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Abstract. The paper is devoted to questions of constructing the maximum likelihood

estimate for a nonparametric signal in white noise by considering corresponding prob-

lems of optimal control. For signals with bounded derivatives, sensitivity theorems are

proved. The theorems state a stability of the maximum likelihood estimate with respect

to changing output data. They make possible to reduce the original problem to a stan-

dard problem of optimal control which is solved by iterative procedure. For signals of

Sobolev type the maximum likelihood estimate is obtained to within a parameter which

can be found from a transcendental equation.

1. Introduction

Let us consider the model [4]

(1.1) da(t) = x(t)dt + "dw(t); 0 � t � 1; a(0) = 0;

where a(t) is an observation, x(t) is an unknown signal, w(t) is a standard Wiener

process, " > 0 is a small parameter.

The vast literature is devoted to di�erent aspects connected with this model. We are

dealing here with maximum likelihood estimate of the unknown signal. Let � be a measure

in the space C[0; 1] which is generated by the process w(t): Then the likelihood function

[4] is equal to

dP (a(�)=")
d�

= exp

�
1

"2

Z 1

0

x(t)da(t)� 1

2"2

Z 1

0

x2(t)dt

�
:

When it is known that x(�) belongs to a class K , then the maximum likelihood method

of �nding an estimate for x(�) leads to the problem

(1.2) I =
1

2

Z 1

0

x2(t)dt�
Z 1

0

x(t)da(t) �! min
x(�)2K

:

A profound theoretical investigation of the problem is done in [7]. Necessary and su�cient

conditions for existence, uniqueness and consistency of the maximum likelihood estimator

are given there. The conditions are formulated in terms of some characteristics of the

class K. In [7] a number of properties of the maximum likelihood estimator x̂(a(�)) are
considered as well. For example, a measure of that a(�) for which kx̂(a(�)) � xk � r
is studied. At the same time methods of constructing x̂(a(�)) are not considered in full

measure up to now. Apparently, to this aim one can apply, for instance, the approach of

[5], [6] after a suitable discretization of model (1.1). However we prefer to give a direct

solution of problem (1.2) for some important classes K.

Suppose it is known that each function x(�) of a class K has a derivative x
0

(�) which is

in L2[0; 1] . In this case the functional (1.2) transforms

(1.3) I =
1

2

Z 1

0

x2(t)dt +

Z 1

0

a(t)x0(t)dt� a(1)x(1);
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and problem (1.2) amounts to a problem of optimal control

(1.4) I =

Z 1

0

(
1

2
x2 + a(t)u)dt� a(1)x(1) �! min;

(1.5) x0 = u;

in which restrictions to control u and phase variable x are connected with the class K.

Here we consider such problems for two types of a prior information concerning the un-

known signal x(�): If the signal x(�) is of Sobolev's type, we treat the class K of the

form

(1.6) K = fx(�) : 9x0(�) = u(�) 2 L2[0; 1] ;

1

2

Z 1

0

(�x2(t) + u2(t))dt � M ; � � 0; M > 0

�
;

where � and M are known constants. In this class and in other Sobolev's classes it

is possible to obtain the maximum likelihood estimate x̂(t) for signal x(t) to within a

parameter which can be found from a transcendental equation (see Section 7).

If the signal x(�) has a bounded derivative of the order n; we treat the class Kn of the

form

(1.7) Kn =
�
x(�) : 9 x(n�1)(t) which is an absolutely continuous function,

jx(n)(t)j �Mn; Mn > 0
	
;

where Mn is a known constant. For class (1.7), we consider the more convenient problem

than (1.4)-(1.5). To this end we replace the output data a(t) which have bad analytical

properties with a little modi�ed data �a(t) such that there exists a piecewise continuous

derivative �a0(t): In Section 2 we show that the processing with a little change output data

gives results closing to optimal ones. The results of Section 2 have not only the subsidiary

but also an independent sense. They state the stability of the maximum likelihood method

with respect to changing output data. After replacement a(t) by �a(t) the problem (1.4)-

(1.5) can be reduced to the following problem

(1.8) I =
1

2

Z 1

0

(x(t)� �a0(t))2dt �! min
x(�)2Kn

.

The problem (1.8) is a fairly known problem and has already been investigated by methods

of optimal control in [2] and [3]. We give a detailed presentation for the case n = 1 in

Sections 3-5 and some generalizations of the discussed problems in Section 6.

