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Abstract

This paper is devoted to the uniqueness in the inverse scattering problem of deter-

mining a perfectly re�ecting periodic surface from far �eld observations on a discrete

set. Our proof is based on the unique continuation of the solution to the Helmholtz

equation from a discrete set.

1 Introduction

We consider the scattering by a perfectly re�ecting periodic surface in the 2D case. Ac-

cording to Bao, Doblin and Cox [4], Hettlich and Kirsch [10], we can formulate the problem

as follows. Let f 2 C2(IR) be 2�-periodic, and let us set


f = f(x1; x2); x2 > f(x1); x1 2 IRg:

Then we regard @
f = f(x1; x2); x2 = f(x1); x1 2 IRg as a periodic surface to be de-

termined by scattering data. To this end, taking a wave number k 2 CI, we consider an

incident �eld ui(x1; x2; k) given by

ui(x1; x2; k) = expfik(x1 sin � � x2 cos �)g:

Here i =
p
�1; <z and =z denote the real part and imaginary part of z 2 CI; respectively,

and z is the complex conjugate. Then the resulting scattered �eld us(x1; x2; k) satis�es
the Helmholtz equation with perfectly re�ecting boundary condition:

�us + k2us = 0 in 
f ; (1.1)

and

us + ui = 0 on @
f : (1.2)

Moreover, throughout this paper we set � = k sin � and pose the following �-quasi-

periodicity condition for us: Let

us(x1 + 2�; x2; k) = e2��ius(x1; x2; k) (1.3)

hold for all (x1; x2) 2 IR2 (see e.g. Hettlich and Kirsch [10]).

Like in [10], we de�ne the solution space of quasi-periodic solutions as

Q(�) = fu 2 C2(
f) \ C1(
f) j u is �-quasi-periodic; bounded

and �u+ k2u = 0 in 
fg:

Existence and uniqueness of solutions to the Dirichlet problem (1.1) � (1.3) were proved

by an integral equation method or a variational method ([1], [14], [15]).
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Let ftjg1j=1 � [0; 2�] be a discrete set on the real line IR. We choose a > 0 su�ciently

large such that a > f(x1), x1 2 IR, and �x a as the level for observations.

We state our inverse problem with respect to the discrete observation set as follows:

Inverse Problem of Di�ractive Optics: Determine x2 = f(x1), x1 2 IR, from the

measurements

us(tj; a; k); j = 1; 2; � � � ;
where us satis�es (1.1) � (1.3).

For the inverse problem of determining the function f from measurements on x2 = a, i.e.

us(x1; a; k), x1 2 IR , the uniqueness was proved for a lossy medium (i.e. =k > 0) by Bao

[3], and in the case of k 2 IR by Hettlich and Kirsch [10]. We further refer to Ammari [2]

and Kirsch [13].

From the practical point of view, in general, one can only measure data on a discrete set,

not us(x1; a; k), x1 2 IR, on the whole line. Therefore it is natural to ask whether the

uniqueness is still true for the inverse problem with discrete observations.

The purpose of this paper is to give a positive answer to this question. The key of our

proof is unique continuation of the solutions to the Helmholtz equation. This is shown in

Section 3. Our approach is similar to the method used in Cheng, Hon and Yamamoto [6],

Cheng and Yamamoto [7].

Simply speaking, we proceed as follows: We extend the solutions to the Helmholtz equa-

tion from real variables to complex variables ([9]) and apply standard results for functions

of complex variables so that the values of the solution to the Helmholtz equation on the

line x2 = a can be determined by the values on the discrete set f(tj; a)g1j=1. Finally,

combining with uniqueness results obtained by other authors, we prove the uniqueness of

the function f from far �eld measurements on a discrete set.

It should be remarked here that we can also obtain conditional stability similar to Isakov

[11], [12]. This kind of conditional stability is very important for proposing a numerical

algorithm for a stable reconstruction. On the basis of this kind of conditional stability, we

can apply a principle due to Cheng and Yamamoto [8] and we can guarantee a convergence

rate for the Tikhonov regularized solutions. This will be done in a forthcoming paper.

For the local conditional stability, we refer to Bao and Friedman [5].

This paper is organized as follows:

� Section 2. Main results.

� Section 3. Unique continuation for a solution to the Helmholtz equation.

� Section 4. Proofs of the main results.

� Section 5. Remarks.

2 Main results

In this paper, we only consider the following two cases: (1) the case of a lossy (i.e. energy

absorbing) medium (=k > 0), (2) the case that k is real and some a priori information on

heights of surfaces is available.
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Our main results can be stated as follows.

