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Abstract: In this letter we announce rigorous results that elucidate the relation between 
metastable states and low-lying eigenvalues in Markov chains in a much more general setting 
and with considerable greater precision as was so far available. This includes a sharp uncer-
tainty principle relating all low-lying eigenvalues to mean times of metastable transitions, a 
relation between the support of eigenfunctions and the attractor of a metastable state, and 
sharp estimates on the convergence of probability distribution of the metastable transition 
times to the exponential distribution. 

I. Introduction. 

The phenomenon of metastability has been a fascinating topic of non-equilibrium statistical 
mechanics for a long time. Currently, it has found renewed interest in. the investigation of 
glassy systems and aging phenomena which appear to play a central role in many physical 
and non-physical systems. An approach to link metastability to spectral characteristics, 
in particular low-lying eigenvalues and the corresponding eigenfunctions has been proposed 
by Gaveau and Schulman [GS]. Such an approach is appealing not only because it allows 
to characterize metastability in terms that are intrinsically dynamic and make no a priori 
reference to geometric concepts such as "free energy landsc~pes", but also since it allows 
numerical investigations of metastable states via numerical spectral analysis (see Schutte et 
al. [S,SFHD] for applications to conformational dynamics of biomolecules). 

Relating metastability to spectral characteristics of the Markov generator or transition 
matrix is in fact a rather old topic. First mathematical results go back at least as far as 
Wentzell [W] (see also [M] for more recent results) and Freidlin and Wentzell (see [FW]). 
Freidlin and Wentzell relate the eigenvalues of the transition matrix for Markov processes 
with exponentially small transition probabilities to exit times from "cycles"; Wentzell has a 
similar result for the spectral gap in the case of certain diffusion processes. All these relations 
are on the level of logarithmic equivalence, i.e. of the form lime+o dn(.-\iTt) = 0 where Eis the 
small parameter, and Ai, Tie are the eigenvalues, resp. exit times. This rather crude level of 
precision persists also in the more recent literature and prevents, in particular, applications 
to systems with unbounded numbers of metastable states which are particularly relevant for 
glassy systems. 

In this letter we announce results that - for a large class of Markov chains - improve this 
situation considerably: in particular we allow for the number of metastable states to grow 
(with e.g. the 'volume'), and we give precise control of error terms for 'finite volume' systems. 
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Moreover, we provide representations for all quantities concerned that are computable in 
terms of certain 'escape probabilities' that are in turn well controllable through variational 
representations [BEGKl]. A more detailed exposition of our results, as well as the proofs, 
will be given in two forthcoming papers [BEGK2,EK]. 

2. Metastable set and metastable states. 

We will consider in the sequel Markov chains Xt with state space r N, discrete time1 t E N, 
and transition matrices PN. We will assume that for any fixed N they are ergodic, and have 
a unique invariant distribution «J1N. We are interested in the situation when these chains 
exhibit "metastable" behaviour; loosely speaking, this means that the state space r N can be 
decomposed into subsets S N,i such that the typical times the process takes to go from one 
such set to another are much larger than the time it takes to "look like" being in equilibrium 
with respect to the conditional distribution ~ (·IS N,i). Some reflection shows that this 
statement has considerable difficulties and cannot be interpreted literally, and that a precise 
definition of metastability is a rather tricky business (see e.g. the recent discussion in [BK]). 
We will give a precise definition that is, however, inspired by this vague consideration. The 
main point here is that one should make precise the two time scales we alluded to. We will 
take the following attitude: to look ergodic within SN,i, the process should have at least 
enough time to reach the "most attractive" state within SN,i, while at least the times to go 
from two such states in different metastable regions should be long compared to that time. 
Note that this concept is rather flexible and allows, in general, to define metastable states 
corresponding to different time scales. 

The following definition of "metastable sets" follows this ideology; however, we prefer to 
use certain probabilities rather than actual times as criteria, mainly because these are more 
readily computable. Linking them in a precise manner to times will be part of our results. 

We will write Tj' for x E r N' I c r N' for the first non-zero time the process started at x 
arrives at I. 

Deflnition 2.1: A set MN C rN will be called a set of metastable points if it satisfies 

the following conditions. There are finite positive constants aN, bN, CN, and TN satisfying 

for for some sequence cN-!. 0, a·;/ :::; cNbN, such that the following holds: 

{i) For all z E rN, 
(2.1) 

1 All results apply, however, also to continuous time. 
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{ii) For any x -=j=. y E MN, 

{iii) We associate with each x E MN its local valley 

Then 
> Qv(x) -R > -1 

rN - QN(A(x)) = x - CN 
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(2.2) 

(2.3) 

(2.4) 

We will also write Tx,I = 1P'[rj :::; r:J-1. An important characteristic of the sets I c MN is 
T1 = supxEMN Tx,I. A simplifying assumption, that will be seen to ensure sufficient "spacing" 
of the low lying eigenvalues is that of "genericity", defined as follows: 

Definition 2.2: We say that our Markov chain is generic on the level of the set MN, if 
there exists a sequence EN -J_ 0, s. t. 

{i) For all pairs x, y E MN, and any set I C MN\{x, y} either Tx,I :::; ENTy,I or Ty,I < 
ENTx,I· 

{ii) There exists m1 E MN such that for all x E MN\m1, Qv(x):::; ENQv(m1). 

