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Abstract: We study a large class of reversible Markov chains with discrete state space and

transition matrix PN . We de�ne the notion of a set of metastable points as a subset of the

state space �N such that (i) this set is reached from any point x 2 �N without return to

x with probability at least bN , while (ii) for any two point x; y in the metastable set, the

probability T�1x;y to reach y from x without return to x is smaller than a�1N � bN . Under

some additional non-degeneracy assumption, we show that in such a situation:

(i) To each metastable point corresponds a metastable state, whose mean exit time can be

computed precisely.

(ii) To each metastable point corresponds one simple eigenvalue of 1�PN which is essentially

equal to the inverse mean exit time from this state. Moreover, these results imply very

sharp uniform control of the deviation of the probability distribution of metastable exit

times from the exponential distribution.
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1. Introduction

In a recent paper [BEGK] we have presented rather sharp estimates on metastable tran-

sition times, both on the level of their mean values, their Laplace transforms, and their dis-

tribution, for a class of reversible Markov chains that may best be characterized as random

walks in multi-well potentials, and that arise naturally in the context of Glauber dynamics

for certain mean �eld models. These results allow for a very precise control of the behaviour

of such processes over very long times.

In the present paper we continue our investigation of metastability in Markov chains fo-

cusing however on the connection between metastability and spectral theory while working

in a more general abstract context. Relating metastability to spectral characteristics of the

Markov generator or transition matrix is in fact a rather old topic. First mathematical results

go back at least as far as Wentzell [W] and Freidlin and Wentzell [FW]. Freidlin and Wentzell

relate the eigenvalues of the transition matrix of Markov processes with exponentially

small transition probabilities to exit times from \cycles"; Wentzell has a similar result for the

spectral gap in the case of certain di�usion processes. All these relations are on the level of

logarithmic equivalence, i.e. of the form lim�#0 � ln(�
�
iT

�
i ) = 0 where � is the small parameter,

and ��i ; T
�
i are the eigenvalues, resp. exit times. For more recent results of this type, see

[M,Sc]. Rather recently, Gaveau and Schulman [GS] (see also [BK] for an interesting discus-

sion) have developed a more general program to give a spectral de�nition of metastability in

a rather general setting of Markov chains with discrete state space. In their approach low

lying eigenvalues are related to metastable time scales and the corresponding eigenfunctions

are related to metastable states. This interesting approach still su�ers, however, from rather

imprecise relations between eigenvalues and time-scales, and eigenfunctions and states.

In this paper we will put these notions on a mathematically clean and precise basis for

a wide class of Markov chains Xt with countable state space �N
5, indexed by some large

parameter N . Our starting point will be the de�nition of a metastable set of points each

of which is supposed to be a representative of one metastable state, on a chosen time scale.

It is important that our approach allows to consider the case where the cardinality of MN

depends on N . The key idea behind our de�nition will be that it ensures that the time it

takes to visit the representative point once the process enters a \metastable state" is very

short compared to the lifetime of the metastable state. Thus, observing the visits of the

5We expect that this approach can be extended with suitable modi�cations to processes with continuous

state space. Work on this problem is in progress.
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process at the metastable set suÆces largely to trace the history of the process. We will then

show that (under certain conditions ensuring the simplicity of the low-lying spectrum) the

expected times of transitions from each such metastable point to \more stable" ones (this

notion will be de�ned precisely later) are precisely equal to the inverse of one eigenvalue (i.e.

Ti = ��1i (1 + o(1))) and that the corresponding eigenfunction is essentially the indicator

function of the attractor of the corresponding metastable point. This relation between times

and eigenvalues can be considered as the analogue of a quantum mechanical \uncertainty

principle". Moreover, we will give precise formulas expressing these metastable transition

times in terms of escape probabilities and the invariant measure. Finally, we will derive

uniform convergence results for the probability distribution of these times to the exponential

distribution. Let us note that one main clue to the precise uncertainty principle is that we

consider transition times between metastable points, rather than exit times from domains.

In the existing literature, the problem of transitions between states involving the passage

through some \saddle point" (or \bottle neck") is almost persistently avoided (for reasons

that we have pointed out in the introduction of [BEGK]), except in one-dimensional situations

where special methods can be used (as mentioned e.g. in the very recent paper [GM]). But

the passage through the saddle point has a signi�cant impact on the transition time which

in general can be neglected only on the level of logarithmic equivalence6. Our results here,

together with those in [BEGK], appear to be the �rst that systematically control these e�ects.

Let us now introduce our setting. We consider a discrete time7 and specify our Markov

chains by their transition matrix PN whose elements pN (x; y), x; y 2 �N denote the one-step

transition probabilities of the chain. In this paper we focus on the case where the chain is

reversible
8 with respect to some probability measure QN on �N . We will always be interested

in the case where the cardinality of �N is �nite but tends to in�nity as N " 1. Intuitively,

metastability corresponds to a situation where the state space �N can be decomposed into

a number of disjoint components each containing a state such that the time to reach one of

these states from anywhere is much smaller than the time it takes to travel between any two

of these states. We will now make this notion precise. Recall from [BEGK] the notation �xI

for the �rst instance the chain starting in x at time 0 reaches the set I � �N ,

�xI � inf
�
t > 0 : Xt 2 I

��X0 = x
	

(1:1)

6E.g. the lack of precision in the relation TM = O(1=(1� (1� �)t)) in [GS] is partly due to this fact.
7There is no diÆculty in applying our results to continuous time chains by using suitable embeddings.
8The case of irreversible Markov chains will be studied in a forthcoming publication [EK].
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De�nition 1.1: A set MN � �N will be called a set of metastable points if it satis�es

the following assumptions. For �nite positive constants aN , bN such that, for some sequence

"N # 0, a�1N � "NbN it holds that

(i) For all z 2 �N ,

P
�
�z
MN

� �zz
�
� bN (1:2)

(ii) For any x 6= y 2MN ,

P
�
�xy < �xx

�
� a�1N (1:3)

We associate with each x 2MN its local valley

A(x) �

�
z 2 �N : P

�
�zx = �z

MN

�
= sup

y2MN

P
�
�zy = �z

MN

��
(1:4)

We will set

Rx �
QN (x)

QN (A(x))
(1:5)

and
rN � max

x2MN

Rx � 1

c�1N � min
x2MN

Rx > 0
(1:6)

Note that the sets A(x) are not necessarily disjoint. We will however show later that the

set of points that belong to more than one local valley has very small mass under QN . The

above conditions do not �x MN uniquely. It will be reasonable to choose MN always such

that for all x 2MN ,

QN (x) = sup
z2A(x)

QN (z) (1:7)

The quantities P [�xI � �xx ], I � MN furnish crucial characteristics of the chain. We will

therefore introduce some special notation for them: for I �MN and x 2MNnI, set

Tx;I � (P[�xI � �xx ])
�1

(1:8)

and

TI � sup
x2MNnI

Tx;I (1:9)

Note that these quantities depend on N , even though this is suppressed in the notation.
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For simplicity we will consider in this paper only chains that satisfy an additional assump-

tion of non-degeneracy:

De�nition 1.2: We say that the family of Markov chains is generic on the level of the set

MN , if there exists a sequence �N # 0, such that

(i) For all pairs x; y 2 MN , and any set I � MNnfx; yg either Tx;I � �NTy;I or Ty;I �

�NTx;I .

(ii) There exists m1 2MN , s.t. for all x 2MNnm1, QN (x) � �NQN (m1).

We can now state our main results. We do this in a slightly simpli�ed form; more precise

statements, containing explicit estimates of the error terms, will be formulated in the later

sections.

Theorem 1.3: Consider a discrete time Markov chain with state space �N , transition

matrix PN , and metastable set MN (as de�ned in De�nition 1.1). Assume that the chain is

generic on the levelMN in the sense of De�nition 2.1. Assume further that rN"N j�N jjMN j #

0, and rNcN �N # 0, as N " 1. For every x 2 MN set MN (x) � fy 2 MN : QN (y) >

QN (x)g, de�ne the metastable exit time tx � �x
MN (x). Then

(i) For any x 2MN ,

E tx = R�1x Tx;MN (x)(1 + o(1)) (1:10)

(ii) For any x 2MN , there exists an eigenvalue �x of 1� PN that satis�es

�x =
1

E tx
(1 + o(1)) (1:11)

Moreover, there exists a constant c > 0 such that for all N

�(1� PN )n [x2MN
�x � (cbN j�N j

�1; 1] (1:12)

(here �(1 � PN ) denotes the spectrum of 1� PN).

(iii) If �x denotes the right-eigenvector of PN corresponding to the eigenvalue �x, normalized

so that �x(x) = 1, then

�x(y) =

(
P[�yx < �

y
MN (x)

](1 + o(1)); if P[�yx < �
y
MN (x)

] � �N

O(�N ); otherwise
(1:13)

(iv) For any x 2MN , for all t > 0,

P[tx > tE tx ] = e�t(1+o(1))(1 + o(1)) (1:14)
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Remark: We will see that P[�yx < �
y
MN (x)

] is extremely close to one for all y 2 A(x), with

the possible exception of some points for which QN (y)� QN (x). Therefore, the correspond-

ing (normalized) left eigenvectors  x(y) �
QN (y)�x(y)P

z2�N
QN (y)�x(y)

are to very good approximation

equal to the invariant measure conditioned on the valley A(x). As the invariant measure QN

conditioned on A(x) can be reasonably identi�ed with a metastable state, this establishes

in a precise way the relation between eigenvectors and metastable distributions. Brought

to a point, our theorem then says that the left eigenfunctions of 1 � PN are the metastable

states, the corresponding eigenvalues the mean lifetime of these states which can be com-

puted in terms of exit probabilities via (1.10), and that the lifetime of a metastable state is

exponentially distributed.

Remark: Theorem 1.3 actually holds under slightly weaker hypothesis than those stated

in De�nition 1.2. Namely, as will become clear in the proof given in Section 5, the non-

degeneracy of the quantities Tx;I is needed only for certain sets I. On the other hand, if these

weaker conditions fail, the theorem will no longer be true in this simple form. Namely. in a

situation where certain subsets Si �MN are such that for all x 2 Si, Tx;I (for certain relevant

sets I, see Section 5) di�er only by constant factors, the eigenvalues and eigenfunctions

corresponding to this set will have to be computed specially through a �nite dimensional,

non-trivial diagonalisation problem. While this can in principle be done on the basis of the

methods presented here, we prefer to stay within the context of the more transparent generic

situation for the purposes of this paper. Even more interesting situations crating genuinely

new e�ect occur when degenerate subsets of states whose cardinality tends to in�nity with

N are present. While these fall beyond the scope of the present paper, the tools provided

here and in [BEGK] can still of use, as is shown in [BBG].

