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Abstract

We present a re�ned model for multi-section lasers, introducing an addi-

tional equation for material polarization in the well known travelling wave

model. We investigate the polarization-induced changes in the spectral prop-

erties of the optical waveguide. Finally, we show the relevance of this model

for a more realistic simulation of complicated dynamical behaviour of multi-

section Distributed Feedback (DFB)-Lasers, such as fast self-pulsations, multi-

stability, and hysteresis e�ects due to mode competition.

1 Introduction

Multi-section DFB (Distributed Feedback) Lasers exhibit a broad range of com-

plicated spatio-temporal dynamics. Self-pulsations, multi-stability, hysteresis, and

even chaotic behavior can be observed in both experiments and numerical simula-

tions [2],[11]. Especially high frequency self-pulsations and their capability of locking

onto external signals can be used for clock-recovery in all-optical signal regeneration

[10]. However, the onset of these self-pulsations is accompanied with a complicated,

often hysteretic switching behaviour between di�erent operating states, depending

strongly on the operating conditions.

This is mathematically described by the long-time behaviour and the bifurcations of

a nonlinear system of model equations including di�erent time scales. Due to their

nonlinearity, these e�ects can be very sensitive to changes in the parameters and the

structure of the model. Indeed, even though the nonlinear material gain dispersion

is a comparatively small e�ect, it turned out that its in�uence on mode competition

can cause drastic changes in the dynamical long-time behaviour. However, the

design of self-pulsating laser devices for optical communication applications requires

a highly accurate simulation of these dynamical e�ects to obtain their dependence

on the set of design and control parameters.

In this paper we discuss a model which extends the well-known traveling wave model

[7, 15] with additional polarization equations. This extended model re�ects spectral

selectivity due to the geometry of the device (waveguide dispersion) as well as dis-

persion due to material properties. We �rst discuss the theoretical background and

fundamental assumptions for this model. Then we show that our formulation of the

nonlinear gain dispersion allows to extend the results from [12, 13] about the spec-

tral properties of the resonator. Using these results, further analytic investigations

on �nite dimensional approximations, bifurcation theory and locking behaviour (see
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[2, 16, 3] for the travelling wave equations) may be performed for the extended model

in the same way.

Finally we demonstrate the importance of the extended model for accurate simula-

tion of high frequency self pulsating devices.

2 Traveling wave equations including polarization

A standard model for studying the longitudinal behaviour of DFB-lasers are the

so called traveling wave equations (TWE) (see e.g. [7, 15]). They describe the

evolution of an optical �eld E(~r; t)

E(~r; t) = E(x; y)(	+(z; t)ei(!0t�
�

�
z) +	�(z; t)ei(!0t+

�

�
z))

along the propagation direction z in transverse single mode approximation. The

evolution of the slowly varying complex amplitudes 	(z; t) = (	+(z; t);	�(z; t)) is
governed by the equations

�i@t	
� = �(�i@z	

�

� �(N)	�

� �	�) (1)

for 0 � z � L; t � 0 and boundary conditions 	+(0; t) = r0	
�(0; t); 	�(L; t) =

rL	
+(L; t). Here, � is the group velocity, and the real coe�cient � describes an index

coupling by a Bragg-corrugation in the waveguide. In our numerical calculations we

included spontaneous emission in (1) by an additional small stochastic source term.

The propagation factor � is assumed to be piecewise constant in z and modeled as

�(Nk) = Æk � i
�0k

2
+
i+ �Hk

2
gk(Nk �N tr

k )

where detuning Æ, losses �0, Henry-factor �H , di�erential gain g, and transparency

carrier density N tr are constant in each section Sk. The model is completed by rate

equations for the carrier densities N = (N1; : : : ; Ns), where each Nk is the density,

averaged over one separately pumped section Sk of the device:

d

dt
Nk =

Ik

eVk
�

Nk

�k
� �gk(Nk �N tr

k )h	;	ik (2)

Here, Vk is the Volume, �k the spontaneous recombination lifetime, and Ik the pump-

ing current in the k-th section, respectively. The integral

h�;	ik =
1

Vk

Z
S
k

�+�	+ + ���	�dz:

is the photon density in the k-th section Sk and is proportional to the optical power.