Each of the elements of MN in the generic case will then correspond indeed to a metastable 
state. Our first task is to identify precisely the notion of the exit time from a metastable 
state. To do so, we define for any x E MN the set MN(x) = {y E MN: Qv(y) > Qv(x)}; 
these are the points that are even more stable than x. The metastable exit time, tx = r_MN(x) 

from xis then defined as the time_ of the-first arrival from x in MN(x). With this notion we 
can formulate our main result: 

Theorem 2.3: Assume that MN is a metastable set and that the genericity assumptions 
are satisfied with eN such that rNCNEN -l- 0 and ENirNllMNI -l- 0. Then 

{i) For any x E MN, 
(2.5) 

{ii) For any x E MN, there exists an eigenvalue Ax of 1 - PN that satisfies 

1 
Ax= -IE (1 + o(l)) ix 

(2.6) 
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Moreover, there exists a constant c > 0 such that for all N 

(2.7) 

{iii) For any x E MN, for all t > 0, 

(2.8) 

{iv) If 'l/Jx denotes the eigenvector of 1 - PN corresponding to the eigenvalue Ax, then 

if 1J:D[r% < rttN(x)] 2:: EN 

otherwise 

Remark: Explicit bounds on the error terms are given [BEGK2,EK]. 

(2.9) 

Let us make some additional comments on this theorem. First of all, the identification of 
what constitutes a metastable exit is crucial, and, in particular the fact that these processes 
include the transition through the "saddle point", guaranteed in our case by the insistence 
that the process by time tx has actually arrived in MN(x). Without taking this into account, 
the precise uncertainty principle (ii) could not Ji.old. It is interesting to note that on the level 
of this theorem, the difficulties associated with the control of the passage through a saddle are 
not visible, and that we have the exact formula (2.5) for the mean exit time. Of course the 
difficulty is hidden in the quantities Tx,y whose computation is far from trivial. However, we 
have shown in [BEG Kl] that at least in the reversible case, using a variational representation, 
very precise control of such quantities can be gained in certain setting. Somewhat less precise 
results can also be obtained in some non-reversible situations [EK]. Concerning our estimate 
on the eigenfunctions, it is easy to see that [BEGKl] JJ:D[rX < rttN(x)] is either very close 
to one or very close to zero, except on a set of points whose invariant measure is extremely 
small. Therefore, the corresponding right eigenfunctions 'l/J~ ( z) = QN (z )'l/Jx ( z), are essentially 
proportional to the measure ~ conditioned on the local valley corresponding to x (all up to 
errors of order EN), i.e. they do indeed represent metastable measures, as suggested in [GS]. 
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3. Some ideas of the proofs. 

The first major ingredient of the proofs is a representation formula for the Green function 
of the transition matrix PN in terms of certain probabilities. It implies in particular that for 
any I c rN, 

IEtx " QN (y) TID[ y Y]TID[ x x] 1 
I = ~ rn (x) .ir- TX < TI .ir- TI < TX + JP'[ x x] 

yErN\f\x ~N TI < Tx 
(3.1) 

This formula was first derived for the reversible case in [BEGKl]. An apparently independent 
derivation that also covers the non-reversible case was given recently in [GM]. It allows in 
particular to prove (2.5) in a rather simple way. However, the realization that this formula 
actually arises from a representation of the Green function makes it even more useful. 

Our analysis of the spectrum of 1 - PN passes through the analysis of the Laplace trans-
forms, cyx J(u) = IF.eut~ Ilr:i:<r:z: of transition times of process that is 'killed' upon arrival in a 

' y J 

set J C r N. We write P/, for the transition matrix of such a process, and we write AJ for 
the smallest eigenvalue of (1 - pJ). It then turns out that all eigenvalues of (1 - PN) below 
AJ can be characterised as follows: Set u(A) = -ln(l -A). Define the IJI x IJI matrix ~h(u) 
whose elements are 

I 

6m',m - c:,J(u), m',m E J (3.2) 

Then A is an eigenvalue of (1- PN) below AJ, if and only if 

(3.3) 

This equation is rather easy to understand if IJI = 1. In this case, (3.3) becomes simply 
am (u) 

c:(u(A)) = 1. By a simple renewal argument, one sees that G~(u) = i-a';',:z:Cu). Therefore, 
u(A) defined by (3.3) is the first value at which supxEGN G~(u) = +oo. The general formula 
(3.2) is somewhat less intuitive. Basically, one makes an ansatz for the eigenfunctions of 
( 1 - PN) in terms of the Laplace transforms of the form 

w(x) = L ¢mG~,J(u) (3.4) 
mEJ 

One then finds that condition (3.3) is sufficient for the ansatz to yield eigenfunctions with 
u = u(A). Moreover, one can show that if A is an eigenvalue, then the eigenfunctions can be 
represented in this form and (3.3) must be satisfied. 

To complete the proof one needs good control over the Laplace transforms; this is partly 
provided again by the representation of the Green function, complemented by lower bounds 
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on eigenvalues AJ obtained from a Donsker-Varadhan [DV] argument. The actual proofs 
are rather involved and must be left to the longer publications [BEGKl,EK]. Let us finally 
mention that the good control over the spectrum of ( 1 - PN) allows in turn a very good 
control of the analytic properties of the Laplace transforms which allow in turn the sharp 
estimates on the probability distribution of metastable transition times stated under (iv). 
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