Let us comment on the general motivation behind the formulation of Theorem 1.3. The

theorem allows, in a very general setting, to reduce all relevant quantities governing the

metastable behaviour of a Markov chain to the computation of the key parameters, Tx;y and

Rx, x; y 2 MN . The �rst point to observe is that these quantities are in many situations

rather easy to control with good precision. In fact, control of Rx requires only knowledge

of the invariant measure. Moreover, the \escape probabilities", T�1x;y , are related by a factor

QN (x) to the Newtonian capacity of the point y relative to x and thus satisfy a variational

principle that allows to express them in terms of certain constraint minima of the Dirichlet

form of the Markov chain in question. In [BEGK] we have shown how this well-known fact
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(see e.g. [Li], Section 6) can be used to give very sharp estimates on these quantities for

the discrete di�usion processes studied there. Similar ideas may be used in a wide variety of

situations (for another example, see [BBG]); we remind the reader that the same variational

representation is at the basis of the \electric network" method [BS]. Let us mention that

our general obsession with sharp results is motivated mainly by applications to disordered

models there the transition matrix PN is itself a random variable. Fluctuation e�ects on the

long-time behaviour provoked by the disorder can then only be analysed if sharp estimates

on the relevant quantities are available. For examples see [BEGK, BBG].

In fact, in the setting of [BEGK], i.e. a random walk on (Z=N)d\� with reversible measure

QN (x) = exp(�NFN (x)), where FN is \close" to some smooth function F with �nite number

of local minima satisfying some additional genericity requirements, and the natural choice for

MN being the set of local minima of FN , the key quantities of Theorem 1.3 were estimated

as

bN � cN�1=2 (1:15)

rN � cN�d=2

cN � CNd=2
(1:16)

Tx;y = eO(1)N�(d�2)=2eN [FN (z�(x;y))�FN (x)] (1:17)

where z�(x; y) is the position of the saddle point between x and y. Moreover, under the

genericity assumption of [BEGK],

�N � e�N
�

(1:18)

for some � > 0. The reader will check that Theorem 1.3, together with the precisions detailed

in the later sections, provides very sharp estimates on the low-lying eigenvalues of 1�PN and

considerably sharpens the estimates on the distribution function of the metastable transition

times given in [BEGK].

Let us note that Theorem 1.3 allows to get results under much milder regularity assump-

tions on the functions FN then were assumed in [BEGK]; in particular, it is clear that one

can deal with situations where an unbounded number of \shallow" local minima is present.

Most of such minima can simply be ignored in the de�nition of the metastable setMN which

then will take into account only suÆciently deep minima. This is an important point in many

applications, e.g. to spin glass like models (but also molecular dynamics, as discussed below),

where the number of local minima is expected to be very large (e.g. exp(aN)), while the

metastable behaviour is dominated by much fewer \valleys". For a discussion from a physics

point of view, see e.g. [BK].
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A second motivation for Theorem 1.3 is given by recent work of Sch�utte et al. [S,SFHD].

There, a numerical method for the analysis of metastable conformational states of macro-

molecules is proposed that relies on the numerical investigation of the Gibbs distribution

for the molecular equilibrium state via a Markovian molecular dynamics (on a discretized

state space). The key idea of the approach is to replace the time-consuming full simulation

of the chain by a numerical computation of the low-lying spectrum and the corresponding

eigenfunctions, and to deduce from here results on the metastable states and their life times.

Our theorem allows to rigorously justify these deductions in a quantitative way in a setting

that is suÆciently general to incorporate their situations.

The remainder of this article is organized as follows. In Section 2 we recall some basic

notions, and more importantly, show that the knowledge of Tx;y for all x; y 2MN is enough

to estimate more general transition probabilities. As a byproduct, we will show the existence

of a natural \valley-structure" on the state space, and the existence of a natural (asymptotic)

ultra-metric on the set MN . In Section 3 we show how to estimate mean transition times.

The key result will be Theorem 3.5 which will imply the �rst assertion of Theorem 1.3. In

Section 4 we begin our investigation of the relation between spectra and transition times.

The key result there is a characterization of parts of the spectrum of (1 � PN ) in terms

of the roots of some non-linear equation involving certain Laplace transforms of transitions

times, as well as a representation of the corresponding eigenvectors in terms of such Laplace

transforms. This together with some analysis of the properties of these Laplace transforms

and an upper bound, using a Donsker-Varadhan [DV] argument, will give sharp two-sided

estimates on the �rst eigenvalue of general Dirichlet operators in terms of mean exit times.

These estimates will furnish a crucial input for Section 5 where we will prove that the low-lying

eigenvalues of 1�PN are very close to the principal eigenvalues of certain Dirichlet operators

(1�PN )
�j , with suitably constructed exclusion sets �j . This will prove the second assertion

of Theorem 1.3. In the course of the proof we will also provide rather precise estimates on

the corresponding eigenfunction. In the last Section we use the spectral information obtained

before to derive, using Laplace inversion formulas, very sharp estimates on the probability

distributions of transition times. These will in particular imply the last assertion of Theorem

1.3.

Acknowledgements: We would like to thank Christof Sch�utte and his collaborators for

explaining their approach to conformational dynamics and very motivating discussions.
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2. Some notation and elementary facts.

In this section we collect some useful notations and a number of more or less simple facts

that we will come back to repeatedly.

The most common notion we will use are the stopping times �xI de�ned in (1.1). To avoid

having to distinguish cases where x 2 I, it will sometimes be convenient to use the alternative

quantities

�xI � minft � 0 : Xt 2 I jX0 = xg (2:1)

that take the value 0 if x 2 I.

Our analysis is largely based on the study of Laplace transforms of transition times. For

I��N we denote by (PN )
I the Dirichlet operator

(PN )
I
� 1IIcPN : 1IIcR

�N ! 1IIcR
�N ; Ic � �NnI (2:2)

Since our Markov chains are reversible with respect to the measure QN , the matrix (PN )
I is

a symmetric operator on 1IIc`
2(�N ;QN ) and thus

jj(PN )
I
jj = maxfj�j j� 2 �((PN )

I)g (2:3)

where jj�jj denotes the operator norm induced by 1IIc`
2(�N ;QN ). For a point x 2 �N , subsets

I; J��N and u 2 C , <(u) < � log jj(PN )
I[J jj, we de�ne

Gx
I;J(u) � E

�
eu�

x
I 1I�x

I
��x

J

�
=

1X
t=1

eutP[�xI = t � �xJ ] (2:4)

and

Kx
I;J (u) � E

�
eu�

x
I 1I�x

I
��x

J

�
=

8<
:
Gx
I;J(u) for x =2 I [ J;

1 for x 2 I;

0 for x 2 JnI

(2:5)

The Perron-Frobenius theorem applied to the positive matrix (PN )
I implies that Gx

I;J(u) and

Kx
I;J (u) converge locally uniformly on their domain of de�nition, more precisely

� log jj(PN )
I
jj = supfu 2 R jKx

I;I (u) exists for all x =2 Ig (2:6)

We now collect a number of useful standard results that follow trivially from the strong

Markov property and/or reversibility, for easy reference.

From the strong Markov property one gets:
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Lemma 2.1: Fix I; J; L��N . Then for all <(u) < � log jj(PN )
I[J jj

Gx
I;J(u) = Gx

InL;J[L(u) +
X
y2L

Gx
y;I[J[L(u)K

y
I;J (u); x 2 �N (2:7)

In the following we will adopt the (slightly awkward) notation PNF
x �

P
z2�N

PN (x; z)F
z

The following are useful specializations of the foregoing result which we state without proof:

Corollary 2.2: Fix I; J��N . Then for x 2 �N

euPNK
x
I;J(u) = Gx

I;J(u); x 2 �N (2:8)

and

(1� euPN )@uK
x
I;J (u) = Gx

I;J(u); x =2 I [ J (2:9)

where @u denotes di�erentiation w.r.t. u.

The following renewal equation will be used heavily:

Corollary 2.3: Let I��N . Then for all x =2 I [ y and <(u) < � log jj(PN )
I[yjj

Gx
y;I(u) =

Gx
y;I[x(u)

1�Gx
x;I[y(u)

(2:10)

�nally, from reversibility of the chain one has

Lemma 2.4: Fix x; y 2 �N and I��N . Then

QN (x)Gx
y;I[x = QN (y)G

y
x;I[y (2:11)

The next few Lemmata imply the existence of a nested valley structure and that the

knowledge of the quantities Tx;y and the invariant measure are enough to control all transition

probabilities with suÆcient precision. The main result is an approximate ultra-metric triangle

inequality. Let us de�ne (the capacity of x relative to y) E(x; y) = QN (x)T�1x;y . We will show

that

Lemma 2.5: Assume that y;m 2 �N and J��Nnynm such that for 0 < Æ < 1
2
, E(m;J) �

ÆE(m; y). Then
1� 2Æ

1� Æ
�
E(m;J)

E(y; J)
�

1

1� Æ
(2:12)
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Proof: We �rst prove the upper bound. We write

P[�mJ < �mm ] =
X
x2J

QN (x)

QN (m)
P[�xm < �xJ ] (2:13)

Now

P[�xm < �xJ ] = P[�xm < �xJ ; �
x
y < �xJ ] + P[�xm < �xJ[y]

P[�mJ < �my[m]

P[�mJ[y < �mm ]
(2:14)

Now by assumption,
P[�mJ < �my[m]

P[�mJ[y < �mm ]
�

P[�mJ < �mm ]

P[�my < �mm ]
� Æ (2:15)

Inserting (2.15) into (2.14) we arrive at

P[�xm < �xJ ] � P[�xy < �xJ ; �
x
m < �xJ ] + ÆP[�xm < �xJ[y] � P[�xy < �xJ ] + ÆP[�xm < �xJ ] (2:16)

Inserting this inequality into (2.13) implies

P[�mJ < �mm ] � (1� Æ)�1
QN (y)

QN (m)
P[�

y
J < �yy ] (2:17)

We now turn to the lower bound. We �rst show that the assumption implies

P[�
y
J < �ym] < Æ(1 � Æ)�1 (2:18)

Namely,

P[�mJ < �mm ] � P[�my < �mJ < �mm ] = P[�my < �mJ[m]P[�
y
J < �ym] (2:19)

But
P[�my < �mJ[m] =P[�

m
y < �mm ]� P[�mJ < �my < �mm ]

� P[�my < �mm ]� P[�mJ < �mm ]

� P[�my < �mm ](1� Æ)

(2:20)

where the last inequality follows from the assumption. Thus

P[�mJ < �mm ] � P[�my < �mm ]P[�
y
J < �ym](1� Æ) (2:21)

Solving this inequality for P[�
y
J < �ym], the assumption yields (2.18).

We continue as in the proof of the upper bound and write for x 2 J , using (2.18),

P[�xy < �xJ ] = P[�xy < �xJ ; �
x
m < �xJ ] + P[�xy < �xJ[m]P[�

y
J < �ym]

� P[�xm < �xJ ] + P[�xy < �xJ ]Æ(1 � Æ)�1
(2:22)
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proving

P[�xy < �xJ ] � P[�xm < �xJ ]
1� Æ

1� 2Æ
(2:23)

Inserting (2.23) into (2.13) for m � y and, using once more (2.13) in the resulting estimate,

we obtain

P[�
y
J < �yy ] �

1� Æ

1� 2Æ

QN (m)

QN (y)
P[�mJ < �mm ] (2:24)

which yields the lower bound in (2.12). }

Corollary 2.6: Assume that x; y; z 2MN . Then

E(x; y) �
1

3
min (E(x; z); E(z; y)) (2:25)

Proof: By contradiction. Assume that E(x; y) < 1
3
min (E(x; z); E(z; y)). Then E(x; y) <

1
3
E(x; z), and so by Lemma 2.5,

1

2
�
E(x; y)

E(z; y)
�

3

2
(2:26)

and in particular E(y; z) � 2E(x; y), in contradiction with the assumption. }

If we set

e(x; y) �

�
� lnE(x; y); if x 6= y

0; if x = y
(2:27)

then Lemma 2.5 implies that e furnishes an \almost" ultra-metric, i.e. it holds that e(x; y) �

max(e(x; z); e(z; y)) + ln 3 which will turn out to be a useful tool later. We mention that in

the case of discrete di�usions in potentials, the quantities e(x; y) are essentially N times the

heights of the essential saddles between points x and y.