Theorem 2.1 Suppose that �, k are �xed and =k > 0. Let f1 and f2 be 2�-periodic
functions and a > maxff1(t); f2(t)g, t 2 IR. If the scattering solutions usj(x1; x2; k),
j = 1; 2; of the problem (1.1) � (1.3) corresponding to f = fj, j = 1; 2, satisfy

us1(tj; a; k) = us2(tj; a; k); j = 1; 2; � � � ;

then we have

f1(t) = f2(t); t 2 IR:

Theorem 2.2 Suppose that h > 0, k0 > 0 and j�j < �
2
are �xed and N 2 IN satis�es

N > h

2
k20 +

hk0
�

cos �. We assume that

0 � f1(t); f2(t) � h; for t 2 IR:

Let f1 and f2 be 2�-periodic functions and a > maxff1(t); f2(t)g, t 2 IR. Let the scattering

solutions usj(x1; x2; k), j = 1; 2; of the problem (1.1) � (1.3) corresponding to f = fj,

j = 1; 2, satisfy

us1(tj; a; kl) = us2(tj; a; kl); j = 1; 2; � � � ; l = 1; 2; � � � ; N;

where kl 2 (0; k0], l = 1; 2; � � � ; N . Then we have

f1(t) = f2(t); t 2 IR:

3 Unique continuation of the solutions to

the Helmholtz equation

In this section, we prove one kind of a unique continuation assertion for solutions to the

Helmholtz equation. It should be mentioned that, although our proof is given for the

2D Helmholtz equation, this kind of unique continuation is also true for general elliptic

partial di�erential equations with analytic coe�cients in arbitrary dimensions.

Let D be a simply connected domain in IR2 and L be a line which intersects with D.
Without loss of generality, let us assume that L = f(x1; 0)jx1 2 IRg and
D \ L = f(x1; 0)j � 3� < x1 < 3�g.

Lemma 3.1 (Complex extension.) Suppose that w satis�es

�w + k2w = 0 in D:

Then for any �xed constant Æ > 0, there exists a complex function G(z1) which is holo-

morphic in D0 such that

G(t) = w(t; 0); �3� + Æ < t < 3� � Æ:

Here D0 = fzj � 3�+ Æ < <z < 3�� Æ; �Æ1 < =z < Æ1g and Æ1 > 0 is a constant which

depends on Æ, D and L.
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Proof. Let E(�; �; y1; y2) be the fundamental solution to the Helmholtz equation in D.
Then applying the results in [9] (p.93, Corollary 1.1), we have that E(�; �; y1; y2) can be

extended as a holomorphic function E(z1; z2; y1; y2) for (z1; z2) 2 CI2 n S(y1; y2). Here

S(y1; y2) denotes the �solid isotropic cone� with vertex at (y1; y2) 2 IR2, that is

S(y1; y2) = f(z1; z2)j (<z1 � y1)=z1 + (<z2 � y2)=z2 = 0;

j(<z1;<z2)� (y1; y2)j � j(=z1;=z2)jg:

On the other hand, by the Green formula, we have that

w(x1; x2) =
Z
D

f(�y + k2)E(x1; x2; y1; y2)gw(y1; y2)dy1dy2

�
Z
D

f(�y + k2)w(y1; y2)gE(x1; x2; y1; y2)dy1dy2

=
Z
@D
f @

@�y
E(x1; x2; y1; y2)gw(y1; y2)d�y

�
Z
@D
f @

@�y
w(y1; y2)gE(x1; x2; y1; y2)d�y; (x1; x2) 2 D;

where � is the outer unit normal with respect to D.
On the line L = f(x1; 0)jx1 2 IRg, we have

w(x1; 0) =
Z
@D
f @

@�y
E(x1; 0; y1; y2)gw(y1; y2)d�y (3.1)

�
Z
@D
f @

@�y
w(y1; y2)gE(x1; 0; y1; y2)d�y:

Next, we can directly verify that there exists a positive constant Æ1, which depends on Æ,

D and L, such that

f(z1; 0)jz1 2 D0g � CI2 n
[

(y1;y2)2@D

S(y1; y2):

We de�ne the complex function

G(z) =
Z
@D
f @

@�y
E(z; 0; y1; y2)gw(y1; y2)d�y (3.2)

�
Z
@D
f @

@�y
w(y1; y2)gE(z; 0; y1; y2)d�y;

where E(z; 0; y1; y2) is the holomorphic extension of the fundamental solutionE(�; 0; y1; y2).
By (3.2), the function G(z1) is holomorphic in D0. By (3.1) and (3.2), we have

G(t) = w(t; 0); �3� + Æ < t < 3� � Æ:

Lemma 3.2 (Unique continuation.) Suppose that w satis�es

�w + k2w = 0 in D:

4



If

w(tj; 0) = 0; j = 1; 2; � � � ;
then we have that

w(t; 0) = 0; t 2 (�3�; 3�):

Proof. Suppose that the conclusion is not true. Then there exists a point t� 2 (�3�; 3�)
such that

w(t�; 0) 6= 0: (3.3)

Let Æ = 1
2
minfjt�� 3�j; jt� + 3�j; �g. Then by Lemma 3.1, we have that, for the solution

w to the Helmholtz equation, there exists a holomorphic function in D0 such that

w(t; 0) = G(t); �3� + Æ < t < 3� � Æ: (3.4)

Since ftjg1j=1 � [0; 2�] � (�3� + Æ; 3� � Æ), we have

closure of ftjg1j=1 � D0

and

G(tj) = w(tj; 0) = 0; j = 1; 2; � � � :

By the unicity theorem for holomorphic functions, we conclude that

G(z1) = 0; z1 2 D0:

By (3.4), we obtain that

w(t; 0) = G(t) = 0; �3� + Æ < t < 3� � Æ: (3.5)

On the other hand, from (3.3), we have

w(t�; 0) 6= 0; t� 2 (�3� + Æ; 3� � Æ):

This is a contradiction to (3.5).

