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I. Introduction 

In recent years there has been a revival of interest in the Curie-Weiss (CW) model (also called 
'mean field model') of ferromagnets and some of its derivatives (e.g. the Curie-Weiss-Potts model, 
etc.) [EN ,EW]. The use of large deviation techniques (see e.g. the book by Ellis [E] for a review in 
this context) has allowed to give a very neat probabilistic description of the thermodynamic limit 
for such models which has made them some of the best understood models in statistical mechanics. 
Interestingly, these techniques have even allowed to treat several types of disordered CW-models: 
Amaro de Matos and Perez [MP] have analyzed the CW-model with a random magnetic field term 
and not only constructed the thermodynamic limit but also obtained results on the fluctuations 
of various thermodynamic quantities. The infinite volume Gibbs states for this model has been 
studied recently by Amaro de Matos et al. [MPZ]. Another model that has been solved exactly is 

the Hopfield-model of neural networks (under some restriction on the number of stored patterns) 

that can be seen as a CW-model with a particular type of random exchange coupling [KP,G]. Of 
course, the maybe most celebrated mean field model, the Sherrington-Kirkpatrick model [SK] for 
spin-glasses still awaits a rigorous mathematical analysis, in spite of many efforts and the existence 
even of an "exact" solution based on what is called the 'replica symmetry breaking scheme' (for a 
review and references see e.g. the book by Mezard et al. [MPV]). 

A simpler model than spin glasses, but nonetheless one with genuine "bond-disorder" is the 
so-called 'dilute ferromagnet' (see e.g. Frohlich's lecture in [F] for a review). Here the exchange 

couplings between spins are random, but strictly (or at least predominantly) ferromagnetic. Using 

techniques from percolation theory it has been proven [Ge,CCF] that at low temperatures this 
model exhibits a ferromagnetic phase, provided only the non-zero bonds percolate. On the other 
hand, critical properties of this model, in particular in dimension d = 2, are heavily disputed in the 
physics literature [DD,S,L,Z]. Surprisingly enough, it appears that the CW version of this model 
has so far not been investigated, and this is what we propose to do in this article. More precisely, we 
will show that under some (fairly weak and natural) assumptions on the disorder, an exact solution 
in terms of the quantities of the standard CW-model can be given. It should be noted that our 

present results are, in probabilistic language, on the level of "laws of large numbers"; fluctuation 
theorems will be left to further investigation. 

To be able to state our results in a precise way let us give a definition of the models we will 
treat. For a given positive integer N, let A denote the set A = {1, ... , N}. To each site i E A is 
associated an Ising spin variable O'i E {-1, 1} and a spin configuration on A is given by the sequence 
O' = {O'i}iEA· The configuration space is denoted by rN = {-1, l}N. We recall that in the standard 
CW-model the interaction energy of a spin configuration O' E rN is obtained by coupling each pair 
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of spins at sites ( i, j) in A X A with equal strength 21', that is to say: 

Ht( a)= - L Ji,jO"iO"j - h Lai 
( i,j)EA xA iEA 
1 

2N L O"iO"j - h LO"i 
( i,j)EA xA iEA 

(1.1) 

where the external magnetic field his a real number. The energy function of the randomly dilute 
CW-model (RDCW) is obtained from (1.1) by choosing the couplings Ji,j as random variables 
normalized such that IE ( Ji,j) = 21'. An elementary embodiment for the notion of dilution consists 

then in defining Ji,j = 2e'iJP where EN = { Ei,j h=i, ... ,N;j=l, ... ,N are independent and identically 
distributed random variables (i.i.d.r.v's) with IP(Ei,j = 1) = 1-IP(Ei,j = 0) = p. The Hamiltonian 
then reads 

HNh(EN a)= --1- '°' E· ·a·a· - h '°'a· ' 2N L.J '•' ' J L.J ' 
p (i,j)EAxA iEA 

(1.2) 

While this setup suffices to define the RD CW-model for a fixed N, since we are interested in 
taking limits as N goes to infinity later on, we need to be more specific on the random variables 
Ei,j as functions of N. This is somewhat more subtle than usual due to the fact that we will allow 
p to be a function of N. There are several ways to set up the probabilistic environment for this, 
we prefer, however, the following: Let us fix a function p: IN -t (0, 1] and let us first consider a 
fixed (i,j) E IN x IN. We introduce a probability space (Oi,i; ~i,j, IP), with ni,i =: {O, l}JN, such 
that {Ei,j(N)}NE.lN is a (inhomogeneous) Markov chain on this probability space, with transition 
probabilities given by 