To study e�ects of spatial hole burning, one can also allow for spatial variation of the

carriers within the sections. Nevertheless, for our purposes the piecewise constant

version is su�cient. Such models have been widely used for numerical simulations,
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reproducing a lot of the complicated spatio-temporal dynamical behaviour of trans-

versely single-moded integrated devices which have a complex longitudinal structure

[11]. On the other hand these equations are still simple enough to allow for analytic

investigations which may give an explanation of the basic mechanisms, leading to

certain nonlinear phenomena [16, 3]. It fails, however, to describe devices where

the emission is determined by the dispersion of the material alone, rather than the

spectral selectivity of the resonator, as for example Fabry-Perot lasers. It may fail in

the same way under conditions where a more complicated resonator simultaneously

supports several longitudinal modes at di�erent wavelengths.

To overcome this problem, we introduce nonlinear gain dispersion. Such dispersion

enters via the frequency dependence of the displacement D(!), the time derivative

of which appears in the original Maxwell equations. Hence, in the frequency domain,

one has to deal with an expression of the form !D(!) which is modeled as

!D(!) = "0

�
!0"(!0) +

@!"(!)

@!
(! � !0)

�
E(!) + !0P(!) (3)

in the vicinity of the reference frequency, ! � !0. The �rst term containing the

linear frequency dependence has already been proposed by Landau [5] for dispersive

dielectrics. Taking this term alone, the traveling wave equations (1) can be derived

[14], using suitable assumptions. As proposed e.g. in [9], we �t the nonlinear

polarization by a Lorentzian:

P(!) = "0�(!)E(!) = "0
�Gr

2(! � 
r � i�)
E(!):

Inverse Fourier transformation then yields a di�erential equation for P(t):

�i
d

dt
P(t) = (
r + i�)P(t) + �

"0Gr

2
E(t): (4)

In general, the parameters �; Gr; 
r of the Lorentzian may be space dependent.

For a derivation of the corresponding traveling wave equations, see [14]. Here, it is

su�cient to assume these parameters to be spatially constant in each section, and

we obtain from (3) and (4)

2

"0Gr

P(~r; t) = E(x; y) � (p+(z; t)ei(!0t�
�

�
z) + p�(z; t)ei(!0t+

�

�
z)); (5)

together with the evolution equation for the slowly varying amplitudes p(z; t) =
(p+(z; t); p�(z; t)) which reads

�i
d

dt
p� = (
r + i�)p� + �	�: (6)

The equations (1) and (2) have to be adapted appropriately (see [14] for details),

�i@t	
� = �

�
(�i@z � �(N))	�

� �	�

�

Gr

2
p�
�

(7)

d

dt
Nk =

Ik

eVk
�

Nk

�k
� �(gk(Nk �N tr

k )�Gr)h	;	ik �Gr Im (h	;pik) (8)
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where now the propagation factor is given by

�(Nk) = Æk � i
�0k

2
+
i+ �Hk

2
gk(Nk �N tr

k )� i
Gr

2
: (9)

We �nally end up with the system of equations (6),(7),(8). Note that p� in equation

(6) depends only parametrically on z. As a linear ODE, it could be integrated and

included as an integral convolution operator in (7). For our purposes, however, the

given form is more convenient. Moreover, since we keep the non dispersive part of

the gain by (9) in the electrical �eld equation (7), it allows for a straight-forward

adiabatic elimination of the polarization, leading back to the standard TWE model.

Indeed, similar approaches where the material gain dispersion is modeled by a con-

volution term can be found in [1],[8]. Moreover, in [6], [7],[4] digital �ltering tech-

niques have been applied in numerical simulations to include e�ects of nonlinear

gain dispersion, determining the �lter parameters by �tting gain spectra obtained

from microscopic models or experiments.

In the sequel we will give a systematic investigation of how the nonlinear gain

dispersion in�uences the spectral properties of the �eld operator, compared to the

standard TWE equation. Furthermore, we demonstrate by numerical simulations

that due to the nonlinearity of the system, already a small amount of nonlinear gain

dispersion may lead to signi�cant changes in the dynamical behavior of a multi-

section DFB-laser.

