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RIGOROUS RESULTS ON THE HOPFIELD MODEL OF 
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Abstract: We review some recent rigorous results in the theory of neural networks, and in parti-
cular on the thermodynamic properties of the Hopfield model. In this context, the model is treated 
as a Curie-Weiss model with random interactions and large deviation techniques are applied. The 
tractability of the random interactions depends strongly on how the number, M, of stored patterns 
scales with the size, N, of the system. We present an exact analysis of the thermodynamic limit 
under the sole condition that M / N l 0, as N j oo, i.e. we prove the almost sure convergence of the 
free energy to a non-random limit and the a.s. convergence of the measures induced on the overlap 
parameters. We also present results on the structure of local minima of the Hopfield Hamiltonian, 
originally derived by Newman. All these results are extended to the Hopfield model defined on 
dilute random graphs. 

1 Invited talk presented by A.B. at the 5° CLAPEM, Sao Paulo, 1993 
2 Research supported in part by the Commission of the European Communities under contract No. SC1-CT91-
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I. Introduction 

In this lecture we review some results on a disordered mean field spin system that has over the 
last decade attracted, under the name of "Hopfield model", considerable attentio.n in the context 
of modelling of cognitive phenomena in neural networks such as the brain, and in particular has 
been used as the prototypical model for autoassociative memory. Our main point of view here will 
be, however, that of statistical mechanics of disordered systems and we will only comment on the 
interpretation of the thermodynamical properties of this model in terms of memory. For a more 
detailed exposition of these aspects, see e.g. the book by Amit [A]. 

Let us first describe this model. Let SN= {-1, l}N be the space offunctions O': {1, ... , N}--+ 
{-1, 1}. We call O' a spin configuration on the set {1, ... , N}, and O'i E {-1, +1} the spin at (neural 
state of) the vertex (neuron) i. We shall write S = {-1, 1}.lN for the space of half infinite sequences 
equipped with the product topology of discrete topology on {-1, 1}. We denote by BN and B the 
corresponding Borel sigma algebras. We will define a random Hamiltonian function on the spaces 

SN as follows. Let (n, F, JP) be an abstract probability space. Let e = {efh,µEJN be a two-
parameter family of independent, identically distributed random variables on this space such that 
JP(ef = 1) = JP(ef = -1) = i· For a given non-decreasing integer valued function M : IN --+IN 
we denote by FN the sub-sigma algebra generated by the random variables {ef}~~r{;1(N). We will 

occasionally denote this sub-family of random variables by elN· A vector e"' = {efh=l, ... ,N is a 
particular random state of the system (neural network) and often called a 'pattern'. The Hopfield 
Hamiltonian on SN is then given by 

l N M(N) 

uN(O') = - 2N L L ere;O'iO'j 
i,j=l µ=1 

(1.1) 

The history of this Hamiltonian is quite interesting. The simplest version of it, where M(N) = 
1, was proposed by Mattis [Ma] as a simple model of a disordered magnet, but it was of course 
immediately realized that such a model is entirely trivial and differs from a ferromagnet only' by 
a gauge transformation ai --+ (J~ = eiO'i of the spins. Luttinger [Lu] proposed a less trivial variant 
with M(N) = 2 as a model of a spin glass and finally in 1977, Figotin and Pastur [FPl] proposed 
a fairly large class of models, which included the above with arbitrary, but fixed M, again as 
soluble model of a spin glass. Their paper, and two follow-ups [FP2, FP3] contain a very nice 
and detailed analysis, including the quantum and the Kac version of the model. As a spin glass 
model, this remained, however, somewhat unsatisfactory, and this may be the reason why these 
papers remained largely ignored (in fact, I only became aware of them when meeting Pastur during 
this very conference in Sao Paulo!!!). Five years later, Hopfield [Ho] apparently unaware of this 
previous work, proposed the above Hamiltonian, this time, however, as a model for autoassociative 
memory, and notably with M(N) a possibly non-constant function of N. His work was inspired by 
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Hebb's learning rule [He] and arose from a dynamics point of view (a related model had already 
been propsed by Little [Li] in 1974). It was however the fact that the thermodynamic properties of 
his model show an immediate bearing on the memory properties of the associat~d dynamical model 
that sparked the interest of the physics and notably the spin-glass community in this new field. 
The findings of Figotin and Pastur for the case of bounded M were recovered in papers by Amit, 
Gutfreund and Sompolinski [AGSl] and van Hemmen [vH], and interpreted in the new context as 
perfect functioning of the memory. However, more interesting phenomena were discovered if M was. 
allowed to grow with N; a seminal paper by Amit, Gutfreund and Sompolinsky [AGS2] analysed 
this case using the method of replicas and the idea of replica symmetry breaking, developed by 
Parisi et al. [P] in the study of the Sherrington-Kirkpatrick spin glass model. They discovered that 
if M was chosen as M(N) = a.N, several phase transitions occurred as the value of the parameter 
a increased. In particular, for a > Ctc ~ 0.14 the model would enter into what they interpreted 
as a genuine spin glass phase. In terms of memory, this phase was interpreted as a breakdown of 
memory and the critical parameter ac is called the memory capacity of the system. These findings 
were also confirmed by numerous numerical investigations. 