2. Sensitivity theorems for signals with bounded derivative

At the beginning let us consider the class of functions (see (1.7))

(2.1) K1 = fx(�) : x(t) is absolutely continuous; jx0(t)j �M; M > 0g
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and the minimization problem in this class

(2.2) I =
1

2

Z 1

0

x2(t)dt+

Z 1

0

a(t)x0(t)dt� a(1)x(1) �! min
x(�)2K1

:

It is possible to prove that there exists a solution of the problem.

Theorem 2.1. Let �a(t) be a continuous function such that

(2.3) �a(0) = 0; �a(1) = a(1);

(2.4)

Z 1

0

j�a(s)� a(s)jds � Æ:

Let x0(�) be a solution of the minimization problem (2.2) and �x0(�) be a solution of the

following minimization problem in the same class

(2.5) �I =
1

2

Z 1

0

x2(t)dt+

Z 1

0

�a(t)x0(t)dt� �a(1) � x(1) �! min
x(�)2K1

:

Then

(2.6) 0 � I(�x0(�))� I(x0(�)) � 2ÆM;

(2.7)

Z 1

0

(�x0(t)� x0(t))
2dt � 4ÆM;

and if Æ �M=3;

(2.8) max
0�t�1

j�x0(t)� x0(t)j � (24ÆM2)
1

3 :

Proof. Obviously

I(�x0(�))� I(x0(�)) � 0;
�I(x0(�))� �I(�x0(�)) � 0:

Furthermore

jI(�x0(�))� �I(�x0(�))j = j
Z 1

0

(a(t)� �a(t))�x00(t)dtj �MÆ:

Analogously

j�I(x0(�))� I(x0(�))j �MÆ:

Therefore

0 � I(�x0(�))� I(x0(�)) � I(�x0(�))� I(x0(�)) + �I(x0(�))� �I(�x0(�))
� jI(�x0(�))� �I(�x0(�))j+ j�I(x0(�))� I(x0(�))j � 2ÆM:

Thus the inequality (2.6) is proved.

For derivation of (2.7), let us note that

(1� �)x0(�) + ��x0(�) 2 K1; 0 � � � 1;
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and introduce the function f(�); 0 � � � 1; (see (1.2))

f(�) = I((1� �)x0(�) + ��x0(�))

=
1

2

Z 1

0

((1� �)x0(s) + ��x0(s))
2ds�

Z 1

0

((1� �)x0(s) + ��x0(s))da(s);

which is a quadratic trinomial on �:

Obviously

f(0) = I(x0(�)) � f(�);

and therefore

f 0(0) � 0:

We have

f 0(�) =

Z 1

0

((1� �)x0(s) + ��x0(s))(�x0(s)� x0(s))ds�
Z 1

0

(�x0(s)� x0(s))da(s);

f 00(�) =

Z 1

0

(�x0(s)� x0(s))
2ds = const = C > 0:

Further,

f 0(�) = f 0(0) +

Z
�

0

f 00(�)d� = f 0(0) + C�;

f(�) = f(0) +

Z
�

0

(f 0(0) + C�)d� = I(x0(�)) + f 0(0)� + C
�2

2
;

and

f(1) = I(�x0(�)) = I(x0(�)) + f 0(0) +
C

2
:

From here and (2.6)

f 0(0) +
C

2
� 2ÆM

and, as f 0(0) � 0; we obtain the inequality (2.7).

Now prove the inequality (2.8). Let

m = max
0�t�1

j�x0(t)� x0(t)j = j�x0(t�)� x0(t
�)j:

For certainty we take

x0(t
�) = x�0 < �x0(t

�) = x�0 +m:

Since jx00(t)j �M and j�x00(t)j �M for 0 � t � 1; it is clear that for 0 � t � t�

x0(t) � x�0 �M(t� t�); �x0(t) � x�0 +m +M(t� t�)

and for t� � t � 1

x0(t) � x�0 +M(t� t�); �x0(t) � x�0 +m�M(t� t�):
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Hence

(2.9) 4ÆM �
Z 1

0

(�x0(s)� x0(s))
2ds

�
Z

t
�

0_(t�� m

2M
)

(m+ 2M(s� t�))2ds+

Z 1^(t�+ m

2M
)

t�

(m� 2M(s� t�))2ds:

We have to �nd the largest m for which this inequality can take place. Clearly one can

seek required m from (2.9) at t� = 0:

We have

(2.10) 4ÆM �
Z 1^ m

2M

0

(m� 2Ms)2ds =

8<
:

m3=6M; m=2M � 1;

m(m� 2M) + 4M2=3; m=2M > 1:

But for Æ �M=3 the second case in (2.10) is impossible and therefore

m3 � 24ÆM2:

Theorem 2.1 is proved.