The appearance of a natural ultra-metric structure on the set of metastable states under

our minimal assumptions is interesting in itself.

A simple corollary of Lemma 2.5 shows that the notion of elementary valleys, A(m), is

reasonable in the sense that \few" points may belong to more than one valley.

Lemma 2.7: Assume that x;m 2MN and y 2 �N . Then

P[�ym < �yy ] � � and P[�yx < �yy ] � � (2:28)

implies that

QN (y) � 2��1QN (m)P[�mx < �mm ] (2:29)

We leave the easy proof to the reader.
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3. Mean transition times

In this chapter we will prove various estimates of conditioned transition times E [�xI j�
x
I �

�xJ ], where I [ J�MN . The control obtained is crucial for the investigation of the low lying

spectrum in Chapters 4 and 5. In the particular setting of the paper [BEGK], essentially the

same types of estimates have been proven. Apart from re-proving these in the more abstract

setting we consider here, we also present entirely di�erent proofs that avoid the inductive

structure of the proofs given in [BEGK]. Instead, it uses heavily a representation formula for

the Green's function (which �rst appeared in Section 3, Eq. (3.12) of [BEGK]9). While the

new proofs are maybe less intuitive from a probabilistic point of view, they are considerably

simpler.

Theorem 3.1: Fix a nonempty, irreducible, proper subset 
��N . Let (1�PN )

c

denote

the Dirichlet operator with zero boundary conditions at 
c
. Then the Green's function de�ned

as G
c

N (x; y) � ((1� PN )

c

)�11Iy(x), x; y 2 
, is given by

G
c

N (x; y) =
QN (y)

QN (x)

P[�yx < �
y

c ]

P[�x
c < �xx ]
(x; y 2 
) (3:1)

Proof: This theorem follows essentially from the proof of Eq. (3.12) of [BEGK]. Using e.g.

the maximum principle, it follows that (1� PN )

c

is invertible. From (2.8) we obtain, using

(2.5),

(1� PN )

c

K
y
x;
c(0) = 1Ix(y)G

x

c;x(0) (x; y 2 
) (3:2)

This function serves as a fundamental solution and we compute for x; y 2 
, using the

symmetry of (1� PN )

c

,

QN (x)Gx

c;x(0)G


c

N (x; y) =h(1� PN )

c

K
(�)

x;
c(0); G

c

N (�; y)iQN

=hK
(�)

x;
c(0); (1 � PN )

c

G
c

N (�; y)iQN

=QN (y)K
y
x;
c(0)

(3:3)

This proves (3.1).}

Remark: Observe that (3.1) still makes sense for x 2 
 and y 2 @
, where we de�ne the

boundary @I of a set I��N to be

@I � fx 2 Ic j 9y 2 I : PN (y; x) > 0g (3:4)

9More recently, the same formula was rederived by Gaveau and Moreau [GM] also for the non-reversible

case.
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For such x and y reversibility (2.11) and the renewal relation (2.10) for u � 0 and I � 
c

imply

G
c

N (x; y) = P[�xy = �x
c ] (x 2 
; y 2 @
) (3:5)

Based on Theorem 3.1 we can derive an alternative representation of a particular h-

transform of the Green's function with h(y) = P[�
y
I � �

y
J ] that will prove useful in the

sequel.

Proposition 3.2:For every nontrivial partition I[J = 
c
such that I and J are not empty

and InJ communicates with 
 we have

P[�xI � �xJ ]
�1G
c

N (x; y)P[�
y
I � �

y
J ] =

P[�xy < �xI j�
x
I � �xJ ]

P[�
y

c < �

y
y ]

�
c(x; y); x; y 2 
 (3:6)

where

�
c(x; y) �
P[�

y

c < �yy ]P[�

x

c
[y < �xx ]

P[�x
c < �xx ]P[�
y

c
[x < �

y
y ]
; x; y 2 
 (3:7)

Furthermore,

1

3
� �
c(x; y) � 3 (3:8)

Proof: (3.6) is a straightforward calculation that uses the renewal equation (2.10), reversibil-

ity, and the strong Markov property. Indeed, by (3.1) the left-hand side of (3.6) equals

QN (y)P[�yx < �
y

c ]P[�

y
I � �

y
J ]

QN (x)P[�x
c < �xx ]P[�
x
I � �xJ ]

(3:9)

By the renewal equation, this equals

QN (y)P[�yx < �
y

c
[y]P[�

y
I � �

y
J ]

QN (x)P[�
y

c
[x < �

y
y ]P[�x
c < �xx ]P[�

x
I � �xJ ]

(3:10)

which by reversibility turns into

P[�xy < �x
c
[x]P[�

y
I � �

y
J ]

P[�
y

c
[x < �

y
y ]P[�x
c < �xx ]P[�

x
I � �xJ ]

=
P[�xy < �x
c ]P[�

y

c
[x < �yy ]P[�

y
x < �

y

c ]P[�

y
I � �

y
J ]

P[�
y

c
[x < �

y
y ]P[�x
c < �xx ]P[�

x
I � �xJ ]

=
P[�xy < �xI j�

x
I � �xJ ]P[�

y

c
[x < �yy ]P[�

y
x < �

y

c ]

P[�
y

c
[x < �

y
y ]P[�x
c < �xx ]

(3:11)



Metastability and spectra 15

where the last identity uses that by the strong Markov property

P[�xy < �xI ; �
x
I � �xJ ] = P[�xy < �xI � �xJ ] = P[�xy < �xI[J ]P[�

y
I � �xJ ] (3:12)

(3.11) immediately implies (3.6).

We now turn to the proof of the bound (3.8). Since �
c(x; x) = 1 it is enough to consider

the case where x 6= y. Moreover, since �
c(x; y) = 1
�
c(y;x)

, an upper bound �
c(x; y) � 3

will immediately imply the claimed lower bound.

The basic input here is the observation that a path from y to 
c either visits a point x or

it does not, yielding, together with the strong Markov property

P[�
y

c < �yy ] =P[�

y

c < �

y
x[y] + P[�yx < �

y

c < �yy ]

= P[�
y

c < �

y
x[y] + P[�yx < �

y

c
[y]P[�

x

c < �xy ]

(3:13)

Using this identity for the �rst factor in the numerator of (3.7), we obtain that �
c(x; y) can

be written as �
c(x; y) = (I) + (II) where

(I) =
P[�

y

c < �

y
x[y]P[�

x

c
[y < �xx ]

P[�x
c < �xx ]P[�
y

c
[x < �

y
y ]

=
P[�

y

c < �yx ]P[�

x

c
[y < �xx ]

P[�x
c < �xx ]
(3:14)

The renewal equation was used in the second equality. Decompose the event in the second

factor of the numerator and use (3.13) in the denominator. This yields

(I) =
P[�

y

c < �yx ]

�
P[�x
c < �xx[y] + P[�xy < �x
c

[x]
�

P[�x
c < �xx[y] + P[�xy < �x
c
[x]P[�

y

c < �

y
x ]

� P[�
y

c < �yx ] + 1 � 2 (3:15)

For (II) we get

(II) =
P[�yx < �

y

c
[y]P[�

x

c < �xx[y]P[�

x

c
[y < �xx ]

P[�x
c
[y < �xx ]P[�

x

c < �xx ]P[�

y

c
[x < �

y
y ]

=
P[�yx < �

y

c
[y]P[�

x

c < �xx[y]

P[�x
c < �xx ]P[�
y

c
[x < �

y
y ]

� 1 (3:16)

The bounds (3.8) are now obvious. }

The representation (3.6) for the Green's function implies immediately a corresponding

representation for the (conditioned) expectation of entrance times �xI . To see this, recall

from (2.9) for u � 0 that

(1� PN )
I[JE

h
�
y
I 1If�yI��

y
J
g

i
= P[�

y
I � �

y
J ]; y =2 I [ J (3:17)

This yields immediately the
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Corollary 3.3: Let I; J��N . Then for all x =2 I [ J

E [�xI j�
x
I � �xJ ] =

X
y2(I[J)c

P[�xI � �xJ ]
�1G
c

N (x; y)P[�
y
I � �

y
J ]

=
X

y2(I[J)c

QN (y)

QN (x)

P[�yx < �
y
I[J ]

P[�xI[J < �xx ]

P[�
y
I � �

y
J ]

P[�xI � �xJ ]

(3:18)

A �rst consequence of the representation given above is

Corollary 3.4: Fix I�MN . Then for all x 2 �N

E [�xI j�
x
I < �x

MNnI
] � 3b�1N j�N j (3:19)

In particular,

E [�x
MN

] � 3b�1N j�N j (3:20)

Proof: Using (3.7) in (3.19), we get that

E [�xI j�
x
I < �x

MNnI
] =

X
y2�NnMN

P[�xy < �xI j�
x
I � �x

MNnI
]

P[�
y
MN

< �
y
y ]

�MN
(x; y) (3:21)

Using the lower bound (1.2) from De�nition 1.1 together with the upper bound (3.8), we get

E
h
�xI j�

x
I < �x

MNnI

i
� 3b�1N

X
y2�NnMN

P[�xy < �xI j�
x
I � �x

MNnI
] (3:22)

from which the claimed estimate follows by bounding the conditional probability by one10.

The special case I =MN follows in the same way, with the more explicit bound

E�x
MN

� 3b�1N

X
y2�NnMN

P[�xy < �x
MN

] (3:23)

This concludes the proof of the corollary.}

Theorem 3.1 allows to compute very easily the mean times of metastable transitions.