IP( Ei,j(N) = 0 I Ei,j(N - 1) = 0) = 1 

IP( Ei,j(N) = 11 Ei,j(N - 1) = 0) = 0 
IP(Ei,j(N) = 0 I Ei,j(N - 1) = 1) = 1- q(N) 

IP( Ei,j(N) = 11Ei,j(N~1) = 1) = q(N) 

(1.3) 

where q(N) is chosen such that IP( Ei,j(N) = 1) = p(N), that is q(N) = p(N)/p(N - 1). Note 
that this setup constrains p to be a non increasing function of N. Now we introduce the product 
probability space (n, ~' IPe): 

(n, ~' IPe) = ( II ni,j, II ~i.i, II IP) 
i,jElNX.lN i,jE.lNxlN i,jElNxlN 

(1.4) 

and we consider EN = { Ei,j(N)}i=l, .. .,N;j=l,. .. ,N as a family of random variables on the product 
cylinder set { w E n : wi,j E ni,/</ ( i, j) E A x A}. From now on we write E instead of EN provided 
there is no danger of confusion. The above construction has the virtue that it yields the maximal 
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probability for fi,;(N) to equal fi,;(N - 1) for the given marginals. In particular, this probability 
is one if p(N) is constant. 

The RD CW-model is then defined by the probability measure 9~h( €) on which assigns to each 
configuration <J' E rN the probability 

(1.5) 

where /3 > 0 is the inverse temperature and where the partition function z~h( €) is given by 

(1.6) 

Note that these last three quantities are random variables on the probability space (fl,~. IPe)· 
Before giving the statement of our main theorem we need the following notations: let mN be the 

block spin variable mN = mN(u) = J.r l.::~ 1 O'i, SN the set of all its possible values, 
SN= {-1, -1 + Jr, ... , 1- Jr, 1} and m~h.(E) the expectation of mN with respect to g~h(E). We 
will also exploit throughout the paper some well known results of the standard CW-model. For 

the sake of convenience we have summarized them in an appendix. The quantities referring to the 

standard CW-model will be overlined by a tilde. Finally, defining the finite volume free energy as 

(1.7) 

we are ready to announce the 

THEOREM 1: Let p E (0, 1] be a non increasing function of N such that pN j oo as N j oo. Then, 
almost surely with respect to IP.,, the following results hold: 

(i) for all /3 > 0 and all h E IR 
lim f/3,h(E) = f/3,h 
Njoo N oo 

(1.8) 

where ~h is the infinite volume free energy of the standard CW-model. 

Let .C{mN} be the law ofmN under g~h(E) and let Ox denote the Dirac measure concentrated on 
the point :z:. Denoting respectively by m,/3,(+) and m,/3,(-) the largest and smallest solutions of the 
equation m = tanh(/3m) we have 

(ii) for h ~ 0 

lim lim .C { m N} = { 00 
h!O Njoo 6;;~.(+J 

if 0 ~ /3 ~ 1 
if /3 ~ 1 

The same result holds for h ~ 0 with m,13 .( +) replaced by m,/3 ,( - ) . 
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(iii) for h = 0 and for all f3 > 0 

(1.10) 

(but note that for f3 ~ 1 m,.8.(-) = m,.8.(+) =OJ. 

Remark: The condition pN j oo appears to be the weakest possible for the theorem to hold. It 

implies that the mean coordination number of each site goes to infinity as the system size diverges, 
that is, from a physical point of view the dimensionality of the system goes to infinity. On regular 
lattices, it has been proven before (see e.g. [KS]) that the mean Curie-Weiss free energy is obtained 
in the limit of infinite dimension. Let us also remark that Costin [Co] has given deterministic 
criteria for the coupling matrices under which the CW-results are recovered. 

Remark: In section 4 we will show that the analogue of theorem 1 can be proven for a much larger 
class of distributions of the Eij. For transparence and clarity we prefer, however, to first present 
the prove in this specific context. 