The rich _structure of this model thus invites a more rigorous mathematical investigation. 
Here it may be seen as an advantage over, say, the classical spin glass models, that the function 
M(N) provides a parameter that allows to tune the model from an essentially trivial ferromagnetic 
situation to complex spin glass like behaviour. In spite of that, progress on the mathematical level 

has been fairly slow and is still lagging considerably behind the heuristic understanding provided by 
the 1985 paper of Amit et al. [AGS2]. In this paper we try to summarize part of the few rigorously 
established results. These results are essentially of two types: One, originally due to Newman [N], 
concerns the structure of the local minima of the Hamiltonian only and thus is immediately relevant 
for the a noiseless gradient dynamics. The second concerns the actual thermodynamics at finite 
temperature and is relevant for noisy dynamics, which will have to be employed if spurious 'false' 
minima are to be avoided. This turns out, however, to bring about serious new difficulties. The 
next two sections will be devoted to these two situations, respectively. 

Many variants of the classical Hamiltonian (1.1) have been proposed over the years to more 
appropriately reflect particular model situations. They involve the modification of the state space 
of a single neuron to accommodate more that two values (Potts-Hopfield model [Ka,ES,FMP,G], 
modification of the a-priori distribution of the patterns to accommodate asymmetries (biased model 
[BM]) or correlations, and many others. A variant that we want to highlight here is the so-called 
dilute model, where not all neurons are interconnected, but where this connection is described by a 
underlying, pattern-independent (dilute) random graph. While this appears an important point for 
the modelling of actual neural networks, it turns out that many of the results for fully connected 
model carry over, suitably modified, to this situation. As we will come back to this model, we give 
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here a precise definition. 

The Hamiltonian of the dilute Hopfield model is given by 

(1.2) 

where p = IE(Eij) > 0. For given N, the Eij for i,j E {1, ... , N} form a family of N 2 independent, 
identically distributed random variables with common distribution such that IP( Eij = 1) = 1 -
IP( Eij = 0). = p(N). The precise dependence of these random variables on N can be set up in 
various ways (see e.g. (BG2]) but this will not be an issue here. We just notice that these variables 
of course describe a ran'dom graph process with edge density p(N). It will be of interest to allow 
p(N) to decrease with N and in particular to see how fast it may be allowed to decrease in order 
to maintain certain properties. 

II. Thermodynamics of the Hopfield model 

In this chapter we review some of the results on the thermodynamics of the Hopfield model. 
To do this, let us briefly introduce the thermodynamic formalism. 

For "IE IN, we denote by 9'Jv,f3,h the random probability measure (finite volume Gibbs measure) 
on (SN, B( SN)) that assigns to each a E SN the mass 

g11 (a) = _l_e -f3HN(u)-f3h L;,EA ~?u1 
N,{3,h z11 

N,{3,h 
(2.1) 

where Z'Jv,{3,h is a normalizing factor usually called partition function. The quantity 

11 - 1 11 f N,{3,h = - {3N ln zN,{3,h (2.2) 

is called the free energy. Nate that all these quantities are F N-measurable random variables. The 
parameter {3 is the inverse temperature and h is called a magnetic field aligned on the pattern t11. 

The purpose of thermodynamics is to identify and characterize the nature of these measures in the 
limit as N tends to infinity. In particular, one asks the question what happens with the limiting 
measures when the parameter his taken to zero. In the case where this procedure leads to measures 
depending on the index "I and the sign of h, we speak of 'coexistence' of several infinite volume 
measures for the zero-field model, or of a first order phase transition. If these distinct measures are 
in one-to-one correspondence with the original patterns, this phenomenon can also be interpreted in 
the sense of a functioning memory, due to the fact that the Gibbs states furnish in fact the invariant 
measures for the retrieval dynamics of the memory. This situation is expected to take place at low 
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temperature (and not too large M). Another possibility, expected (and in fact essentially proven 
by Tirozzi and Scaccitelli [TS]) at high temperature is uniqueness, i.e. the h l 0 limits of all the 
infinite volume Gibbs measures should coincide. This clearly has the interpretation of no memory. 
A more interesting breakdown of memory is expected even at low temperature, if the number of 
patterns grows too rapidly with N: in this situation one may still expect non-uniqueness but no 
simple correspondence between the set of extremal Gibbs measures and the patterns. 