3 The spectrum of the optical part

An important property of semiconductor laser models is the large ratio of carrier

versus photon lifetime, typically being two orders of magnitude. This ratio leads

to di�erent time scales between (8) and (6), (7). Eq. (8) governs slowly varying

carrier densities, whereas (6), (7) governs the fast �optical� subsystem. The optical

subsystem (6), (7) is linear in the �eld and polarization amplitudes and can be

expressed in compact form as an operator equation

�i@t

�
	

p

�
= H(N)

�
	

p

�
: (10)

The coe�cients in the operator

H(N) =

�
H0 + i�Gr

2
��Gr

2

� 
r + i�

�
(11)

parametrically depend on the slowly varying carrier density N. Within (11) H0 is

the operator on the r.h.s. of (1) without material gain dispersion, whereas all other

parameters in (11) are due to material gain dispersion and cause a coupling between

the optical �eld and the polarization. Nevertheless, the optical subsystem is still

linear in these quantities and permits an expansion into a series of eigenfunctions of
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H(N) which we refer to as instantaneous (i. e. N-dependent) modes. Furthermore,

the operator H(N) is not self-adjoint and hence its eigenvalues will be complex. We

interpret the real part of each eigenvalue ! as the frequency (corresponding to the

wavelength) and the imaginary part as the decay rate (corresponding to the reverse

lifetime) of the corresponding mode.

Often, N varies only in a small range near a threshold value. In such cases the decay

rates of the instantaneous modes determine the long-time behaviour of the laser.

Usually, only one or a few modes with the smallest decay rates contribute to the

optical �eld. This allows for insightful, low-dimensional mode approximationbeing

models. This has been done previously for the TWE (1) in [3, 16, 10], and we extend

this analysis here to equation (10). In other words, we are now concerned with the

spectrum of H, determined by

!	 = H0	 + i�
Gr

2
	� ��(!)	. (12)

In particular, we will point out the di�erences to the spectrum of H0 (c.f. [12, 13])

that are introduced by the polarization equations.

3.1 Mode Spectrum of a Fabry-Perot Laser

In a Fabry-Perot laser gain dispersion is the main mechanism leading to mode se-

lectivity. Without gain dispersion all eigenvalues

!l =
�

L

 
�

nsX
k=1

�kLk �
i

2
log(r0rL)� �l

!
. (13)

obtain the same decay rate. Here, Lk is the length of the kth section and ns is

the number of sections. As no mode selectivity at all is not realistic, we must take

the gain dispersion into account. According to (12), the eigenvalues ! solve the

equations

! =
�

L

"
�

nsX
k=1

�
�i

Gr;k

2
+ �k(!)

�
Lk

#
+ !l. (14)

This formula is implicit but it can be solved for ! by a simple iteration starting

from the eigenvalues !l from (13). Suggested by measurements we have used the

following parameters for the polarization:

Gr = 40 cm�1; 
r = �

!2
0

2�c
� 5nm; � =

!2
0

2�c
� 75nm: (15)

For these parameters, a single iteration is su�ciently accurate. Then, we can replace

�k(!) in (14) by �k(!l) such that the eigenvalue sequence of the Fabry-Perot res-

onator directly re�ects the Lorentzian �t of the gain dispersion (see the lower part

of Fig.1). These eigenvalues correspond to the optical modes of H. Additionally, as

shown in the upper part of Fig.1, the inclusion of the polarization equation induces
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Figure 1: Modes of a single section Fabry-Perot laser at the threshold with (crosses)

and without (boxes) gain dispersion taken into account. The polarization modes,

shown in the upper part, accumulate at the complex relative resonance frequency

(black dot). Note that the two parts of the picture have di�erent scalings.

an in�nite set of polarization modes for each section k with gain dispersion. Ap-

parently, these polarization modes are strongly damped with decay rates � �k and

they accumulate at the point !
p

k := 
rk + i�k. Typical gain dispersion visible in

Fig.1 leads to decay rates for the polarization modes which are about two orders of

magnitude larger than the decay of the optical modes. Accordingly, the optical sub-

system (6), (7) also contains two di�erent time-scales with the polarization modes

playing no role in the dynamics. The main impact of gain dispersion is the spectral

selectivity, shown by the di�erence between the squares and the crosses in the lower

part of Fig.1.

3.2 Mode Spectrum of a DFB laser

For a DFB laser, i.e. � 6= 0, the mode spectrum corresponds to the roots of a

complex analytic function resulting from (12). These roots can be obtained for ex-

ample by numerical continuation starting from the eigenvalues of the Fabry-Perot

laser determined by (14). Furthermore, the spectrum of the DFB laser asymptoti-

cally approaches the sequence (13) for large ! [13]. Hence, only the eigenvalues in

the vicinity of the stopband around <e(�k) become dominant by introducing some

feedback �.
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Figure 2: Scheme of a 3-section laser. The outer DFB sections are active, whereas

the phase tuning section integrated in the middle is passive.