The remainder of this paper is organized as follow: we show in section 2 that the Hamiltonian 
(1.2) of the RD CW-model can be seen, on a subset of n of 1Pcmeasure one, as a small perturbation 
of the Hamiltonian (1.1) of the standard CW-model. Therefore the proof of theorem 1, given in 
section 3, essentially follows from a standard mean field treatment. An interesting issue of the 
method developed for the study of the RDCW-model as defined in (1.2), (1.5) is that it applies 
for more general definitions of the random couplings Ji,j and in particular doesn't require them 
to be ferromagnetic. In chapter 4 we show how the method provides general conditions on the 
distribution of the couplings under which the results of theorem 1 hold, and detail some specific 
examples, including gaussian couplings. 
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II. Bounds on the Hamiltonian 

The main idea behind the proof of the theorem is that on a certain subset O* c n which 
will be shown to be of IPcmeasure one, the Hamiltonian H&(€,a) of the RDCW-model can be 
approximated by the Hamiltonian ii&( a) of the standard CW-model up to a small perturbation 

H'N(€,a) = H&(€,a)- ii&(a) which uniformly in a will be of order o(N). Therefore, we will be 
allowed to give to the dilute model a standard mean field treatment. 

To determine the suitable set n•, we proceed in the following way: let us consider the square 
array {aiaj}(i,j)EAxA whose elements are the products O'iO'j of two spins for all possible pair 
(i,j) EA x A. This array is equivalently given by the partition of AX A into two subsets AX A= 
At (a) U A2 (a) containing respectively the "aligned" and "non-aligned" pairs of spins: 

At(a) = {(i,j) EA X A I O'iO'j = 1} 

A2(a) = {(i,j) EA X A I O'iO'j = -1} 

Notice that the cardinality of the subsets AT (a) and A2 (a) only depends on the variables 

mN(a) = Jr 2:~1 ai: 
IAT(a)I = 1 + m~(a) N2 

2 

IA2(a)I = 1- m~(a) N2 
2 

Using this partition the Hamiltonian (1.1) can be rewritten as 

H&(€,a)= -2~ {2 L €i,iX{(i,j)EAt(u)}- L €i,j} +h LO'i 
p (i,j)EAXA (i,j)EAXA iEA 

(2.1) 

(2.2) 

(2.3) 

~here X{(i,j)EAt(u)} is the characteristic function of the set AT(a). Now, let us define the subsets 
nN C n as the subsets for which the first two sums in (2.3) remains close to their mean value i.e : 

nN= n {wEO: I L €i,iX{(i,j)EAt(u)}-plAt(a)ll~1plAt(a)I} (2.4) 
ufPN (i,j)EAXA 

where 'Y = 1(N) is a decreasing function of N such that -y(N) l 0 as N j oo. Then if 'Y is 
appropriately chosen we have that for N large enough, and how large will depend on the sample, 
almost all w will belong to nN. More precisely, defining the subset n· c n as 

O* = {w En : 3 No s.t. V N ~No, w E ON} (2.5) 

we have the 

PROPOSITION 1: Let p E (0, 1) be a non increasing function of N such that pN j oo as N j oo. 
Let 'Y be a positive, strictly decreasing function of N such that 1(N) ~ };N and -y(N) l 0 as 
N j oo. Then 

(2.6) 
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where n· defined in (2.5). 

Remark: To avoid useless discussions the case p = 1 in proposition 1 has been eliminated since it 
corresponds to the standard CW-model for which theorem 1 is already known. 

In order to prove the proposition we need the following lemma: let ON- denote the complement 
of flN in 0, then 

LEMMA 2 .1: Let p and 'Y be defined as in proposition 1. Then, for N large enough 

(2.7) 

where co, c+ and c- are strictly positive constants. 

Proof: By definition 

which is bounded by 

1Pe (n'N) ~ L {1Pe ( L Ei,i X{(i,i)EAt(u)} 2:: p(l + 'Y)IAt(a)I) 
o-ErN (i,j)EAXA 

+1Pe ( . _L Ei,j X{(i,j)EAt(u)} ~ p(l -1)IAt(a)I)} · 
(i,J)EAxA · 

(2.9) 

Using now the exponential Markov inequality [CT,V] and remembering that Ei,j are i.i.d. we 
get 

1Pe ( L Ei,j X{(i,j)EAt(u)} 2:: p(l + 'Y)IAt(a)I) 
(i,j)EAXA 

~ ~~~ exp(-IAt(a)l{p(l + -y)t - lnlEe (ee,,;t)}) 

which by a direct calculation leads to 

1Pe ( L Ei,j X{(i,j)EAt(u)} 2:: p(l + 'Y)IAt(a)I) 
(i,j)EAXA 

~exp (-I At (a )II~1 )(p(1+1))) 

where 111 ) is defined on [O, 1] by 

J~1)(x)=xln(~) +(1-x)ln(~=;). 
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Similarly we have the bound 

IPE ( L Ei,j X{(i,j)EAt(u)} ~ p(l - 'Y)IAt(a)I) 
(i,j}EAXA 

~exp (-1At(a)JI~1)(p(l - -y))) . 