A remark is in order concerning the above definition of the Gibbs measures, and in particular 
concerning the magnetic field term. In principle, we might just set h = 0 for the finite volume 
measures and consider the limits as N j oo. If this is done in the usual ferromagnetic Curie-Weiss 
model, one finds a limit which is, depending whether f3 is larger or smaller than 1, a delta measure 
concentrated at 0 or a symmetric mixture of delta-measures concentrated at +a(f3) and -a(f3) (for 
some a(f3) > 0, see below), resp., where the latter two represent the actual extremal (clustering) 
Gibbs measures of the model (which can be obtained as limits with added positive or negative 
magnetic fields). In the present disordered situation, such a procedure would encounter additional 
difficulties. Namely, the corresponding sequence of measures would not be expected to converge at 
all, and only suitably chosen random subsequences would converge to specific limit points. One can 
then ask the question whether all extremal measures can be obtained as limit points in this way, 
and for the situation we will treat below, there are arguments that make this plausible, although 
this has not been proven. Adding the magnetic fields as done above is a very convenient tool to 
circumvent this difficulty. What it does is, in fact, to give infinitely more weight to one specific 
extremal measure and so to favour convergence to this particular limit, no matter how small his. 
However, it should be noticed that in order for such a scheme to work, we need to be able to guess 
correctly what these extremal measures should look like, which, as we will see works for M not 
growing too fast. If M grows faster and the system gets into a spin glass phase, no such information 
is (yet) available, and this makes such a procedure impracticable. 

An important observation is that the value of the measure 91r,,8,h( a) does depend on a only 
through the quantities 

N 

m~(a) = ~ L lf ai, µ = 1, ... , M 
i=l 

called overlap parameters, since the Hamiltonian may be written in the form 

M 

HN(a) =-NL (m~(a))2 

This suggests to define the random map 

MN :SA ~mM 

µ=1 

a~ MN( a)~ (m},(a), .. . ,m~(a)) 

4 
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and the measures Qiv,/3,h on (IRM, B(JRM)) that are induced by QJ;,/3,h through the map MN, i.e. 

QTI - 1!77 M-1 
N,{3,h = '!:I N,{3,h o N (2.6) 

Since 

(2.7) 

these induced measures determine the original measures uniquely. Thus it suffices to determine the 

. limiting induced measures. It turns out that a complete solution to this problem is possible as long 
as M ( N) / N l 0 as N i oo. Namely the following theorem has been proven by Bevier, Gayrard and 
Picco [BGP]: 

Theorem 1: [BGP] Assume that Mis non-decreasing and satisfies limNToo MkN) = 0. Let a±(f3) 

denote the largest (resp. smallest) solution of a= tanh(f3a). Then, for all {3 ~ 0, 

lim lim Qj.,. 13 h = 0~(/3)e71 , a.s. (2.8) 
h-+0± NToo ' ' 

where the limits are understood in the sense of weak convergence of probability distributions; o~ (f3)e'1 

denotes the Dirac-measure concentrated on a±(f3)e11 and f.11 is the 'f]-th unit vector in IRJN. Moreo-

ver, 

lim fN,/3 = Jgw =min (y2

2 
- {3]:_ ln cosh(f3y)) , a.s. 

NToo yEIR 
(2.9) 

Under stronger hypothesis on the growth of M, this theorem has been proven before in a 
slightly weaker form (i.e. rather then considering the limiting measures themselves, generally only 
the expectation values of the overlap parameters were studied): For the case of bounded M, a 

proof was given first by Figotin and Pastur [FPl, FP2], and later reproduced, with more or less 
mathematical rigour, in papers by Amit et al. [AGSl], von Hemmen [vH], etc. Later, Koch 
and Piasko [KP], using a method due to Grensing and Kiihn [GK] (who, as we note in passing, 
were also interested in models for disordered magnets and apparently at first quite unaware of 
the neural network aspects of the models they discussed) obtained a result for unbounded M, 

however under the rather strong hypothesis that M(N) < \~ 1;. This result was extended to the 
Potts-Hopfield model and presented in the form of Theorem 1 by Gayrard [G]. In 1992, two quite 
different approaches were presented to get results on the free energy under weaker hypothesis on 

M. One, due to Shcherbina and Tirozzi [ST] proved (2.9) with convergence in probability, while 
another, much simpler one due to Koch [K], proved convergence of the mean, but could, as was 
noted by Bavier and Gayrard [BG2], easily be modified to yield the almost sure convergence. In 
fact, the basic idea used in [K] furnished the starting point for the proof of Theorem 1 in [BGP]. 