Theorem 3.5: Assume that J �MN , x 2MN , and x; J satisfy the condition

Tx;J = TJ (3:24)

10It is obvious that in cases when j�N j =1 this bound can in many cases be improved to yield a reasonable

estimate. Details will however depend upon assumptions on the global geometry.
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Then

E�xJ =
QN (A(x))

QN (x)P[�xJ < �xx ]

�
1 +O(1)

�
RxjMN jj�N j

bNaN
+ �NRxcN

��
(3:25)

Proof: Specializing Corollary 3.3 to the case J = ;, we get the representation

E�xJ =
1

QN (x)P[�xJ < �xx ]

X
y 62J

QN (y)P[�yx < �
y
J ] (3:26)

We will decompose the sum into three pieces corresponding to the two sets


1 � A(x)


2 ��NnA(x)nJ
(3:27)

The sum over 
1 gives the main contribution; the trivial upper bound

X
y2
1

QN (y)P[�yx < �
y
J ] �

X
y2
1

QN (y) (3:28)

is complemented by a lower bound that uses (we ignore the trivial case x = y where

P[�xx < �xJ ] = 1)

P[�yx < �
y
J ] = 1� P[�

y
J < �yx ] � 1�

P[�
y
J < �yy ]

P[�
y
x < �

y
y ]

(3:29)

By Lemma 2.5, if P[�xJ < �xx ] �
1
3
P[�xy < �xx ], then

P[�
y
J < �yy ] �

3

2

QN (x)

QN (y)
P[�xJ < �xx ] (3:30)

so that

QN (y)
P[�

y
J < �yy ]

P[�
y
x < �

y
y ]
�

3

2
QN (x)

jMN j

bNaN
(3:31)

On the other hand, if P[�xJ < �xx ] >
1
3
P[�xy < �xx ], then

QN (y) � 3QN (x)
P[�xJ < �xx ]

P[�
y
x < �

y
y ]
� 3QN (x)

jMN j

bNaN
(3:32)

Thus X
y2
1

QN (y)P[�yx < �
y
J ] �

X
y2
1

QN (y)� 3jA(x)jQN (x)
jMN j

bNaN

= QN (A(x))

�
1� 3jA(x)jRx

jMN j

bNaN

� (3:33)
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We now consider the remaining contributions. This is bounded by

1

QN (x)P[�xJ < �xx ]

X
m2Mnx

Lm (3:34)

where

Lm �
X

y2A(m)nJ

Lm(y) �
X

y2A(m)nJ

QN (y)P[�yx < �
y
J ] (3:35)

Assume �rst that y is such that

(CJ) QN (y)P[�
y
J < �yy ] � QN (m)P[�mJ < �mm ] and

(Cx) QN (y)P[�yx < �yy ] � QN (m)P[�mx < �mm ] hold,

where we introduced the notation a � b, 1
3
� a

b
� 3. Then

Lm(y) � 9QN (y)
P[�mx < �mm ]

P[�mJ < �mm ]
(3:36)

There are two cases:

(i) If E(m;J) � 1
3
E(m;x), then by Lemma 2.5,

QN (m)P[�mJ <�mm ]

QN (x)P[�x
J
<�xx ]

� 3
2
or

QN (m) �
3

2
QN (x)

Tm;J

Tx;J
� �N

3

2
QN (x) (3:37)

Hence

Lm(y) � QN (y) �
QN (y)

QN (m)
�N

3

2
RxQN (A(x)) (3:38)

(ii) If E(m;J) > 1
3
E(m;x), then E(x; J) � 1

3
E(m;x) or QN (x)P[�xJ < �xx ] �

1
3
QN (m)P[�mx <

�mm ] so that

Lm(y) � 27
QN (y)QN (x)

QN (m)

Tm;J

Tx;J
� 27�NRx

QN (y)

QN (m)
QN (A(x)) (3:39)

Finally we must consider the cases where (CJ) or (Cx) are violated.

(iii) Assume that (Cx) fails. Then by Lemma 2.5, P[�mx < �mm ] � 1
3
P[�my < �mm ] which implies

that

Lm(y) � QN (y) � 3QN (m)
P[�mx < �mm ]

P[�
y
m < �

y
y ]

� 3QN (m)
P[�mx < �mm ]jMN j

bN

� 3QN (x)
P[�xm < �xx ]jMN j

bN
�

3jMN j

bNaN
RxQN (A(x))

(3:40)
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(iv) Finally it remains the case where (CJ) fails but (Cx) holds. Then P[�
y
J < �yy ] >

1
3
P[�ym <

�yy ] �
bN

3jMN j
and QN (y)P[�yx < �yy ] �

3
2
QN (m)P[�mx < �mm ] = 3

2
QN (x)P[�xm < �xx ]. Thus

Lm(y) satis�es equally the bound (3.40).

Using these four bounds, summing over y one gets

Lm � 27QN (A(x))max

�
�NRxR

�1
m ;

jMN jjA(m)j

bNaN
Rx

�
(3:41)

Putting everything together, we arrive at the assertion of the theorem.}

Remark: As a trivial corollary from the proof of Theorem 3.5 one has

Corollary 3.6: Let x 2MN and J �MN (x). Then the conclusions of Theorem 3.5 also

hold.

Finally, we can easily prove a general upper bound on any conditional expectation.

Theorem 3.7: For any x 2 �N and I; J �MN ,

E [�xI j�
x
I � �xJ ] � C sup

m2MNnInJ

(RmP[�
m
I[J < �mm ])

�1
(3:42)

To prove this theorem the representation of the Green's function given in Proposition 2.2

is particularly convenient. It yields

E [�xI j�
x
I � �xJ ] =

X
y2�NnInJ

P[�xy < �xI j�
x
I � �xJ ]

P[�
y
I[J < �

y
y ]

�I[J (x; y) (3:43)

Note �rst that the terms with y such that P[�
y
I[J < �yy ] � ÆbN yield a contribution of no more

than j�N j(ÆbN )
�1 which is negligible. To treat the remaining terms, we use that whenever

y 2 A(m), Lemma 2.5 implies that P[�
y
I[J < �yy ] �

QN (m)

QN (y)
P[�mI[J < �mm ]. Thus

E [�xI j�
x
I � �xJ ] �

3j�N j

ÆbN
+

X
m2MNnInJ

X
y2A(m)

3
QN (y)

QN (m)

P[�xy < �xI j�
x
I � �xJ ]

P[�mJ[I < �mm ]

�
3j�N j

ÆbN
+

X
m2MNnInJ

3R�1m
1

P[�mJ[I < �mm ]

(3:44)

from which the claim of the theorem follows by our general assumptions. Note that by very

much the same arguments as used before, it is possible to prove that

P[�xy < �xI j�
x
I � �xJ ] � (1 + Æ)P[�xm < �xI j�

x
I � �xJ ] (3:45)
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which allows to get the sharper estimate

E [�xI j�
x
I � �xJ ] �

3j�N j

ÆbN
+

X
m2MNnInJ

3(1 + Æ)R�1m
P[�xm < �xI j�

x
I � �xJ ]

P[�mJ[I < �mm ]
(3:46)

}

We conclude this section by stating some consequences of the two preceding theorems that

will be useful later.

Lemma 3.8: Let I;m satisfy the hypothesis of Theorem 3.5. Then

max
x=2I

E [�xI ] = E [�mI ]
�
1 +O(TI[m=TI)

�
(3:47)

Moreover, we have

E [�mm ; �mm < �mI ]

P[�mI < �mm ]
= E [�mI ]

�
1�O(TI[m=TI ))

�
(3:48)

In particular,

E [�mm ; �mm < �mI ] = R�1m (1 +O(TI[m=TI )) (3:49)

Proof: Decomposing into the events where m is and is not visited before I, and, using the

strong Markov property, one gets

E [�xI ] = P[�xI < �xm]E [�
x
I j�

x
I < �xm] + P[�xm < �xI ]

�
E [�xm j�

x
m < �xI ] + E [�mI ]

�
(3:50)

Using Theorems 3.5 and 3.7, this implies (3.47) readily. In the same way, or by di�erentiating

the renewal equation (2.10), one gets

E [�mI ] = E [�mI j�
m
I < �mm ] +

E [�mm ; �mm = �mI ]

P[�mI < �mm ]
(3:51)

Bounding the �rst summand on the right by Theorem 3.7 gives (3.48). Using Theorem 3.5

for the right hand side of (3.48) gives (3.49). }
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4. Laplace transforms and spectra

In this section we present a characterization of the spectrum of the Dirichlet operator

(1 � PN )
I , I�MN , in terms of Laplace transforms of transition times (de�ned in (2.4) and

(2.5)). This connection forms the basis of the investigation of the low-lying spectrum that is

presented in Section 5. To exploit this characterization we study the region of analyticity and

boundedness of Laplace transforms. As a �rst consequence we then show that the principal

eigenvalue for Dirichlet operators are with high precision equal to the inverse of expected

transition times. A combination of these results then leads to the characterization of the

low-lying spectrum given in the next section.

For any J�MN we denote the principal eigenvalue of the Dirichlet-operator P J
N by

�J � min�((1 � PN )
J ) (4:1)

For I; J�MN we de�ne the matrix

GI;J(u) �
�
Æm0;m �Gm0

m;I[J(u)
�
m0;m2JnI

(4:2)

where Æx;y is Kronecker's symbol. We then have

Lemma 4.1: Fix subsets I; J�MN such that JnI 6= ; and a number 0 � � � 1� e�u <

�I[J . Then

� 2 �((1 � PN )
I) () detGI;J(u) = 0 (4:3)

Moreover, the map kerGI;J (u) 3 ~� 7! � 2 1IIcR
�N de�ned by

�(x) �
X

m2JnI

~�mK
x
m;I[J(u); x 2 �N (4:4)

is an isomorphism onto the eigenspace corresponding to the eigenvalue �.

Proof: Assume that � is an eigenfunction with corresponding eigenvalue � < �I[J . We

have to prove that GI;J(u) is singular. In view of (2.6) the condition �I[J > � implies that

~� de�ned below is �nite.

~� �
X
m2J

�(m)Kx
m;I[J(u); x 2 �N (4:5)

Furthermore, (2.8) and (2.5) imply for x 2 �N

eu(1�PN � (1� e�u))~�(x) = (1� euPN )~�(x) =
X

m0
2I[J

Æm0;x

X
m2J

�(m)
�
Æm0;m �Gm0

m;I[J(u)
�

(4:6)
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Let � � �� ~�. We want to show � = 0. Obviously, we have � vanishes on I [ J and ~� on

I. Combining (4.6) with the eigenvalue equation for � and the choice of u, we obtain

(1� PN )
I[J� = 1I(I[J)c(1� PN )

I� = 1I(I[J)c
�
(1� PN )

I�� (1� PN )~�
�

= 1I(I[J)c(��� (1� e�u)~�) = ��
(4:7)

Since � =2 �((1�PN )
I[J ), we conclude � = 0. Replacing ~� by � in (4.6) and, using � � 1�e�u

again, gives

0 =
X

m0
2I[J

Æm0;x

X
m2J

�(m)
�
Æm0;m �Gm0

m;I[J(u)
�
; x 2 Ic (4:8)

Choosing x 2 JnI yields that (�(m))m2JnI 2 kerGI;J(u) and the right-hand side of the

equivalence in (4.3) follows. In particular, we have proven that the restriction map � 7!

(�(m))m2JnI de�ned on the eigenspace corresponding to � is the inverse of the map de�ned

in (4.4).

For the converse implication we note that for � < �I[J the entries of the matrix GI;J (u) are

�nite. We replace (�(m))m2JnI in (4.5) by the solution ~� of the linear system GI;J (u)~� = 0

and deduce from (4.6) and (4.8) that � is an eigenvalue with eigenfunction ~�. }

As a �rst step we now derive a lower bound on these eigenvalues, using a Donsker-Varadhan

[DV] like argument that we will later prove to be sharp.

Lemma 4.2: For every nonempty subset J�MN we have

�J max
x=2J

E [�xJ ] � 1 (4:9)

Proof: For � 2 R�N we have for all x; y 2 �N and C > 0

�(y)�(x) �
1

2
(�(x)2C + �(y)2=C) (4:10)

Thus choosing C �  (y)= (x), where  2 R�N is such that  (x) > 0 for all x 2 supp�, we

compute, using reversibility,

hPN�; �iQN �
1

2

X
x;y2�N

QN (x)PN (x; y)(�(x)
2( (y)= (x)) + �(y)2( (x)= (y)))

=
X

x;y2�N

QN (x)�(x)2
PN (x; y) (y)

 (x)
=

�
�

�
PN 

 

�
; �

�
QN

(4:11)
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Let � be an eigenfunction for the principal eigenvalue and set  (x) � E [�xJ ], x 2 �N . Invoking

(2.9) for u � 0 and I � J we get

�J jj�jj
2
QN

� h�= ; �iQN (4:12)

which in turn gives the assertion. }

We now study the behavior of Laplace transforms slightly away from their �rst pole on

the real axis.