Therefore, putting (2.12) and (2.13) together with (2.9) gives 

(2.13) 

IP€ (nf.r) ~ L {exp (-IAt(a)II~1 >(p(l + -y))) +exp (-1At(a)II~1 )(p(l - -y)))} . (2.14) 
uErN 

Now, making use of the fact that IAt(a)I = l+m2~(u) N 2 only depends on the variables 

mN(a) = 12:~1 ai, the sum 

A= L {exp (-1At(a)JJ~1 )(p(l + -y))) +exp (-1At(a)II~1)(p(l - 1)))} (2.15) 
uErN 

can be rewritten as 

A= m~N ( 1)~ N) {exp (- (1 +t) N2 41i(p(l+ 7))) 

+exp (- (1+2m') N 2 J~1 1(p(l - 7)))} . 
(2.16) 

(Recall that SN denotes the set of values the variable mN(a) may take). By the Stirling formula 
the binomial factor is equal to 

( N ) _ -NJC2 >(m}+Nln2- 1n2N +rN 
l+m N - e 

2 

where TN= 0 (1-) and J(2) is defined on [-1, 1] by 

J( 2)(:z:)= l-xln(l-x)+ l+xln(l+x). 
2 2 

Therefore 
A =exp (-N { ~ J~1 )(p(l + -y))-ln2 }- ln2N +TN) 

( 
N2m2 ) x L exp --2 -J~1)(p(l + -y)) - N 1C2>(m) 

mESN 

+exp (-N { ~ 41>(p(l - 1))- ln2 }- ln2N +TN) 
( 

N2m2 ) 
X L exp --2 -J~1 )(p(l - -y)) - N J(2)(m) 

mESN 
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To bound the sums in (2.19) let us notice that both I~1 ) and J(2) are positive convex functions. 
Moreover, J(2)(m) attains its infimum at m = 0 so that 

and 

L exp (- N22m2 I~1)(p(l±1))- N J< 2)(m)) ~ ISNI = N + 1 
mESN 

JP, (i\~) ,; N;l e'N {exp (-Ng J~1 l(p(l+ 7)) - ln 2}) 
+exp(-N{~41>(p(1+7))-ln2})}. 

(2.20) 

(2.21) 

In order to complete the proof we are left to show that for p and 'Y defined as in proposition 1 and 
for N large enough so that p(l +I) E (p, 1] and p(l -1) E (O,p], there exists two positive constants 
c+ and c- such that 

1 "2 NI~ 1) (p( 1 + 1)) - ln 2 2:: c + 
1 . 2N I~1 )(p(l -1)) - ln 2 2:: c- . 

(2.22) 

To do so let us rewrite I~1)(p(l + 1)) and I~1 )(p(l -1)) in the form 

I~1 )(p(l + 1)) = p(l + 1) ln(l + /) + (1 - p)(l - _P_'Y) ln(l - _P_'Y) 
1-p 1-p (2.23) 

and 
l~1)(p(l -1)) = p(l -1)ln(l -1) + (1- p)(l + _P_1)ln(l + _P_I). (2.24) 

1-p 1-p 
Now, using the series expansion of the logarithm we have 

{ 

oo (-1)"+1 x"+ 1 
(1 + x)ln(l + x) = X + 2:1 n(n+l) 

(1- x)ln(l - x) = -x + 2:~ n(~:~) 
for Jxl < 1 (2.25) 

which implies the two following pairs of bounds 

{ 
( 1 + x) ln( 1 + x) 2:: x + ~2 

( 1 - ~) 

(1- x) ln(l - x) 2:: -x 
(2.26) 

and 

{ 
( 1 + x) ln( 1 + x) 2:: x 

(2.27) 
(1- x)ln(l - x) 2:: -x + ~2 

valid for any x E [O, 1]. Since p(l + 1) E [p, 1] and p(l - 1) E [O,p], both I and ~I belongs to 
[O, 1]. Thus, on one hand, (2.23) together with (2.26) gives 

2 
I~1)(p(l + 1)) 2:: p{T + l_(l - 1)} - (1- p)(-P-1) 

2 3 1-p 
12 I 

=p2(l-3) 
2 

>pl_ - 3 

8 

(2.28) 



while on the other hand, (2.24) and (2.27) give 

Therefore we get the bounds 
1 12 
2N J~1)(p(l + 1)) ~ pN 6 
1 12 
"2N J~1 )(p(l - 1)) ~ pN 4 

(2.29) 