The conditions in Theorems 1 are certainly optimal for the conclusions to hold. They represent 
in a certain sense an ideal situation for memorization. As M is allowed to be proportional to N this 
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situation is expected to change in that the Gibbs measures are no longer expected to be concentrated 
on configurations that have exactly overlap 1 (or -1) with one of the original patterns. However, 
Theorem 1 should be structurally stable in the sense that for small enough. a and low enough 
temperature, the Gibbs states of the model can be seen as small perturbations of the previous ones. 
A weak version of such a result was proven in [BGP]. To state it, we first need some notations: 

For 8 > 0, we denote by a( 8, {3) the largest solution of the equation 

8a = tanh(f3a) 

Let II · II be the £2-norm on IRIN. Given that limNioo M}.;1) = a, we set, for fixed {3, 

Finally, put 

u 
(v,a)E!Nx{-1,+1} 

B(v,11) 
p 

(2.10) 

(2.11) 

(2.12) 

Theorem 2: There exists a 0 > 0 such that if lim M~N) = a, with a < a 0 , then, for all 

{3 > 1+3.y'(i, if p2 > C(a(l- 2fo.,[3))312 a118 llnal 114, for almost surely, 

(2.13) 

The set Bp is a union of disjoint balls as long as {3 > l-c~i/4 (The power 1/4 is probably 
not optimal and due to technical problems in the proofs; we would expect this result with a power 
1/2). In this case, one would naturally expect that the extremal Gibbs measures are concentrated 
on these individual balls, that is would really be perturbations of the measures in the a = 0 case. 
Unfortunately, we have so far no rigorous argument to proof this. 

We will not give the proofs of these Theorems here, as they are quite involved, but only indicate 
a broad outline. The first step in the proofs consist of slightly smoothening out the induced measures 

Q'J,,{3,h by convoluting them with a normal distribution of variance l/(f3N). While this does not 
change the limiting measures, the resulting measures have a density with respect to M-dimensional 
Lebesgue measure and, moreover, their density can be written in quite explicit form as 

(2.14) 

with 

(2.15) 
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Thus, we are almost in the standard situation for an application of Laplace's method, except that 

(a) the function <1? is random and 

(b) the dimension M of the underlying space depends on our large parameter N. 

As a matter of fact, if M remains bounded, problem (b) does not exist, and problem (a) is 
almost non-existent, as <1? converges to a non-random limit (by the law of large numbers). These 
points have been noted and exploited already in [FPl]. For unbounded M our proof is pushing 
Laplace's methods beyond its immediate domain of applicability 'by hand', but this requires the 
growth conditions on M(N). In fact, we show that under the condition of Theorem 1 (i.e. if 
M = o(N)), the position and values of the absolute minima of the function <1? are asymptotically 
non-random and that problem (b) is harmless. The proof of Theorem 2 relies on the fact that even 
for M = aN with small enough a we can localize approximately the absolute minima, but with 
much less precision. We expect, however, that these estimates can still be improved. 

Let us note that the statements of Theorem 1 can be generalized in particular to the dilute 
Hopfield model with Hamiltonian (1.2). N~amely 

Theorem 3: The conclusions of Theorem 1 hold for the dilute Hopfield model (1.2} if the 

dilution rate p(N) and the number of patterns M(N) satisfy the conditions 

{i) p(N)N j oo as N j oo and 

{ii} P~kfk 10 as N j oo. 

The conditions on the dilution rate in Theorem 3 is presumably the weakest possible for the 
result in this sharp form. The basic result in [BG2] that allows to prove Theorem 2 is a bound that 
states that with large probability the Hamiltonian (1.2) and its mean with respect to the dilution 
(i.e. the Eij which is of course nothing but the original Hopfield Hamiltonian ( 1.1)) are close to 
each other in the sense that their difference is of order o(N), uniformly in the a E SN, provided 
hypothesis (i) and (ii) hold. For the precise statement, see [BG2]. 

Before closing this section, let us mention one more recent result by Pastur, Shcherbina and 
Tirozzi [PST]. They consider the so-called Edwards-Anderson parameter, 

1 N 2 

qN = N :E [ 97Jv,(3,h( ai)] 
i=l 

(2.16) 

Their result can be paraphrased by saying that if the varian~e of qN tends to zero as N j oo, then 
the order-parameters of the model are those given by the simple-minded use of the "replica-method" 
(see [AGS2]). This result is analogous to the one obtained for the Sherrington-Kirkpatrick model 
by Pastur and Shcherbina [PS]. The problem is of course to determine whether the assumption on 
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qN, is verified. From our Theorem 1, it follows that this is the case if a = 0, and from [ScT] this 
is known to be true at high temperature. In general, at low temperature, one cannot expect this 
'self-averaging' to hold. 