Lemma 4.3: Fix nonempty subsets I; J�MN . Let G
x
I;J be the Laplace transform de�ned

in (2.4). It follows that for some c > 0 and for k = 0; 1 uniformly in 0 � <(u); j=(u)j �

c=(cNTI[J ) and x 2 �N

@kuG
x
I;J(u) = (1 +O(jujcNTI[J )) @

k
uG

x
I;J(0) (4:13)

Proof: By (2.6), we know that Gx
I;J(u), x 2 �N , are �nite for all u such that 1� e�<(u) <

�I[J . Put

Ku;v � K
(�)

I;J (u)�K
(�)

I;J (v) (4:14)

(2.8) and (2.9) imply that for k = 0; 1,

(1� PN )
I[J (@u@v)

kKu;0 = (1� e�u)@kuK
(�)

I;J(u) + Æk;1Ku;0 (4:15)

We �rst consider the case where k = 0. Using (3.6), we get from (4.15) for all x =2 I [ J

Gx
I;J(u)

Gx
I;J(0)

= 1 + (1� e�u)
X

y=2I[J

P[�xy < �xI j�
x
I � �xJ ]

P[�I[J < �
y
y ]

�I[J (x; y)
G
y
I;J (u)

G
y
I;J (0)

(4:16)

where �I[J is de�ned in (3.7). Setting

MN;k(u) � max
x=2I[J

j@kuG
x
I;J(u)j

Gx
I;J(0)

(4:17)

and, using that
@kuG

x
I;J (0)

Gx
I;J

(0)
= E [�xI j�

x
I < �xJ ], we obtain from (4.16) that for 1� e�<(u) < �I[J

1� j1� e�ujMN;0(u)MN;1(0) �MN;0(u) � 1 + j1� e�ujMN;0(u)MN;1(0) (4:18)

But by Theorem 3.7 we have a uniform bound onMN;1(0), and this implies (4.13) for x 62 I[J .
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For k = 1 (4.15) gives

@uG
x
I;J(u)

Gx
I;J(0)

=
@uG

x
I;J(0)

Gx
I;J(0)

+
X

y=2I[J

P[�xy < �xI j�
x
I � �xJ ]

P[�I[J < �
y
y ]

�I[J (x; y)

�
(1�e�u)

@uG
y
I;J(u)

G
y
I;J(0)

+
G
y
I;J(u)

G
y
I;J(0)

�1

�

(4:19)

and the same arguments together with (4.13) for k = 0 show, for some c > 0 and all

0 � <(u); j=(u)j < cc�1T�1J[I , that

MN;1(u) �MN;1(0) (1 +O(jujcNTI[J )) + j1� e�ujMN;1(u)MN;1(0) (4:20)

In particular, we conclude that on the same set,

MN;1(u) = O(MN;1(0)) = O(cNTI[J ) (4:21)

Inserting this estimate into (4.19) (3.18) and (4.13) for k = 0 again gives for all 0 �

<(u); j=(u)j < ccNTI[J

@uG
x
I;J(u)

Gx
I;J(0)

= (1 +O(jujcNTJ[K))
@uG

x
I;J(0)

Gx
I;J(0)

; x =2 I [ J (4:22)

which yields (4.13) for k = 1 and x =2 I [ J .

The remaining part, namely x 2 I [ J , follows by �rst using (2.8), respectively (2.9), to

express the quantities @kGx
I;J in terms of @kG

y
I;J with y 62 I [J and then applying the result

obtained before. }

We now have all tools to establish a sharp relation between mean exit times and the

principal eigenvalue �I of P
I
N . Set uI � � ln(1� �I). We want to show that

Gm
m;I(uI) = 1 (4:23)

Indeed, this follows from Lemma 4.1 with J = I [ fmg, m 2 MN , if we can show that

�I < �I[m. Now it is obvious by monotonicity that �I � �I[m. But if equality held, then

by (2.6), limu"uI G
m
m;I(u) = +1; by continuity, it follows that there exists u < uI such that

Gm
m;I(u) = 1, implying by Lemma 4.1 that 1�e�u < �I is an eigenvalue of P I

N , contradicting

the fact that �I is the smallest eigenvalue of P I
N . We must conclude that �I < �I[m and

that (4.23) holds.

Theorem 4.4: Fix a proper nonempty subset I�MN . Let m 2MNnI be the unique local

minimum satisfying TI = Tm;I . Then

�I = (1 +O(TI[m=TI)) E [�
m
I ]�1 (4:24)
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In particular,

�I = RmT
�1
I (1 +O(�N j�N j+ j�N j=(�NaNbN ))) (4:25)

Proof: Using that for x � 0, ex > 1 + x, for real and positive u,

Gm
m;I(u) = E

h
eu�

m
m 1I�mm<�m

I

i
� P[�mm < �mI ] + uE

�
�mm 1I�mm<�m

I

�
(4:26)

Using this in (4.23), we immediately obtain the upper bound

uI �
P[�mI < �mm ]

E
�
�mm 1I�mm<�m

I

� (4:27)

Using now Lemma 3.8 to bound the right hand side, gives the upper bound of (4.24). The

lower bound is of course already contained in Lemma 4.2. }

The a priori control of the Laplace transforms given in Lemma 4.3 can be used to control

denominators in the renewal relation (2.10) which will be important for the construction of

the solution of the equation appearing in (4.3). We are interested in the behavior of Gm
m;I

near uI .

Lemma 4.5: Under the hypothesis of Theorem 4.4 there exists c > 0 such that for all

0 � <(u) < c=(cNTI[m)

Gm
m;I(u)� 1 = E

�
�mm 1I�mm<�m

I

� �
u� uI + (u� uI)

2
O(cNTI[m)

�
= (1 +O(�N ))R

�1
m

�
u� uI + (u� uI)

2
O(cNTI[m)

� (4:28)

Proof: Performing a Taylor expansion at u = uI to second order of the Laplace transform

on the left-hand side of (4.28) and recalling (4.23) we get

Gm
m;I(u)� 1 = @uG

m
m;I(uI)

�
(u� uI)� (u� uI)

2
RI(u)@uG

m
m;I(uI)

�1
�

(4:29)

where

RI(u) �

Z 1

0

s �Gm
m;I((1� s)uI + su)ds (4:30)

(4.29) then follows from Cauchy's inequality combined with (4.13) and (4.25) which shows,

for c > 0 small enough, C <1 large enough, and all u considered in the Theorem, that

j �Gm
m;I(u)j �

�Gm
m;I (c=(cNTI[m)) �CcNTI[m@uG

m
m;I (c=(cNTI[m))

�C2cNTI[m@uG
m
m;I(0)

(4:31)

where we used Lemma 4.3. Using Lemma 3.8, the assertion of the lemma follows. }
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5. Low lying eigenvalues

In the present section we prove the main new result of this paper. Namely, we establish a

precise relation between the low-lying part of the spectrum of the operator 1 � PN and the

metastable exit times associated to the set MN . Together with the results of Section 2, this

allows us to give sharp estimates on the entire low-lying spectrum in terms of the transition

probabilities between points in MN and the invariant measure.

As a matter of fact we will prove a somewhat more general result. Namely, instead of

computing just the low-lying spectrum of 1 � PN , we will do so for any of the Dirichlet

operators (1 � PN )
I , with I � MN (including the case I = ;). In the sequel we will �x

I�MN with I 6=MN .

The strategy of our proof will be to show that to each of the pointsmi 2MNnI corresponds

exactly one eigenvalue �Ii of (1�PN )
I and that this eigenvalue in turn is close to the principle

eigenvalue of some Dirichlet operator (1 � PN )
�i , with I � �i � MN . We will now show

how to construct these sets �i in such a way as to obtain an ordered sequence of eigenvalues.

We set the �rst exclusion set �0 and the �rst e�ective depth T1 to be

�0 � I and T1 � T�0 (5:1)

where TK , K�MN , is de�ned in (1.9). If I 6= ;, let m1 be the unique point in MNnI such

that

Tm1;I = T1 (5:2)

If I = ;, let m1 be the unique element of MN such that QN (m1) = maxm2MN
QN (m).

For j = 2; : : : ; j0, j0 � jMNnIj, we de�ne the corresponding quantities inductively by

�j�1 � �j�2 [mj�1 and Tj � T�j�1
(5:3)

and mj 2MNn�j�1 is determined by the equation

TN (mj ;�j�1) = Tj (5:4)

In order to avoid distinction as to whether or not j = j0, it will be convenient to set Tj0+1 �

b�1N . Note that this construction and hence all the sets �j depend on N . An important fact is

that the sequence Tj is decreasing. To see this, note that by construction and the assumption

of genericity

Tl = Tml;�l�1
� ��1N Tml+1;�l�1

� ��1N Tml+1;�l
= ��1N Tl+1 (5:5)
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The basic heuristic picture behind this construction can be summarized as follows. To each

j = 1; : : : ; j0 associate a rank one operator obtained by projecting the Dirichlet operator

(1 � PN )
�j�1 onto the eigenspace corresponding to its principal eigenvalue ��j�1

� T�1j .

Note that our construction of �j as an increasing sequence automatically guarantees that

these eigenvalues will be in increasing order. The direct sum of these rank one operators

acts approximately like (1�PN )
I on the eigenspace corresponding to the exponentially small

part of its spectrum. Hence the di�erence between both operators can be treated as a small

perturbation.

Remark: We can now explain what the minimal non-degeneracy conditions are that are

necessary for Theorem 1.3 to hold. Namely, what must be ensured is that the preceding

construction of the sequence of sets is unique, and that the T�j
are by a diverging factor ��1N

larger than all other Tx;�j
.

We are now ready to formulate the main theorem of this section. Let �j , j = 1; : : : ; j�NnIj,

be the j-th eigenvalue of (1 � PN )
I written in increasing order and counted with multiplic-

ity and pick a corresponding eigenfunction �j such that (�j)j is an orthonormal basis of

1IIc`
2(�N ;QN ). We then have

Theorem 5.1: Set j0 � jMNnIj. There is c > 0 such that the Dirichlet operator (1�PN )
I

has precisely j0 simple eigenvalues in the interval [0; cbN )j�N j, i.e.

�((1 � PN )
I) \ [0; cbN j�N j

�1) = f�1; : : : ; �j0g (5:6)

De�ne T1 � 1 and for j = 2; : : : ; j0

Tj � min
1�k<j

Tmk;mj
=Tj � ��1N (5:7)

Then

�j =
�
1 +O(T �1j + Tj+1=Tj))

�
��j�1

(5:8)

where �K , K�MN , is de�ned in (4.1).