(2.30) 

and since I decreases to zero more slowly then b, there exists positive constants c+ and c- such 
yPN 

that (2.22) holds. Thus the lemma is proven. O 

Proof of Proposition 1: We want to show that 

(2.31) 

By definition 

(n*y = {w En:\:/ N0 < oo, 3N ~ Nos.t.w E (ONY} (2.32) 

and thus 
(2.33) 

The Borel-Cantelli lemma [CT] states that IPe. (umN-+oo(ON)c) = 0 if ~NIPe. ((nN)c) < oo and 
by lemma 2.1 this last condition holds and the proposition is proven. O 

From now on we will consider that the function I is chosen such that it satisfies the properties 
(i) and (ii) of proposition 1. Returning now to the problem of bounding the Hamiltonian (1.1) and 
remembering that 

(2.34) 

where iijf is the Hamiltonian of the standard CW-model, we have 

LEMMA 2.2: For all w E 0* and all u E rN 

(2.35) 

Proof: It directly follows from the definition of nN together with the decomposition (2.3) of the 
Hamiltonian Hj{(u,. E). O 
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III. Proof of the Theorem 

With the probabilistic preparation provided in the previous chapter, we are now ready to 
prove our main theorem. The essential idea is that on the set f2* the difference between the 
Hamiltonian and the averaged Hamiltonian is so small, uniformly in e7, that it does not contribute 
to the thermodynamic limit. 

Proof of part (i): By definition 

! {3,h(E) = __ 1_ ln '""""' 2-e -f3{ H~(u)+1i~(u)} 
N {JN L,; 2N 

uErN 
(3.1) 

Now, for all w E f2* lemma 2.2 brings the bounds 

(3.2) 

thus 

(3.3) 

and the proof is completed by using proposition 1. O 

To prove parts (ii) and (iii) of theorem 1 we need the following lemma: 

{3 h -(3 h {3 h LEMMA 3 .1: Let Q N ( E) and Q N be the measures on SN induced respectively by Q N ( E) and 
-{3 h 9d under the map: 

(3.4) 

then for all w E f2* and all m E SN 

(3.5) 

where 

(3.6) 

where pf3,h(m) denotes the free-energy functional of the standard CW-model {see appendix) and 

TN=0(1). 

Proof of lemma 3.1: By definition 

Q~/(E,m) = L 9~\E,e7) = 
uerN: 

"'N(u)=m. 

(3.7) 
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and 

(3.8) 

Therefore, for all w E !l*, the bounds (3.5) is obtained by inserting (3.2) in (3.7) and using (3.8). 
Now, since iit(u) only depends on the variables mN(u), (3.8) can be written as 

which together with (2.18) gives (3.6).0 

Proof of part (ii): It is enough to show that, for any continuous bounded function 
g E Cb( SN, JR) and all w E !l* 

To do so, we denote by ml3•h the unique minimum of p/3,h and first introduce the set 

(3.9) 

(3.10) 

(3.11) 

Here the function e(N), which will be chosen appropriately later, is a decreasing function of N 
satisfying e(N) l 0 as Ni oo. Next, we write 

(3.12) 
L Jg(m)- g(mf3,h)I Ql]/(E, m) + L Jg(m) - g(mf3,h)I Q~h(E, m) 

mEB mEB 0 

where Bc denotes the complement of Bon SN. By continuity of g, form in Band for any arbitrarily 
small (we have that lg(m) - g(mf3,h)I < ( provided that N is large enough. On the other hand, 

since g is bounded, lg(m)- g(mf3,h)I < 211911 00 where 11911 00 = supmESN Jg(m)J. Therefore 

(3.13) 

and we are left to show that, for w E !l*, the measure of Bc with respect to Q~h( E, m) decreases 
to zero as N tends to infinity. By lemma 3.1 we have, for N large enough 

(3.14) 
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where c1 > O is a constant. Now, remembering that m/3•h realizes the minimum of pf3,h 

~ Q(3,h( ) < / 2(3N"'f(N} ~ -f3N{Ftl•h.(m}-F/3,h.(;;f3,h.)} 
~ N i:,m _ c e ~ X{mEB•}e (3.15) 

mEB• mESN 

and since there exists a strictly positive constant c such that 

(3.16) 

the sum in the right hand side of (3.15) is bounded by 

~ -f3N{.Ft1,1i.(m}-Ft1,1i.(;;t1.1i.)} -c(3Nr/(N) 
~ X{mEB•}e S 2Ne . (3.17) 

mESN 

Finally, putting (3.16) together with (3.14) gives 

L Qr;/(i:,m) S 2c'e-f3N{cu2(N}-(2"Y(N)+13*)} (3.18) 
mEB• 

and this last bound converges to zero as N tends to infinity provided that e(N) is chosen such that 