Our particular example is the three section DFB laser depicted in Fig.2. The device

consists of two identical active DFB sections with di�erent lengths and a passive

phase tuning section integrated in between. The facets are AR-coated and all sec-

tions can be individually pumped. The device parameters are the same as in [11].

Such devices have been used for generating fast self-pulsations (SP) (10-40 GHz)[11]

which can be used for example for all-optical clock recovery. In such SP states,

to which we focus our interest now, typically one of the DFB sections is pumped

well above threshold which we therefore refer to as the �gain� section, whereas the

other DFB section is kept at transparency and therefore mainly acts as dispersive

�re�ector� section. Due to the latter we exclude any carrier dynamics in the re�ector

section and �x the carriers to transparency for simplicity. The propagation constant

� can then be modeled as

�3 = Æ3 � i�3=2 (16)

in the same way as in the passive phase tuning section

�2 = Æ2 � i�2=2: (17)

Consequently the gain in these sections is zero. The contribution from the polariza-

tion in these sections has been neglected in our example, by adjusting Gr = 0 there.
With respect to the gain this is obvious for the passive phase tuning section, but an

assumption for the re�ector section. Therefore, in an advanced stage of the model,

an explicit carrier dependence of the polarization parameters should be included.

The parameters for the polarization in the gain section are given in (15). For car-

rier densities corresponding to Fig.4(c), the detuning <e(�3)� <e(�1) between the

DFB sections nearly vanishes. This is one of the standard situations managed in

Self Pulsating 3-section DFB lasers. Furthermore, in a multi-section DFB laser the

modes are known to depend on the particular operating state of the device. The

SP can be switched on and o� very sensitively by tuning the phase conditions (see

Fig.4) via the current I2 [11]. To keep the discussion more intuitive, we express this

�ne tuning of the operating state via the phase ' = �Æ2(I2) � jL2j=�.

To give an example we let ' = 0 and discuss the mode spectrum and its correlation

to the feedback spectra of the DFB sections, which are shown in Fig.3.

First, we remark that Fig.3 contains only optical modes. The polarization modes

still have decay rates two orders of magnitude larger than the optical modes, as in the

7



−10 −5 0 5 10
38

39

40

g
ai

n
 [

1/
cm

]
re

fl
ec

ti
vi

ty
d

ec
ay

 r
at

e 
[G

H
z]

(a)

(b)

(c) (−1) (+1)

relative wavelength [nm]

(d)

0

1

−6

0

6

50

150

250

Figure 3: Upper two: Mode spectra of the 3-section DFB laser at the threshold

N = 1:44 � 1018cm�3 with (crosses) and without gain dispersion (boxes). (a): Sup-

pressed modes (b): Dominant modes. Note the di�erent scalings of (a) and (b).

(c): re�ectivity spectra of the DFB sections. Solid: gain section, dashed: re�ector

section. The most pronounced modes indicated in (b) are located on the �ears� at

the stopband edges of the gain section. Accordingly they are indicated by +1 (long

wavelength mode) and �1 (short wavelength mode). (d): material gain dispersion.

Thin: standard TWE, thick: extended TWE model.

Fabry-Perot case before. This means that the large gap in the spectrum between the

polarization modes and the optical modes in a DFB laser is preserved. Accordingly,

we expect the inclusion of polarization to in�uence the dynamics mainly via the gain

dispersion correction of the optical modes. This impact may be signi�cant despite

its small magnitude. Typically, as also re�ected by the squares in Fig.3(b), the

lasing DFB section has two dominant modes spectrally located at the ends of its

stopband (c.f. Part (c) of this �gure) with almost the same threshold. The frequency

of these two modes di�ers by approximately the stopband width, so the in�uence

of gain dispersion can be strong enough to decide which side of the stopband will

be dominant. Fig.3(b) illustrates how the leading modes of a 3-section DFB laser

change if we take nonlinear gain dispersion into account. As illustrated in Fig.3(d)

and by the crosses in Fig.3(b) gain dispersion prefers the (+1) mode at the long-

wavelength end of the stopband in this example. We will see in the next section

how this change of the spectral constellation a�ects the long-time behaviour of the

laser.
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4 Time Domain Simulation of a 3 section DFB laser.

