h.s. is less or equal than a
2
. This is equivalent to

e
Æ
� � e

�a
h(1 +

a

2
) = e

�a
log(1 + a

2
)

1 + a
2

(A.13)

But maximizing numerically the r.h.s. of this inequality over a gives the value �
� with the

maximizer a� with values given in (A.2) and (A.4).

So, for � � �
�, we really get convergence (A.3) from (A.13) by the abstract KP-criterion.

We get decay (A.4) with the best constant by putting e
Æ := ��

�
. This concludes the proof of

Proposition A.1.}

References

[AP] J.M.G. Amaro de Matos, J.F.Perez, Fluctuations in the Curie-Weiss Version of the Random
Field Ising Model., J.Stat.Phys 62, 587-608 (1990)

[APZ] J.M.G. Amaro de Matos, A.E.Patrick, V.A.Zagrebnov, Random In�nite-Volume Gibbs
States for the Curie-Weiss Random Field Ising Model., J.Stat.Phys 66, 139-164 (1992)

[AW] M.Aizenman, J.Wehr, Rounding E�ects of Quenched Randomness on First-Order Phase
Transitions, Comm. Math.Phys 130, 489-528 (1990)

[B] A. Bovier, The Kac-version of the Sherrington-Kirkpatrick model, J.Stat.Phys. 91, 459-474
(1998)

[BBP] O.Benois,T.Bodineau,E.Presutti, Large deviations in the van derWaals limit, Stoch.Process.
Appl. 75 no. 1, 89-104, (1998)

[BGPi] A. Bovier, V. Gayrard, P. Picco, Distribution of overlap pro�les in the one-dimensional
Kac-Hop�eld model, Commun.Math.Phys. 186, 323-379 (1997)

[BCO] L.Bertini, E.N.M.Cirillo, E.Olivieri, Renormalization-group transformations under strong
mixing conditions: Gibbsianness and convergence of renormalized interactions, J.Stat.Phys.
97 no. 5-6, 831-915 (1999)

[BK] J.Bricmont, A.Kupiainen, Phase transition in the 3d random �eld Ising model, Comm.Math.
Phys. 142, 539-572 (1988)

17



[BKL] J.Bricmont, A.Kupiainen, R. Lefevere, Renormalization Group Pathologies and the De�ni-
tion of Gibbs States, Comm. Math.Phys. 194 2, 359-388 (1998)

[BP] T.Bodineau,E.Presutti, Phase diagram of Ising systems with additional long range forces,
Comm.Math.Phys.189 no. 2, 287-298 (1997)

[BZ1] A.Bovier, M. Zahradnik, The low-temperature phase of Kac-Ising models J.Stat.Phys.87,
311-332 (1997)

[BZ2] A.Bovier, M. Zahradnik, A simple inductive approach to the problem of convergence of
cluster expansions of polymer models, J.Stat.Phys. 100, 765-778 (2000)

[BZ3] A.Bovier, M. Zahradnik, private communication

[CP] M.Cassandro,E.Presutti, Phase transitions in Ising systems with long but �nite range in-
teractions, Mark.Process.Rel.Fields 2 no. 2, 241-262 (1996)

[COP] M.Cassandro,E.Orlandi,E.Presutti, Interfaces and typical Gibbs con�gurations for one-
dimensional Kac potentials, Probab.Theor.Rel.Fields 96 no.1, 57-96 (1993)

[COPi] M. Cassandro, E. Orlandi, P. Picco, Typical con�guration for the one dimensional random
�eld Kac model, Ann.Probab.27, 1414-1467 (1999)

[DS] R.L.Dobrushin, S.B.Shlosman, "Non-Gibbsian" states and their Gibbs description, Comm.
Math.Phys. 200, no.1, 125{179 (1999)

[E] A.C.D.van Enter, The Renormalization-Group peculiarities of GriÆths and Pearce: What
have we learned?, in: Mathematical Results in Statistical Mechanics, Eds S.Miracle-Sol�e,
J. Ruiz and V. Zagrebnov, (Marseille 1998), World Scienti�c 1999, pp.509{526

[EFS] A.C.D.van Enter, R. Fern�andez, A.Sokal, Regularity properties and pathologies of position-
space renormalization-group transformations: Scope and limitations of Gibbsian theory.
J.Stat.Phys. 72, 879-1167 (1993)

[EMK] A.C.D. van Enter, C. K�ulske, C. Maes, Comment on: Critical behavior of the randomly
spin diluted 2D Ising model: A grand ensemble approach, by R. K�uhn, Phys. Rev. Lett.
84, 6134 (2000)

[F] R. Fernandez, Measures for lattice systems, Physica A 263 117-130 (1999)

[Geo] H.O. Georgii, Gibbs measures and phase transitions, Studies in mathematics, vol. 9 (de
Gruyter, Berlin, New York, 1988)

[K1] C.K�ulske, Metastates in Disordered Mean-Field Models: Random Field and Hop�eld Mod-
els, J.Stat.Phys. 88 5/6, 1257-1293 (1997)

[K2] C.K�ulske, Metastates in Disordered Mean-Field Models II: The Superstates, J.Stat.Phys.
91 1/2, 155-176 (1998)

[K3] C. K�ulske, The continuous spin random �eld model: Ferromagnetic ordering in d � 3,
Rev.Math.Phys. 11 No.10, 1269-1314 (1999)

[K4] C.K�ulske, Stability for a continuous SOS-interface model in a randomly perturbed periodic
potential, subm. to Prob.Theor.Rel.Fields, available at http://www.ma.utexas.edu/mp arc/,
preprint 98-768 (1998)

[K5] C.K�ulske, (Non-) Gibbsianness and Phase Transitions in Random Lattice Spin Models,
Markov Proc.Rel.Fields 5 357-383 (1999)

[K6] C.K�ulske, Weakly Gibbsian Representations for joint measures of quenched lattice spin mod-
els, to appear in Prob.Theor.Rel.Fields, also available at http://www.ma.utexas.edu/mp arc/,
preprint 99-411 (1999)

[KP] R.Kotecky, D.Preiss, Cluster expansion for abstract polymer models, Comm.Math.Phys.
103, 491-498 (1986)

[LP] J.L.Lebowitz,O.Penrose: Rigorous treatment of the van der Waals-Maxwell theory of the
liquid-vapor transition, J.Math.Phys. 7, 98-113 (1966)

[LMP] J.L.Lebowitz,A.Mazel,E.Presutti, Liquid-vapor phase transitions for systems with �nite-
range interactions, J.Stat.Phys. 94 no. 5-6, 955-1025 (1999)

18



[MRSM] C.Maes, F.Redig, S.Shlosman, A.Van Mo�aert, Percolation, path large deviations and
weakly Gibbs states, Comm.Math.Phys. 209 no.2, 517-545 (2000)

[S] A.D.Sokal, Bounds on the complex zeros of (di)-chromatic polynomials and Potts-model
partition functions, to appear in Combinatorics, Probability & Computing (2000)

19