Summarizing, we see that the low-temperature properties of the Hopfield model for a > 0 
still remain to be analyzed from a mathematical point of view; Theorem 2 is a first step into this 
direction. In the next section we discuss some results concerning at least the structure of the 
Hamiltonian function in this regime. 

III. Bounds on the storage capacity 

The results on the thermodynamics in the last section concern the true stable states of the 
dynamics of the infinite system at finite temperature (noise). ff one is interested in functioning 
of the memory on some long, but not infinite time-scale, this may not necessarily be the relevant 
issue, and it definitely is not the relevant issue for a deterministic gradient dynamics. Newman 
[N] therefore in 1987 considered the following question: For which range of the parameter a is 
there a correspondence between the patterns and the local minima of the Hamiltonian in the sense · 
that each pattern is surrounded by an energy barrier of extensive height? Clearly, for the gradient 
dynamics this condition means that starting not too far from a stored pattern, the system will 
remain close to this pattern for all times; and even if noise is added, this should remain true for a 
rather long, though finite time. 

Newman's result has been generalized to the Potts-version of the Hopfield model in [FMP] and 
to the dilute model in [BGl]. We give a precise formulation of it in this latter context. 

We define on the space of spin configurations the usual Hamming distance, 

d(a, a')= ~[N - (a, a')], (3.1) 

that is the number of components of the spins a and a' that disagree. For any a and any number 
o E [O, 1] we denote by S(a, o) the sphere of radius oN centered at a, i.e. 

Let us set 

S(a,o) = {a'ld(a,a') = [oN]}, 

hN(a, o) = min HN(a') 
er' ES( cr,6) 

(3.2) 

(3.3) 

We will say that there exists an energy barrier of height EN centered at~"', if for some o E (0, 1/2), 

(3.4) 
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Then 

Theorem 4: [BGl] Suppose p ~ cfl. Then there exists O'.c ~ 0, such that if M ~ acpN, 
then there exists E > 0 and 0 < o < 1/2 such that · 

Moreover, ac ~~ (16(ln(2 J8(1 + a)) ln(2) )-1 , where 

(i) a ~ 0 if ~ ~ j oo 

(ii) a < t if c2 >~ 7, and 

(iii) a = 1 + ~ otherwise. 

(3.5) 

In the particular case p = 1 this theorem was first proven by Newman [N]. It is possible to 
get from the proof more precise information on the relation between €, o and a. In particular, 
it is possible to extract from it that local minima are located precisely at the original patterns 
if M < c1/!N, and they are located a distance o(N) from the patterns if M = o(N). The first 
statement was known from earlier work of McEliece et al. [MPRV] and the second agrees with the 
zero-temperature version of Theorem 1. It should be noticed that the O'.c in Theorem 4 is much 
larger than that of Theorem 3, and that they are not supposed (even ideally) to coincide. 

Newman also showed that these minima are not the only ones, but that there exist many others, 
associated to 'mixtures' of the original patterns, in accordance with prior non-rigorous results of 
Amit et al. [AGS2]. On the other hand, an exhaustive enumeration of aU local minima is still 
missing, as is a complete analysis of the depth of all those minima. Both information are needed 
to analyse the finite temperature properties of the model. Also, for a more detailed analysis of the 
dynamics and the various time-scales that could appear, such information is required. 

Let us remark finally that so far nobody has been able to prove a converse of Newman's 
Theorem, that is to show that of a exceeds a critical value, then (3.5) is false. Numerical results 
appear to imply this with O'.c ~ 0.14, and it would be interesting to get a better idea for what is 
happening at this threshold. 

The proof of Theorem 4 is based on quite standard large deviation estimates and actually 
rather straightforward, at least in the case p = 1. For general p < 1, it requires some further, 
non-trivial probabilistic bounds on the largest eigenvalues of all submatrices E1 defined as 

{ 

Eij if i E I and j E Jc 
(EI )ij = Eij if i E Jc and j E I 

0 otherwise 
(3.6) 

uniformly for all subsets I of cardinality III = oN, namely that with large probability, max1 llE1ll ~ 
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co(l - o)pN. In [BGl] this was shown to hold under the condi~ion p ~ fl, but is is not clear 
that this is the optimal condition. Note in comparison that Theorem 2 requires only that pN j oo! 
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