2 lnN 
cg (N) > 21(N) + {JN (1+71) (3.19) 

for some real 71 > 0, which can be done for any c. Thus (ii) is proven by combining this result with 
(3.12), proposition 1 and the fact that limh!O m,f3,h = m,f3.(+) . O 

Proof of part (iii): The proof of part (iii) essentially follows that of part (ii). We will only give 
the outline of the case {3 > 1; the case {3 S 1 is obtained following a similar scheme. We want to 
show that, for any continuous bounded function g E Cb(SN,IR) and all w En• 

Hf! L g(m)Q';J0(e,m) = ~g(mf3,(+)) + ~g(mf3,(-)). 
mESN 

(3.20) 

To do so let us define the sets B+ and B- as 

B+ = { m E SN: Im - m,f3.(+)1 < e(N)} 

B- = { m E SN: Im- m(3,(-)I < e(N)} 
(3.21) 

where e(N) is a decreasing function of N which tends to zero as N tends to infinity. Then decom-
posing the sum in (3.20) as 

L g(m)Q';J0(e,m) = 

mEB<+l mEB<-l 
(3.22) + L (g(m)- g(mf3,(+)))Q';J0(e,m) + L (g(m)- g(mf3,(-)))Q';J0(e,m) 

mEB<+l mEB<-l 

+ g(m)Q';J0(e,m) 
mE(BC+luB<-l)• 
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------ "----------"""-""""-""" 

we get 

L [g(m) - { g(m.B,(+))X{mEB<+l} + g(m.B,(-))X{mEB<->}}) Qfj;0 (c, m) 
mESN 

< L lg(m)- g(m.B,(+)),Qfj;0 (c,m) + L lg(m)- g(m.B,(-)),Qfj;0 (c, m) 
mEB<+l mEB(-l (3.23) 

+ lf(m)I Q~;°(c, m) 
mE(B< + l uB<-l)< 

~ ( + IJgJJoo 
mE(B<+luB<-J)c 

where by continuity of g, (can be made arbitrarily small provided that N is large enough. Splitting 
again the sum of the last term in (3.23) we get 

L lg(m)JQfj;0(c,m) ~ JJgJJoo{ L Qfj;0 (c,m) + L Qfj;0 (c,m)} (3.24) 
mE(B(+luB<-l)c mE(s<+l)c mE(B(-))c 

m~O m.~O 

and we have already seen that choosing e(N) appropriately, each of these sum converges exponen-
tially fast to zero since for each half space {m E SN: m ~ 0} and {m E SN: m ~ O} , m,.B.(+) and 
m,.B.(-) realises respectively the global minimum of 'j.B,O. Therefore we have shown that for w E O* 

the right hand side of (3.23) converges to zero as N tends to infinity. To deal with the left hand 
side just notice that by symmetry 

)!;100 L g(m.B,(+))X{mEB<+l}Qfj;0(c,m) = )!;100 L g(m.B,(-))X{mEB<-l}Qfj;0(c,m) = % . 
mESN mESN 

(3.25) 
Thus, for (3 > 1, (iii) is proven. 0 
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IV. Generalizations 

It is clear that the proof of theorem 1 does not really require all assumptions we made on the 
random variables Eij. In fact, one only needs to check whether their distributions satisfy conditions 
allowing to prove proposition 1, i.e. in particular whether the large deviation estimates (2.13) and 
(2.14) hold. 

Here we want to exhibit sufficient conditions in two simple and illustrative contexts: 

(i) Gaussian random variables, 

(ii) Random variables for which the Bernstein conditions are satisfied. 

From a physical point of view it will be interesting to notice that these conditions will, in 
general, not imply that the couplings are ferromagnetic, and in particular in the Gaussian case we 
will see that one may study situations which look, at first glance, very dos~ to spin glasses. 

We will consider the following setting: Let (n, E, IP) be a probability space such that, for all 

N E IN there exists a family f.N = { f.i,j(N)}i=l, ... ,N j=l, ... ,N of i.i.d.r.v's on n taking values in IR 
with distribution p N which is allowed to depend on N. We denote by IP,,_N the product measure 

with identical marginals PN: IP,,_N = Il(i,j)EAxA PN· 

Let us introduce the following two quantities that characterize p N: 

(i) Let Pp(N) be the expectation with respect to PN, i.e. 

We will always assume Pp(N) to be a strictly positive, non-increasing function of N. 