Moreover, the eigenfunction �j satis�es for k = 1; : : : ; j � 1

�j(mk) = �j(mj)O
�
Rmj

Tmk;mj
=Tj
�

(5:9)

Remark: Combining Theorem 5.1 with Theorem 4.4 and Theorem 3.5, we get immediately
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Corollary 5.2: With the notation of Theorem 5.1, for j = 1; : : : ; j0 that

�j = (1 +O(Tj + Tj+1=Tj)) E
h
�
mj

�j�1

i
�1

=
1

Tj
Rmj

(1 +O (j�N j(�N + 1=(aN bN�N ))))
(5:10)

Note that Corollary 5.2 is a precise version of (ii) of Theorem 1.3. The estimate (5.9),

together with the representation (4.4) and the estimates of the Laplace transforms in Lemma

4.3, gives a precise control of the eigenfunctions and implies in particular (iv) of Theorem

4.3.

The strategy of the proof will be to seek, for each J � �j , for a solution of the equation

appearing in (4.3) with � near the principle eigenvalue of the associated Dirichlet operator

(1 � PN )
�j�1 . We then show that these eigenvalues are simple and that no other small

eigenvalues occur.

For the investigation of the structure of the equations written in (4.3) we have to take

a closer look at the properties of the e�ective depths de�ned in (5.3). We introduce for all

m 2MNnI the associated \metastable depth" with exclusion at I by

TN (m) � Tm;MN (m); where MN (m) � I [ fm0
2MN jQN (m0) > QN (m)g (5:11)

Let us de�ne for j = 2; : : : ; j0

Ej � min
1�l<j

Tml;�jnml
(5:12)

The following result relates our inductive de�nition to these geometrically more transparent

objects and establishes some crucial properties:

Lemma 5.3: Every e�ective depth is a metastable depth, more precisely for all j =

1; : : : ; j0 it follows

Tj = TN (mj)(1 +O(�N jMN j)) (5:13)

For j = 2; : : : ; j0 we have

Tj � Ej=Tj � ��1N : (5:14)

Moreover, for j; l = 1; : : : ; j0, l < j, we have

Tml;�jnml
= T�jnml

(1 +O(�N jMN j)) (5:15)
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Proof: Fix l < j. It will be convenient to decompose �j = �l�1 [ml [ �+
j , where �

+
j �

�jn�l. We will use heavily the (almost) ultra-metric e(�; �) introduced in Section 2; for the

purposes of the proof we can ignore the irrelevant errors in the ultra-metric inequalities (i.e.

all equalities and inequalities relating the functions e in the course of the proof are understood

up to error of at most ln 3). Note that lnTx;J = e(x; J)� f(x), where f(x) � � lnQN (x). In

particular, dl � lnTl = e(ml;�l�1) � f(ml). As a �rst step we prove the following general

fact that will be used several times:

Lemma 5.4: Let m be such that e(m;ml) < e(ml;�l�1). Then f(m) � f(ml) + j ln �N j.

Proof: Note that by ultra-metricity,

e(m;�l�1) = max (e(m;ml); e(ml;�l�1)) = e(ml;�l�1) (5:16)

But since for any m,

e(m;�l�1)� f(m) � dl � j ln �N j = e(ml;�l�1)� f(ml)� j ln �N j (5:17)

which implies by (5.16) f(ml) � f(m)� j ln �N j.}

Let us now start by proving (5.14). The �rst inequality is trivial. We distinguish the cases

where e(ml;�
+
j ) is larger or smaller than e(ml;�l�1).

(i) Let e(ml;�
+
j ) � e(ml;�l�1).

Since e(ml;�jnml) = min
�
e(ml;�l�1); e(ml;�

+
j )
�
, this implies that e(ml;�jnml) =

e(ml;�l�1).

Then, using (5.5) and genericity from De�nition 1.2,

e(ml;�jnml)� f(ml) = e(ml;�l�1)� f(ml) = dl � e(mj�1;�l�1)� f(mj�1)

� e(mj�1�j�2)� f(mj�2) = dj�1 � dj + j ln �N j
(5:18)

Obviously, this gives (5.14) in this case.

(ii) Let e(ml;�
+
j ) < e(ml;�l�1).

In this case there must exist mk 2 �+
j such that e(ml;�jnml) = e(ml;mk), and hence

e(mk;ml) < e(ml;�l�1). Thus we can use Lemma 5.4 for m = mk. Together with the

trivial inequality e(mk;ml) � e(mk;�k�1), it follows that

e(ml;�jnml)� f(ml) = e(mk;ml)� f(ml)

� e(mk;�k�1)� f(mk) + f(ml)� f(mk) � dk + j ln �N j � dj + j ln �N j
(5:19)
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This implies (5.14) in that case and concludes the proof of this inequality.

We now turn to the proof of (5.15). We want to proof that the maximum over Tm;�jnml

is realized for m = ml. Note �rst that it is clear that the maximum cannot be realized for

m 2 �jnml (since in that case Tm;�jnml
= 1). Thus �x m 62 �j . We distinguish the cases

e(m;ml) less or larger than e(m;�jnml).

(i) Assume e(m;ml) < e(m;�jnml).

The ultra-metric property of e then implies that e(ml;�jnml) = e(m;�jnml), and hence,

using the argument from above, f(m) > f(ml) + j ln �N j. Thus

e(ml;�jnml)�f(ml) = e(m;�jnml)�f(m)+f(m)�f(ml) � e(m;�jnml)�f(m)+j ln �N j

(5:20)

which excludes that in this case m may realize the maximum. We turn to the next case.

(ii) Assume e(m;ml) � e(m;�jnml).

We have to distinguish the two sub-cases like in the proof of (5.14).

(ii.1) e(ml;�
+
j ) � e(ml;�l�1).

Here we note simply that by (5.18)

e(ml;�jnml) = e(ml;�l�1)� f(ml) = dl > e(m;�l�1)� f(m) � e(m;�jnml)� f(m)

(5:21)

which implies that m cannot be the maximizer.

(ii.2) e(ml;�
+
j ) < e(ml;�l�1).

This time we use (5.19) for some mk 2 �+
j and so

e(ml;�jnml)� f(ml) > dk > e(m;�k�1)� f(m) � e(m;�jnml)� f(m) (5:22)

where in the last inequality we used that by assumption e(m;ml) > e(m;�jnml). Again

(5.22) rules out m as maximizer, and since all cases are exhausted, we must conclude

that (5.15) holds.

It remains to show that (5.13) holds. Now the crucial observation is that by Lemma 5.4,

MN (mj) \ fm 2MN : e(mj ;m) < e(mj ;�j�1)g = ; (5:23)

Thus, for all m 2MN (mj), Tmj ;m � Tmj;�j�1
, which implies of course that

Tmj ;M(mj) � Tmj;�j�1
(5:24)
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To show that the converse inequality also holds, it is obviously enough to show that the set

fmjTmj ;m � Tmj;�j�1
g \MN (mj) 6= ; (5:25)

Assume the contrary, i.e. that for all m 2 M(mj) Tmj ;m > Tmj;�j�1
. Now let m 62 I be

such a point. Then also e(mj ;m) > e(mj ;�j�1), and so by ultra-metricity e(m;�j�1) =

max (e(mj ;m); e(mj ;�j�1)) > e(mj ;�j�1). But, since f(m) � f(mj), it follows that

Tm;�j�1
> Tmj ;�j�1

(5:26)

in contradiction with the de�ning property ofmj . Thus (5.25) must hold, and so Tmj ;MN (mj) �

Tmj;�j�1
. This concludes the proof of the Lemma.}

We now turn to the constructive part of the investigation of the low lying spectrum. Having

in mind the heuristic picture described before Theorem 5.1 we are searching for solutions u

of (4.3) for J � �j near u�j�1
� � log(1 � ��j�1

). The procedure of �nding u is as follows.

The case j = 1 was studied in Theorem 4.4. For j = 2; : : : ; j0 we consider the matrices

Gj = GI;�j
de�ned in (4.2), i.e.

Gj �

�
Kj �~gj

�(~gj)
t 1�G

mj

mj;�j

�
�

0
BBBBBBB@

1�Gm1

m1;�j
�Gm1

m2;�j
: : : �Gm1

mj;�j

�Gm2

m1;�j

. . .
...

...

�G
mj�1

mj;�j

�G
mj

m1;�j
: : : �G

mj

mj�1;�j
1�G

mj

mj;�j

1
CCCCCCCA

(5:27)

and de�ne

Nj � Dj �Kj ; where Dj � diag(1�Gml

ml;�j
)1�l<j (5:28)

Equipped with the structure of the e�ective depths written in Lemma 5.3 and the control

of Laplace transforms of transition times obtained in the previous chapter one simply can

write a Neumann series for 1I � Dj(u)
�1Nj(u) for u near u�j�1

proving the invertibility of

Kj(u). We then compute

detGj = det

�
Kj 0

�(~gj)
t Gj

�
= Gj detKj (5:29)

where

Gj � 1�G
mj

mj;�j
� (~gj)

t
K
�1
j ~gj (5:30)



32 Section 5

This follows by simply adding the column vector�
Kj

�(~gj)
t

�
K
�1
j ~gj

(which clearly is a linear combination of the �rst j�1 columns of Gj) to the last column in Gj ,

and the fact that this operation leaves the determinant unchanged. From this representation

we construct solutions ~uj near u�j�1
of (4.3). We begin with

Lemma 5.5: For all j = 2; : : : ; j0 there are constants c > 0, C < 1 such that for all

C 0 <1 and all

CRmj
E
�1
j < <(u) < cc�1N T�1j+1; j=(u)j < c=(cNTj+1) (5:31)

the inverse of Kj(u) exists. The l-th component of Kj(u)
�1~gj(u) restricted to the real axis is

strictly monotone increasing and, uniformly in u,

(Kj(u)
�1~gj(u))l = O(1)j�j jjuj

�1Rml
T�1ml;mj

(l = 1; : : : ; j � 1) (5:32)

Moreover, we obtain

� � 1� e�u 2 �((1 � PN )
I) () Gj(u) = 0 (5:33)

where Gj(u) is de�ned in (5.30).

Remark: Let us mention that the bound on =(u) in (5.31) is not optimal and chosen just

for the sake of convenience. The optimal bounds with respect to our control can easily be

derived but they are of no particular relevance for the following analysis.

Proof: Fix j = 2; : : : ; j0. Formally we obtain

Kj(u)
�1 =

�
1I�D(u)

�1
Nj(u)

�
�1
Dj(u)

�1 =

1X
s=0

(Dj(u)
�1
Nj(u))

s
Dj(u)

�1 (5:34)

To use these formal calculations and to extract the decay estimate in (5.32) we must estimate

the summands in (5.34). To do this we use a straightforward random walk representation for

the matrix elements

�
Dj(u)

�1
Nj(u))

s
Dj(u)

��1
l;k

=
X

!:ml!mk
j!j=s

j!jY
t=1

G
!t�1
!t;�j

(u)

1�G
!t�1
!t�1;�j

(u)
(1�Gmk

mk;�j
(u))�1; 1 � l; k < j

(5:35)
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where ! : ml ! mk denotes a sequence ! = (!0; : : : ; !j!j) such that !0 = mk, !j!j = mk,

!t 2 �jn(I [ J) and !t�1 6= !t for all t = 1; : : : ; j!j. Assuming that the series in (5.34)

converges, (5.35) gives the convenient representation

(Kj(u)
�1~gj(u))l =

X
!:ml!mj

j!jY
t=1

G
!t�1
!t;�j

(u)

1�G
!t�1
!t�1;�j

(u)
(5:36)

where the sum is now over all walks of arbitrary length. We will now show that this sum

over random walks does indeed converge under our hypothesis.