Remark 3.1 This kind of unique continuation for a solution to the Helmholtz equation

is only valid on the line L. Outside this line, we have no information about the solution

as the following example shows.

Example: We consider the function

w(x1; x2) = x2e
ikx1:

Then w(x1; x2) satis�es �w + k2w = 0 and w(x1; 0) = 0. However it does not vanish

outside L � f(x1; 0)jx1 2 IRg.

Remark 3.2 Similar unique continuation holds true with conditional stability for a so-

lution of the Laplace equation ([6], [7]).
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4 Proof of the main results

Now we can give the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1: We set uj = usj + uij, j = 1; 2 and note that uj is (k sin �)-
periodic. Then we discuss in terms of u1 and u2.

We assume that the conclusion is not true, i.e. f1(t0) 6= f2(t0) for some t0 2 IR. Let

w(x1; x2; k) = u1(x1; x2; k)� u2(x1; x2; k):

Then w satis�es:

�w + k2w = 0 in 
0

and

w(tj; a; k) = 0; j = 1; 2; � � � :

Here 
0 = f(x1; x2)jx2 > maxff1(x1); f2(x1)g; x1 2 IRg.
Since f(x1; a)jx1 2 IRg � 
0, by Lemma 3.2, we have that

w(x1; a; k) = 0; x1 2 IR:

Therefore we see that w(x1; x2; k) = 0, x2 � a, by the uniqueness of the Dirichlet boundary

value problem for the Helmholtz equation in fx2 > ag with quasi-periodicity ([1], [10]).

By the standard unique continuation for elliptic equations, we have that

w(x1; x2; k) = 0; x2 > maxff1(x1); f2(x1)g:

Let us consider the domain


0 = f(x1; x2) j minff1(x1); f2(x1)g < x2 < maxff1(x1); f2(x1)g;
0 < x1 < 2�g:

Then we know that 
0 6= ; and 
0 contains some open set O.

We set

�1 = f(0; x2)jminff1(0); f2(0)g < x2 < maxff1(0); f2(0)gg
and

�2 = f(2�; x2)jminff1(2�); f2(2�)g < x2 < maxff1(2�); f2(2�)gg:

Note that �1, �2 may be empty.

Let

W (x1; x2) =

8><
>:
u1(x1; x2; k); f1(x1) < f2(x1)
u2(x1; x2; k); f1(x1) > f2(x1)
0; otherwise:

(4.1)

It is obvious that W satis�es �W + k2W = 0 in 
0.
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By the periodicity of the functions fj, j = 1; 2 and the quasi-periodicity of uj, j = 1; 2,
we have �1 + (2�; 0) = �2, and

Z
�1

e�i�x1W
@(e�i�x1W )

@x1
ds�

Z
�2

e�i�x1W
@(e�i�x1W )

@x1
ds = 0:

Here we regard the integrals over �1, �2 as 0 if �1 = ;. Therefore by (4.1) we obtain

Z
@
0

W
@W

@�
ds = 0:

Applying the Green formula, we have

krWk2L2(
0)
� k2kWk2L2(
0)

=
Z
@
0

W
@W

@�
ds = 0:

Using =k > 0, we easily verify that

W = 0 in 
0:

Since 
0 contains some open set O, by the standard unique continuation for the Helmholtz

equation, we have

uj(x1; x2; k) = usj(x1; x2; k) + uij(x1; x2; k) = 0; x2 > fj(x1); j = 1; 2:

Since f1 and f2 are not identically equal, this is a contradiction to that ui is an incoming

and us is an outgoing wave. The proof is complete.

Proof of Theorem 2.2:

Since this proof is similar to the previous one, we just give a sketch of it. First applying

Lemma 3.2, we have

u1(x1; a; k) = u2(x1; a; k); x1 2 IR:

Then, by Theorem 3.2 in [10], we obtain the conclusion.

5 Some remarks

We give some remarks about the inverse problem and our method.

Remark 5.1 In this paper, we only consider the two-dimensional problem. For the three-

dimensional inverse problem of di�ractive optics, our method still works under the condi-

tion that the set f(xj1; xj2; a)g1j=1 contains an open set on the plane x3 = a.

Remark 5.2 It would be interesting to discuss the inverse problems of di�ractive optics

from far �eld measurements on �nitely many points. In general, the uniqueness fails.

However we can expect the conditional stability which is important for constructing the

Tikhonov regularization functional and proving a convergence rate of the regularized solu-

tions ([8]). This will be our future topic.
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Remark 5.3 The unique continuation in Lemma 3.2 is also true for a discrete set on

an analytic curve and for general elliptic partial di�erential equations with analytic coef-

�cients.
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