(ii) Let cPN(t) denote the the functions 

c (t) = { loglEPN (exp(tEi,j)) 
PN +oo 

if IE PN (exp( tf.i,j)) exists, 
otherwise 

We now define the hamiltonian Ht(f., CJ) as in (2.1) through the couplings Ji,j = 2Pp"-t'Jr)N: 

( 4.1) 

( 4.2) 

( 4.3) 

One then wants to find conditions on the distributions PN under which, for N large enough, the 
hamiltonian ( 4.3) can be written as a small perturbation of the standard CW hamiltoniari iit( CJ) 
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with probability with respect to IP"N exponentially close to one in N. To do so we proceed as in 
chapter II, defining for N E IN the set ON as in (2.4): 

L Ei,jX{(i,j)EA~+>(u)} - Pp(N)IA~+)(a)I :s; /pp(N) IA~+)(a)I} (4.4) 
(i,j)EAXA 

where I= 1(N) is a strictly decreasing function of N satisfying 1(N) l 0 as Ni oo. We have 

PROPOSITION 2: If there exists a function / satisfying the above conditions such that for N 

large enough p N satisfies 

and ( 4.5) 

where IPN(x) is the Legendre-Fenchel transform of cPN(t), 

(4.6) 

then there exists a strictly positive constant, K. 1 such that 

(4.7) 

Before giving the proof of the proposition, we detail explicitly the conditions ( 4.5) on some 
examples. Notice that they clearly will require the existence of the Laplace transform of PN for a 
sufficiently large range of t. 

Example 1: Gaussian couplings 

LEMMA 4.1: Let PN be the normal distribution N(pp(N),a(N)). If Np~(N)/a2(N) i oo as 

Ni 00 1 then there exist functions/ such that (4.5) holds. Setting w(N) = JNp~(N)/a2 (N) any 

function/ decreasing to zero more slowly than )2ln(2)/w(N) can be chosen. 

Proof: A standard calculation shows that cPN(t) = ~a2 (N)t2 + pp(N)t. For any real x the 

sup in (4.6) is attained at t = (x - Pp(N))/a2(N) and JPN(x) = (x - Pp(N)) 2 /2a2(N). Moreover 
JPN (Pp(N)(l+1)) =JPN (Pp(N)(l-1)). Thus the conditions ( 4.5) reduce to Np~(N)T2 (N)/a2(N) > 
2ln(2). 0 

Remark: In the particular case a(N) = 1 the hamiltonian (4.3) reads 

H'Jf(E,a) = - 2w(;)../N . . L Ei,jllilJj- h Lai 
(i,J)EAXA iEA 
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where w tends to infinity as slowly as desired andpp(N) is allowed to go to zero as fast as w(N)/./N. 
This is just slightly off the situation in the Sherrington-Kirkpatrick model of spin glasses, where 

we would have pp(N) = 0 and w(N) = w =constant. 

Remark: The conditions on the distributions PN can in this case easily be translated in terms of 

the eigenvalues of the random matrix f.N as the existence of a large enough gap between the largest 
and the second largest eigenvalue. 

Example 2: Bernstein's condition 

LEMMA 4.2: Let PN be such that the centered variables Ei,i-Pp(N) satisfy the Bernstein condition 
[Pj, i.e. 

(I ( )l k) k! 2( k-2 IEp Ei,j - Pp N :'.S 2a N)c , ( 4.9) 

Np 2 (N) for some constant 0 < c < oo and all k ~ 2, Then, if u:i( N) j oo as N j oo, and if there exists 
0 < a < 1 such that 

1 4c2 2 - a 2 ----ln2 <a (N) N a 2 1- a - (4.10) 

then ( 4. 5) holds with 'Y chosen such that 

[ 2 - a a2(N) ] 112 a a2(N) 
ln 2 1 - a Np~(N) :'.S !(N) :'.S 2c Pp(N) (4.11) 

Proof: Note that 

( 4.12) 

Now, using the Bernstein condition (CT], one gets that 

ln IE (eC"-Pp(N))t) < a 2(N)t2 1 
- 2(1 - Itel) ( 4.13) 

for all t s.t. Itel < 1. (Note that we could, of course, also impose the bound ( 4.13) in the lemma 
rather than the Bernstein condition). Hence 

1 
xt - cp(t) ~ (x - pp(N))t - a 2(N)t2 ( I I) 2 1- tc (4.14) 

Now denoting by t* = t*(x) = x~f(~f) the value oft that realizes the supremum of the function 
u2(N)t2 (x - Pp(N))t - 2 , we get that 