By virtue of (5.15) we may apply (4.28) for m � ml and I � �jnml and conclude that

there are c > 0 and C <1 such that for all C 0 <1 and all u 2 C satisfying (5.31)

Gml

ml;�j
(u)� 1 = (1 +O(�N ))R

�1
ml

�
u� u�jnml

� �
1 + (u� u�jnml

)O(cNT�j
)
�

= (1 +O(�N + 2c))uR�1ml

(5:37)

where we used that u�jnml
� cNEj . In addition, shrinking possibly c > 0 in (5.31), (4.13)

implies that for all k; l = 1; : : : ; j, k 6= l

Gml

mk;�j
(u) = (1 +O(jujcNTj+1))G

ml

mk;�j
(0) � O(1)P[�ml

mk
� �ml

�j
] (5:38)

Using these two bounds, (5.36) yields

(Kj(u)
�1~gj(u))l �

X
!:ml!mj

j!jY
t=1

O(1)R!t�1P[�
!t�1
!t

� �
!t�1
�j

]juj�1 (5:39)

To bound the product of probabilities, the following Lemma is useful:

Lemma 5.6: Let !0; !1; !2; !k 2 �j such that !i 6= !i+1, for all i and !0 6= !k. Then

kY
t=1

P[�!t�1!t
� �

!t�1
�j

] � P[�!0!k � �!0
(�jn!1n:::n!k)[!0

](Ej)
k�1 (5:40)

Proof: The proof is by induction over k. For k = 1 the claim is trivial. Assume that it for

k = l. We will show that it holds for k = l + 1. Let s � maxf0 � t � l j!t = !0g. Note that

by induction hypothesis and de�nition of s,

l+1Y
t=s+1

P[�!t�1!t
� �

!t�1
�j

] � P[�!s!l � �!s
�jn!s+1n:::n!l

]P[�!l!l+1 � �!l�j
](Ej)

l�s�1 (5:41)
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Now

P[�!s!l+1 � �!s
�jn!s+1n:::n!l+1

] � P[�!s!l+1 � �!s
�jn!s+1:::n!l+1

; �!s!l < �!s!l+1 ]

= P[�!s!l � �!s
�jn!s+1n:::n!l

]P[�!l!l+1 < �!l
�jn!s+1n:::n!l+1

]

= P[�!s!l � �!s
�jn!s+1n:::n!l

]
P[�!l!l+1 < �!l

(�jn!s+1n:::n!l�1)[!l+1
]

P[�!l
(�jn!s+1n:::n!l)[!l+1

< �!l!l ]

� P[�!s!l � �!s
�jn!s+1n:::n!l

]
P[�!l!l+1 � �!l�j

]

P[�!l
(�jn!s+1n:::n!l)[!l+1

< �!l!l ]

(5:42)

Now the denominator on the right is,

P[�!l
(�jn!s+1n:::n!l)[!l+1

< �!l!l ] � P[�!l
�jn!l

< �!l!l ] � Ej (5:43)

by (5.15). Thus, using the obvious bound

sY
t=1

P[�!t�1!t
� �

!t�1
�j

] � (Ej)
s (5:44)

and once more that !0 2 �jn!s+1n : : : n!l+1, (5.42) inserted into (5.41) yields the claim for

k = l + 1 which concludes the proof. }

Using Lemma 5.6 in (5.38) and the trivial bound R!t � 1, we get

(Kj(u)
�1~gj(u))l � P[�ml

mj
< �ml

ml
]
X

!:ml!mj

CRml

juj

�
CEj

juj

�
j!j�1

� P[�ml
mj

< �ml
ml

]

1X
k=1

CRml

juj

�
Cj�j jEj

juj

�k�1

� P[�ml
mj

< �ml
ml

]
CRml

juj�1

1�Cj�j jEj juj�1

(5:45)

If Cj�j jEjuj
�1 is say smaller than 1=2, the estimate (5.32) follows immediately. (5.33) then

is a direct consequence of (4.3) and (5.29), since by (5.32) the determinant of Kj(u) cannot

vanish in the domain of u-values considered. }

Remark: De�ning

DI � diag(1�Gml

ml;MN
)1�l�j0 ; NI � DI�GI;MN

and (~fI)
t
� (Gmk

I;MN
)1�k�j0 (5:46)

where GI;MN
is de�ned in (4.2), a slight modi�cation of the proof above shows that for c > 0

small enough and all <(u) < cb�1N such that

�I � min
m2MNnI

jGm
m;MN

(u)� 1j > (1=c)c�1N max
m2MNnI

T�1
m;MNnm

(5:47)



Metastability and spectra 35

one can write an absolutely convergent Neumann series for
�
1I�D�1I (u)NI(u)

��1
. Further-

more, as a consequence of a random walk expansion similar to (5.45) we obtain the bound

(GI;MN
(u)�1 ~fI(u))l = O(��1I c�1N Tml;I) (5:48)

This estimate is needed for the proof of Lemma 5.5. We are searching for solutions u near

u�j�1
of the equation appearing in (5.33). The case j = 1 is already treated in Theorem 4.4.

Fix j = 2; : : : ; j0. We want to apply Lagrange's Theorem to this equation (see [WW]) which

tells us the following: Fix a point a 2 C and an analytic function 	 de�ned on a domain

containing the point a. Assume that there is a contour in the domain surrounding a such

that on this contour the estimate j	(�)j < j� � aj holds. Then the equation

� = a+	(�) (5:49)

has a unique solution in the interior of the contour. Furthermore, the solution can be ex-

panded in the form

� = a+

1X
n=1

(n!)�1@n�1� 	(a)n (5:50)

We are in a position to prove

Proposition 5.7: For j = 1; : : : ; j0 there is a simple eigenvalue ~�j = 1� e�~uj < ��j
such

that (5.8), (5.10) hold if we replace �j by ~�j. Let ~�j be a corresponding eigenfunction. Then

(5.9) holds if we replace �j by ~�j .

Proof: By means of Theorem 4.4 and (4.4) we may assume that j = 2; : : : ; j0. The equation

in (5.33) can be written as

G
mj

mj;�j
(u)� 1 + �j(�) = 0 (5:51)

where we have set � � uE [�
mj

�j�1
] and

�j(�) �

j�1X
l=1

G
mj

ml;�j
(u)(Kj(u)

�1~gj(u))l (5:52)

Fix constants c > 0, C <1 and let us denote by Uj the strip of all � 2 C such that

Tj=Ej < <(�) < cTj=Tj+1; j=(�)j < cTj=(Tj+1rNcN ) (5:53)

Putting ��j�1
� u�j�1

E [�
mj

�j�1
] it follows ��j�1

= 1 + O(�N ) from (4.26) and (4.25) and we

may apply (4.28) for c > 0 small enough and all � 2 Uj to obtain

G
mj

mj;�j
(u)� 1 = E [�

mj

�j�1
]�1(1 +O(�N ))R

�1
mj

�
� � ��j�1

+ (� � ��j�1
)2Rj(�)

�
(5:54)
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where Rj(�) � E [�
mj

�j�1
]�1R�j�1

(u) is de�ned in (4.30). By (5.54) it follows that (5.51) is

equivalent to

� = ��j�1
+	j(�) (5:55)

for some function 	j satisfying

	j(�) = E [�
mj

�j�1
](1 +O(�N ))R

�1
mj

�j(�) + (� � ��j�1
)2Rj(�) (5:56)

Using (3.25) in combination with (5.4), it follows

Rj(�) = O(Tj+1=Tj) (5:57)

Using (5.32) and the estimate (5.38), as well as (3.25), we see that for some c > 0, C < 1

for all j� � ��j�1
j � 1

E [�
mj

�j�1
]E

�
�mj
mj

1I
�
mj
mj

<�
mj
�j

�
�j(�) =

j�1X
l=1

O

�
c2NT

2
j T

�1
ml;mj

T�1mj ;ml

�
� O(c2NT

�1
j ) (5:58)

By means of (5.57) and (5.58) it follows for j� � ��j�1
j � 1

	j(�) = O(T �1j + Tj+1=Tj) (5:59)

Since Tj � Ej , by (5.14) and De�nition 1.2, we may apply Lagrange's Theorem to (5.55)

giving the existence of a solution ~�j = ~ujE [�
mj

�j�1
] of (5.51) satisfying j~�j � ��j�1

j < 1. We

rewrite (5.55) in the form

~�j = ��j�1
+O(T �1j + Tj+1=Tj) (5:60)

By (5.33) ~�j � 1� e~uj de�nes an eigenvalue. Since from the invertibility of Kj(~uj) it follows

that the kernel of Gj(~uj) is at most one-dimensional, (4.4) implies that ~�j is simple. Using

(4.24) and (4.25) for I � �j�1, we derive from (5.60) that (5.10) and (5.8) hold, if we replace

�j by ~�j . Moreover, using ~uj < u�j
from (4.4), we conclude that

(~�j(ml))1�l<j = ~�j(mj)Kj(~uj)
�1~gj(~uj) (5:61)

Hence from (5.32) and ~uj = eO(1)u�j�1
we obtain that (5.9) is satis�ed if we replace �j by

~�j . }

Now it is very easy to �nish the
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Proof of 5.1: Proposition 5.7 tells us that �k � ~�k for k = 1; : : : ; j0. Assume now that

there is k = 2; : : : ; j0 such that �k < ~�k. Let k = 2; : : : ; j0 be minimal with this property.

Since ~�k�1 = �k�1 is simple, we have ~�k�1 < �k. Lemma 5.5 in combination with (5.30) now

tells us that for j = 1; : : : ; j0 some constants c > 0, C <1 and all Cc�1N E
�1
j < u < cc�1N T�1j+1

the function Gj(u) is strictly monotone decreasing, i.e. has at most one zero. Hence from

(5.33) for j � k�1 and Gk�1(~uk�1) = 0 we deduce that uk � cc�1N T�1k . But since we already

know that uk � Cc�1N T�1k for some C, it then follows from (5.33) for j � k that Gk(uk) = 0

implying the contradiction �k = ~�k.

Since �j0 is simple, (5.33) for j � j0 and Gj0(uj0) = 0 implies �j0+1 > cbN , where c

denotes the constant appearing in (5.31).

The remaining assertions of Theorem 5.1 then follow from Proposition 5.7. }

6. The distribution function

The objective of this chapter is to show how the structure of the low lying spectrum implies

a precise control of the distribution function of the times �mI , in cases where Theorem 3.5

applies, i.e. I�MN , I;MNnI 6= ;, and m1 2 MNnI, TI = Tm1;I . It is already known that

the normalized distribution function converges weakly to the exponential distribution (see

[BEGK] for the sharpest estimates beyond weak convergence in the most general case).

The proof of these results proceeds by inverting the Laplace transforms Gm
I (u), making

use of the information about the analytic structure of these functions that is contained in

the spectral decomposition of the low lying spectrum of (1 � PN )
I obtained in the previous

section.

Let us denote by LN the Laplace transform of the complementary distribution function,

i.e.