In the following we will compare the solutions of the standard TWE model (1), (2)

with the solutions of the extended TWE model (6), (7), (9), varying the primary

control parameter '. This variation of the phase condition in the resonator changes

the con�guration of the dominant modes (cf. Fig 3.(b)) within the �ears� at the

stopband edges of the gain section (cf. Fig 3.(c)). This leads to a complicated

bifurcation scenario, including hysteresis and multi-stability. Fig 4.(a) and (b) show

the stable stationary and pulsating states, calculated numerically with the standard

and the extended TWE model. The calculations are done in the following way: For

�xed ' we calculate the transient and record the �nal state. This state is used as

initial state for a calculation with an incremented value of '.

Typically, when changing the phase ', jumps between the modes at the (+1) and

(-1) edge of the stopband occur. We observe stationary as well as SP states carried

by either of such modes, together with a hysteretic switching behaviour. It turns out

that this switching behaviour is very sensitive to the material gain margin between

the (+1) and (-1) edges of the stopband (cf. Fig 3.). Note that any gain margin,

induced by the polarization, is re�ected in the di�erence between the thick and thin

carrier density curves in Fig 4.(c). This o�set is of course di�erent for (+1) and (�1)

modes which may also lead to a change of the location of the mode jumps (cf. A

and A0).

Without gain dispersion (Fig 4.(a)), we observe two regions of nearly equal size,

where the output is stationary and single moded: Between A and B on a (+1)

mode, and between D and A (i.e. the non hatched region, since ' is periodic) on a

(�1) mode. Jumps between stationary states as at A are typically not hysteretic. At

B, a Hopf bifurcation takes place. Between C and D, a large region with hysteretic

behaviour appears: For increasing ' a SP state with a dominant (+1) mode can

be observed, whereas for decreasing ' the stationary (�1) state extends until it

disappears in a saddle-node bifurcation and a (�1) SP state appears. The shaded

region between B and C with a non hysteretic (+1) SP state is con�ned to a very

small region near the Hopf bifurcation, where the stability of the periodic solution

is still weak.

Now, we introduce gain dispersion using the extended TWE model (6), (7), (9).

Despite only a small gain margin of about 1/cm, indicated in Fig.3(d), we expect

some suppression of the (�1) mode compared to the (+1) mode and hence some sta-

bilization of the laser. Indeed, Figure 4(b) shows some signi�cant changes compared

with 4(a): The hatched regions, indicating a dominant (+1) mode become larger,

whereas the hysteretic region (C 0; D) is much smaller. Additionally, there now ap-

pears a comparatively large region (B;C 0) with stable, robust and non hysteretic

self pulsations. This shows that the relative location of the gain maximum 
r is

an important design parameter for self-pulsating devices and gain dispersion should

not be omitted, if an accurate simulation of such e�ects is required.
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Figure 4: Part (a) and (b): Long time behaviour of the output power in dependence

on the phase ' for the TWE- and extended TWE model, respectively. For SP

states, maximum and minimum output power at the left facet are plotted. Solid and

dashed lines allways correspond to increasing resp. decreasing '. Hysteresis occurs

wherever they do not coincide. In hatched regions, the (+1) mode is dominant

(simple hatching: only for increasing ', double hatching: both directions). In the

shaded region, a non-hysteretic SP state occurs. Part (c) shows the carrier densities

(for SP states averaged) for both models (thick: with gain dispersion).

5 Conclusions

In multi-mode semiconductor laser models the inclusion of gain dispersion e�ects

is important and may cause signi�cant changes in the operating states of a device.

We have managed this explicitly by applying equations for the polarization with a

Lorentzian �t, rather than using �ltering techniques or convolution integrals. We

obtained an extension of the well known TWE model which is suitable for numerical

simulation as well as for analytical investigation of its dynamical properties. From

the physical point of view this dispersion is obviously needed for Fabry-Perot lasers

but can also be important for DFB lasers. The impact of polarization on mode

selectivity can be explained and explicitly calculated using the spectrum of the

operator. Our simulations show that under certain conditions remarkable changes

in the longtime behaviour of a multi-section DFB laser are caused. Although no

new dynamical e�ects appear from a global point of view, the operating states (e.g.

high frequency self pulsations), their stability and dependence on parameters may

change substantially. We observed more stable behaviour due to the suppression of

side modes by the net gain margin.
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