I (x) > (x - Pp(N))2 (1 1 ) 
P - a2(N) - 2(1 - lt*cl) ( 4.15) 

Now, as long as Jt*cl ~ j- with a < 1, we have 

1 (x) > (x - Pp(N))2 1 - a > 0 
P - a 2(N) 2-a - ( 4.16) 
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Thus 
( 4.17) 

and 

lt*(pp(N)(l ± 1))1 = P:~(2; ( 4.18) 

The condition lt*cl '.'S 1- now simply becomes 

( 4.19) 

and the conditions ( 4.5) reduce to 

Np~(N)/2 1- a 
2(N) > ln2 r:r . 2-a 

( 4.20) 

Conditions ( 4.19) and ( 4.20) now yield the bounds ( 4.11 ). 0 

After these examples we now come to the proof of proposition 2. 

Proof of Proposition 2: This proof is essentially identical to the part of the proof of lemma 
2.1 that leads to the bound (2.21). We will restrict ourselves to show that the bound (2.11) becomes 

IP€N ( L ti,jX{(i,j)EA~+l(o-)} ~ Pp(N)(l + 1)IA~+)(r:r)I) 
(i,j)EAXA 

'.'S exp (-IA~+)(r:r)IJPN (Pp(N)(l + 1))) 

where JPN is defined in ( 4.6). A similar proof yields 

IP€N ( L ti,jX{(i,j)EA~+l(o-)} '.'S Pp(N)(l -1)JA~+)(r:r)I) 
(i,j)EAxA 

'.'S exp (-IA~+)( r:r)IIPN (Pp(N)(l -1 )) ) 

which replaces (2.13). First, using the exponential Markov inequality we have 

IP€N ( L ti,jX{(i,j)EA~+l(o-)} ~ Pp(N)(l + 1)IA~+)(r:r)I) 
(i,j)EAXA 

'.'S inf exp (-JA~ +)( r:r)I {Pp(N)(l +I )t - cPN (t) }) t;:::o 

where cPN(t) is defined in (ii). Next we want to show that 
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( 4.22) 

( 4.23) 

( 4.24) 



To do so we need a well known property of the function JPN (for a proof, see e.g. [E]). namely that 

For any x E IR 1 JPN ~ 0 and JPN = 0 if and only if x = pp(N). 

Now by the Jensen's inequality cPN(t) ~ Pp(N) for all t E IR. Thus fort strictly negative and/ 
non zero 

( 4.25) 

Therefore we see from the positivity of JPN that the supremum in the formula for JPN cannot occur 
fort < 0. Finally, putting ( 4.24) together with ( 4.23) gives ( 4.21). O 

From here on it is clear that all the results from sections 3 and 4 carry over under the assump-
tions of proposition 2. 

Acknowledgements: V. G. thanks Prof. Joel Lebowitz and the Mathematical Sciences Research 

Center of Rutgers University for their warm hospitality. We also thank Pierre Picco for a critical 
reading of the manuscript. 
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Appendix 

We give here the definitions and results for the standard Curie-Weiss model that we use 
throughout the paper. We refer to the book [E], § 5, where a complete study of the model is 
presented. With the notation of chapter 1 and given the Hamiltonian 

jjf3,h(CY) = -~ " CT·CT · + h" CT· N 2N L.J 1 J L.J 1 

(i,j)EAXA iEA 

(A.l) 

the Curie-Weiss model is defined by the probability measure 9']/ wich assigns to each configuration 
CT E rN the probability 

The following results where found: 

-{3 h (i): If f N, denotes the finite volume free energy, 

f-/3,h = __ 1_ ln zl3,h 
N {3N N 

then the infinite volume free energy J~h is equal to 

Jf'·h = inf f'!3.h(m) 
00 mEJR 

where the free energy functionnal pf3.h is defined by 

and 

- 1 1 pf3.h(m) = -m2 + hm - -I(m) 
2 f3 

{ 

1 2m ln(l - m) + l~m ln(l + m) 
I(m) = 

00 

if lml :s; 1 

if lml > 1 

(ii): The points m giving the infimum in (A.4) are solution of the equation 

m = tanh[f3(m + h)] 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

For 0 < f3 :s; 1, this equation has a unique solution m,/3,h wich is zero for h = 0. For f3 > 1 and 

h -=/: 0 it has a unique solution m,/3,h with the same sign as h. For f3 > 1 and h = 0 it as three 
solutions m,/3,( +) > m,/3,h = 0 > m,/3.(-). Of this three solutions only m,!3.( +) and m,/3.(-) realize 

the infimum in (A.4). 
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