LN (u) � L
m1

N;I(u) �

1X
t=0

eutP[�m1

I > t] (<(u) < uI); (6:1)

where uI is de�ned in (4.26). The Perron-Frobenius Theorem gives lim(1=t) log P[�m1

I >

t] = �uI . Hence the Laplace transform de�ned above is locally uniformly exponentially

convergent. In order to obtain the continuation of LN to the whole plane we perform a

partial summation in the sum on the right-hand side of (6.1) and get

LN(u) =
Gm1

I;I (u)� 1

eu � 1
: (6:2)
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Invoking (2.8) a straightforward computation for � � 1� e�u shows that

Gx
I;I(u) = ((1� PN )

I
� �)�1(1IIcPN1II)(x) (x =2 I); (6:3)

Hence LN is a meromorphic function with poles in u 2 fu1; : : : ; uj�NnIjg, where we recall the

de�nition of the eigenvalues �j = 1� e�uj for j = 1; : : : ; j�NnIj prior to Theorem 5.1. Since

LN is 2�-periodic in the imaginary direction, a short computation yields

P[�m1

I > t] =
1

2�i

Z i�

�i�

e�tuLN (u)du: (6:4)

Deforming the contour in (6.4) gives for uj0 < � < uj0+1 and U� � (0; �) � (��; �)

P[�m1

I > t] =
1

2�i

Z �+i�

��i�

e�tuLN (u)du�
X

uj2U�

e�tuj resuj LN ; (6:5)

where resu LN denotes the residue of LN at u. Here we have used that periodicity of LN

shows that the integrals over [� + i�; i�] and [�i�; � � i�] cancel and that the poles uj ,

j = 1; : : : ; j0, are simple.

Our main result can be formulated as follows:

Theorem 6.1: Let j0 � jMNnIj. There is c > 0 such that for some c > 0,

P[�m1

I > t] = �

j0X
j=1

e�tuj resuj LN + e�tcb
�1

N
j�N j(2�i)�1

Z i�

�i�

e�tuLN (u)du; (6:6)

where uj = � ln(1��j) and �j are the eigenvalues of (1�PN )
I
that are estimated in Theorem

5.1. Moreover, the residues satisfy

resu1 LN = �1 +O (Rm1
cNT2=T1) ; resuj LN = O (Rm1

cNTj=T1) (j = 2; : : : ; j0)

(6:7)

while the remainder integral on the right-hand side of (6.6) is bounded by

(2�i)�1
Z i�

�i�

e�tuLN (u)du = O
�
c�1N b�2N j�N j

2=T1
�
: (6:8)

Remark: Recalling (3.25) and Theorem 5.1, one sees that Theorem 6.1 implies that the

distribution of tm1

I is to a remarkable precision a pure exponential. In particular, one has the
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Corollary 6.2: Uniformly in t 2 E [�m1

I ]�1N

P[�m1

I > tE [�m1

I ]] = (1 +O(Rm1
cNT2=T1)) e

�t(1+O(Rm1
cNT2=T1)): (6:9)

We start with the computation of the residue of the Laplace transform at u1.

Lemma 6.3:

resu1 LN = �1 +O(Rm1
cNT2=T1): (6:10)

Proof: From (4.23) for m � m1 and the renewal relation (2.10) and (6.2) follows

resu1 LN = lim
u!u1

Gm1

I;m1
(u)

eu � 1

u� u1

Gm1

m1;I
(u1)�Gm1

m1;I
(u)

= �
1

eu1 � 1

Gm1

I;m1
(u1)

@uG
m1

m1;I
(u1)

: (6:11)

Since u1 = eO(1)N�1Rm1
T�11 , (4.13) for k = 0; 1 gives for some C <1

Gm1

I;m1
(u1)

@uG
m1

m1;I
(u1)

= (1 +O(Rm1
cNT2=T2))

Gm1

I;m1
(0)

@uG
m1

m1;I
(0)

: (6:12)

Hence (6.10) follows from (6.11) in combination with (5.10) and (3.48). }

In general we cannot prove lower bounds for the higher residues for the reason described

in the remark after Theorem 5.1. However, we can show that they are very small:

Lemma 6.4:

resuj LN = O (Tj=T1)) (j = 2; : : : ; j0): (6:13)

Proof: For �xed j = 0; : : : ; j0 we compute, using (6.2) and (6.3),

resuj LN = lim
u!uj

1

eu � 1

u� uj

(1� e�uj )� (1� e�u)

h1IIcPN1II ; �jiQN
(jj�j jjQN )

2
�j(m1)

=�
euj

euj � 1

h1IIcPN1II ; �jiQN
(jj�j jjQN )

2
�j(m1):

(6:14)

We can assume that �j(mj) = 1. We can express �j(x), using the de�nition (4.4), Lemma

4.3, and Theorem 5.1 in the form

�j(x) =(1 +O(
))K
x
mj ;�j

(0) +

j�1X
l=1

O(Tj=Tml;mj
)(1 +O(
))Kx

ml;�j
(0)

=(1 +O(
))P[�xmj
< �x�j�1

] +O(
):

(6:15)
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where 
 � Rmj
max(T �1; Tj+1=Tj). Using Lemma 2.7, one sees easily that this implies that

for any � > 0,

(jj�j jjQN )
2
� (1 +O(e�N
))QN (fx 2 �N j jx�mj j < "=2g) � (1 � �)QN (A(mj)) (6:16)

We conclude from (4.4) that, for J � �j ,

h1IIcPN1II ; �jiQN =

jX
k=1

�j(mk)
X
x2�N
y2I

QN (x)PN (x; y)K
x
mk;�j

(uj)

=

jX
k=1

�j(mk)
X
x2�N
y2I

QN (y)PN (y; x)K
x
mk;�j

(uj);

(6:17)

where we have used the symmetry of PN . Applying (2.8) and (2.11) to the right-hand side

of (6.17) we get

h1IIcPN1II ; �jiQN =

jX
k=1

�j(mk)
X
y2I

QN (y)G
y
mk;�j

(uj)

=

jX
k=1

�j(mk)QN (mk)G
mk

I;�j
(uj):

(6:18)

Using that �j(mj) = 1, we deduce from (5.9) and reversibility that

QN (mk)�j(mk) = QN (mj)O(R
�1
mj
Tj=Tmj ;mk

) (6:19)

Combining (6.19) with (5.38), (6.16), and, once more, (5.9) with k � 1, gives

(jj�j jjQN )
�2�j(m1)h1IIcPN1II ; �jiQN =

jX
k=1

O

 
Rmj

T 2
j

Tm1;mj
Tmj ;mk

Tmk;I

!

=O

 
Rmj

T 2
j

Tm1;mj
Tmj ;I

!
;

(6:20)

where we have used Lemma 5.6 for the sequences ! = (mj ;mk;m) in the last equation. It is

easy to verify that
T 2
j

Tm1;mj
Tmj ;I

�
Tj

Tmj ;I[m1
T1
: (6:21)

Inserting (6.20) and (6.21) into (6.14), using uj = Rmj
T�1j (1 + o(1)) and Tmj;I[m1

� Tj , we

arrive at (6.13). }
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The last ingredient for the proof of Theorem 6.1 consists in estimating of the remainder

integral in (6.6). This essentially boils down to

Lemma 6.5: There is Æ > 0 such that for all Æ�1Rm1
Tj0 < � < ÆbN j�N j

�1
and all

� � 1� e�u on the circle j�� 1j = e�� we have

Gm1

I;I (u) = O(��1c�1N T�11 ): (6:22)

Proof: From the strong Markov property (2.7) for J � I and L � MNnI we obtain for

<(u) < uMN

Kx
I;I(u) = Kx

I;MN
(u) +

j0X
l=1

Kml

I;I (u)K
x
ml;MN

(u) (x 2 �N ): (6:23)

Applying (1 � PN � �)I to both sides of the previous equation and evaluating the resulting

equation at x = mk, k = 1; : : : ; j0, we conclude, as in (4.8), via (2.9) and (2.5) that

0 = �Gmk

I;MN
(u) +

j0X
l=1

Gml

I;I(u)(Ælk �Gmk

ml;MN
(u)): (6:24)

Thus the vector

~ � � (Gml

I;I(u))1�l�j0 (6:25)

solves the system of equations

GI;MN
(u)~ � = ~fI(u); (6:26)

where GI;MN
(u) and ~fI(u) are de�ned in (4.2) and (5.46), respectively. In order to be able

to apply (5.48) we claim that for some Æ; c > 0, for all u = � + iv, v 2 [��; �], and for all

m 2MNnI

jGm
m;MN

(u)� 1j � c�: (6:27)

We �rst observe that (2.2) shows that, for all <(u0) < uMN
,

QN (m)(Gm
m;MN

(u)� 1) = �euh((1 � PN )
MNnm � �)K

(�)

m;MN
(u);K

(�)

m;MN
(u0)iQN ; (6:28)

where we have extended the inner product to C �N in the canonical way such that it is C -linear

in the second argument. For jv � �j � �=3 we simply get from (6.28), for u0 � u and some
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c > 0, using that �((1 � PN )
MNnm)�(0; 1),

jQN (m) Re(e�u(Gm
m;MN

(u)� 1))j

=

����D((1� PN )
MNnm � (1 + e��j cos(v)j)K

(�)

m;MN
(u);K

(�)

m;MN
(u)
E
QN

����
�(1 + ce�� � 1)(jjK

(�)

m;MN
(u)jjQN )

2

�ce��QN (m):

(6:29)

For jv+�j > �=3, jv��j > �=3 and jvj > �, we derive from (6.28) for u0 � u and some c > 0

jQN (m) Im(e�u(Gm
m;MN

(u)� 1))j =j sin(v)je��(jjK
(�)

m;MN
(u)jjQN )

2

�QN (m)c�e��:
(6:30)

In the remaining case, namely where jvj � �, we use (6.28) for u0 � uMNnm and obtain via

(4.4), for I �MNnm, J � m, that

jQN (m)e�u(Gm
m;MN

(u)� 1)j = j��� �MNnmj jhK
(�)

m;MN
(u);K

(�)

m;MN
(uMNnm)iQN j: (6:31)

It follows from (4.13) for some Æ > 0 uniformly in x 2 �N and jvj � �

Kx
m;MN

(u) = (1 + ÆO(1))Kx
m;MN

(uMNnm): (6:32)

Since the minimum of the function j�� � �MNnmj is attained at � = 1 � e��, we conclude

from (6.31) and (6.32) in combination with (4.4) for J � m1 and (6.16) for some c > 0 and

all jvj � � that

jQN (m)e�u(Gm
m;MN

(u)� 1)j �cj��� �MNnmj(jjK
(�)

m;MN
(uMNnm)jjQN )

2

�c2QN (A(m))(1 � e��):
(6:33)

(6.33), (6.30) and (6.29) prove (6.27). Since by de�nition (5.3) and (5.14) it follows that

Tj0 = Tmj0
;MNnmj0

= min
m2MN

Tm;MNnm � b�1N ; (6:34)

bN is de�ned in De�nition 1.1, combining (6.27) with (5.48) shows that the solution of (6.26)

satis�es

 �(m1) = (~ �)1 = O
�
��1c�1N =T1

�
: (6:35)

Proof of Theorem 6.1: The proof of Theorem 6.1 now is reduced to the application

of the Laplace inversion formula and estimation of the remainder integral. In view of (6.10)

and (6.13) it remains to estimate the remainder integral on the right-hand side of (6.5). But
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this is by means of (6.2) and (6.3) in combination with (6.22) for � � cbN j�N j
�1, 0 < c < Æ,

fairly easy. }
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