Remark 2.1. It is possible to avoid the condition �a(1) = a(1) in (2.3). To this end let

us obtain a prior bound for jx0(1)j:
We have (in (2.11) x0(1) is denoted by x10 and for de�niteness x10 > 0)

(2.11)
1

2

Z 1

0

x20(t)dt �

�

8>>>><
>>>>:

1

2

Z 1

(M�x1
0
)=M

(x10 +M(t� 1))2dt = (x10)
3=6M; x10 < M;

1

2

Z 1

0

(x10 +M(t� 1))2dt = 1
2
((x10)

2 � x10M +M2=3); x10 �M:

Introduce the function '(x0(1)) (see the right-hand part of (2.11))

'(x0(1)) =

8<
:
jx0(1)j3=6M; jx0(1)j < M;

1
2
(j(x0(1)j2 � jx0(1)jM +M2=3); jx0(1)j �M;

by which we can rewrite the relation (2.11) for all x0(1) as

1

2

Z 1

0

x20(t)dt � '(x0(1)):

Therefore

0 � I((x0(�)) � '(x0(1))� ja(1)jjx0(1)j �M

Z 1

0

ja(t)jdt:
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Clearly one can take the only positive root X� of the following equation

'(X)� ja(1)jX �M

Z 1

0

ja(t)jdt = 0

as an upper bound for jx0(1)j: A simple but rough bound for X� gives the prior bound

for jx0(1)j :

(2.12) jx0(1)j � X� �M + 2ja(1)j+
p
3

Z 1

0

ja(t)jdt:

Give another derivation of a prior bound for jx0(1)j which will be useful below. We have

1

2

Z 1

0

x20(t)dt =
1

2

Z 1

0

(x0(1) +

Z
t

1

x00(s)ds)
2dt

� 1

2

Z 1

0

(
1

2
(x0(1))

2 � (

Z
t

1

x00(s)ds)
2)dt

� 1

4
jx0(1)j2 �

1

2

Z 1

0

M2jt� 1j2dt = 1

4
jx0(1)j2 �

1

6
M2:

Here we use a simple inequality
1

2
(a + b)2 � a2 + b2; where

a = x0(1) +

Z
t

1

x00(s)ds; b = �
Z

t

1

x00(s)ds:

Consequently

0 � I((x0(�)) �
1

4
jx0(1)j2 �

1

6
M2 � ja(1)jjx0(1)j �M

Z 1

0

ja(t)jdt:

Therefore

(2.13) jx0(1)j � 2ja(1)j+ 2(ja(1)j2 +M

Z 1

0

ja(t)jdt+ 1

6
M2)1=2

and we obtain a new kind of the prior bound for jx0(1)j:
Replace now conditions (2.3) and (2.4) by

(2.14) �a(0) = 0; j�a(1)� a(1)j � Æ1;

(2.15)

Z 1

0

j�a(s)� a(s)jds � Æ2:

Similar to (2.12) (or (2.13)) we have for j�x0(1)j :
j�x0(1)j � �X�:

Clearly �X� is close to X�:

Let Æ be such that

2MÆ2 + (X� + �X�)Æ1 � 2MÆ:

6



Now we need in small changes of the proof of Theorem 2.1 for a�rming (2.6). The proof

of (2.7), (2.8) remains without any changes.

Thus all the conclusions of Theorem 2.1 under conditions (2.14)-(2.15) are valid.

Consider the class of functions

(2.16) K2 = fx(�) : x0(t) is absolutely continuous and jx00(t)j �M2; M2 > 0g:

The functional (1.2) in the class K2 can be rewritten as

(2.17) I(x(�)) = 1

2

Z 1

0

x2(t)dt�
Z 1

0

(

Z
t

0

a(s)ds)x00(t)dt+ x0(1)

Z 1

0

a(s)ds� a(1)x(1):

It is possible to prove that there exists a solution of the minimization problem for the

functional (2.17) in the class K2:

Theorem 2.2. Let �a(t) be a continuous function such that

(2.18) �a(0) = 0; �a(1) = a(1);

(2.19)

Z 1

0

�a(s)ds =

Z 1

0

a(s)ds;

(2.20)

Z 1

0

j
Z

t

0

�a(s)ds�
Z

t

0

a(s)dsjdt � Æ:

Let x0(�) be a solution of the minimization problem for the functional (2.17) in the class

K2 and let �x0(�) be a solution of the following minimization problem in the same class

(2.21) �I =
1

2

Z 1

0

x2(t)dt

�
Z 1

0

(

Z
t

0

�a(s)ds)x00(t)dt+ x0(1)

Z 1

0

�a(s)ds� �a(1)x(1) �! min
x(�)2K2

:

Then

(2.22) 0 � I(�x0(�))� I(x0(�)) � 2ÆM2;

(2.23)

Z 1

0

(�x0(t)� x0(t))
2dt � 4ÆM2;

(2.24) jx0(t)j �M0; j�x0(t)j �M0; jx00(t)j �M1; j�x00(t)j �M1; 0 � t � 1;

where M0 and M1 depend only on ja(1)j; j
Z 1

0

a(s)dsj;
Z 1

0

j
Z

t

0

a(s)dsjdt; M2; and Æ:

Then there exists a constant K > 0 such that if Æ � K; then

(2.25) max
0�t�1

j�x0(t)� x0(t)j � K0Æ
1=3;

7



(2.26)

Z 1

0

(�x00(t)� x00(t))
2dt � K1Æ

1=2;

(2.27) max
0�t�1

j�x00(t)� x00(t)j � K2Æ
1=6;

where K; K0; K1; K2 depend on M1 and M2 only :

Proof. The inequalities (2.22) and (2.23) can be obtained without any essential modi�-

cations in compare with the proof of (2.6) and (2.7).

Similar to proving (2.13) we can write

1

2

Z 1

0

x20(t)dt =
1

2

Z 1

0

(x0(1) + x00(1)(t� 1) +

Z
t

1

(

Z
s

1

x000(s1)ds1)ds)
2dt

� 1

4

Z 1

0

(x0(1) + x00(1)(t� 1))2dt� 1

2

Z 1

0

(

Z
t

1

(

Z
s

1

x000(s1)ds1)ds)
2dt

� 1

4
((x0(1))

2 � x0(1)x
0

0(1) +
1

3
(x00(1))

2)� M2
2

40
:

Further, from representation (2.17) we get

0 � I(x0(�)) �
1

4
(j(x0(1)j2 � jx0(1)jjx00(1)j+

1

3
jx00(1)j2)�

M2
2

40

�ja(1)jj(x0(1)j � j
Z 1

0

a(s)dsjjx00(1)j �M2

Z 1

0

j
Z

t

0

a(s)dsjdt:

Since the expression (j(x0(1)j2� jx0(1)jjx00(1)j+
1

3
jx00(1)j2) is a positive de�nite quadratic

form with respect to jx0(1)j and jx00(1)j; we obtain from here that jx0(1)j and jx00(1)j
are bounded and their bounds depend only on ja(1)j; j

Z 1

0

a(s)dsj;
Z 1

0

j
Z

t

0

a(s)dsjdt; and
M2: The same is also true for j�x0(1)j and j�x00(1)j: Let us note in passing that if �a(1); andZ 1

0

�a(s)ds are close respectively to a(1); and

Z 1

0

a(s)ds and if Æ is small, then the bounds

for j�x0(1)j and j�x00(1)j are close to ones for jx0(1)j and jx00(1)j: Clearly the inequalities

(2.24) are a simple consequence of conditions jx000(t)j �M2; j�x000(t)j �M2.

For (2.25) it is su�cient to mark that instead of (2.10) it can be easily obtained the

following inequality

(2.28) 4ÆM2 �

8<
:

m3=6M1; m=2M1 � 1;

m(m� 2M1) + 4M2
1 =3; m=2M1 � 1;

and for Æ �M2
1 =3M2 the second case in (2.28) is impossible (as K0 in (2.25) one can take

(24M1M2)
1=3).

8



Now let us proceed to the derivation of (2.26) and (2.27). We have

(2.29)

Z 1

0

(�x00(t)�x00(t))2dt = (�x00(1)�x00(1))(�x0(1)�x0(1))�(�x00(0)�x00(0))(�x0(0)�x0(0))

�
Z 1

0

(�x0(t)� x0(t))(�x
00

0(t)� x000(t))dt � 2K0Æ
1=3m1 + 2M2(4ÆM2)

1=2;

where we introduce m1 as

m1 = max
0�t�1

j�x00(t)� x00(t)j:

In just the same way as we have derived (2.10) we obtain

(2.30) 2K0Æ
1=3m1 + 4M3=2

2 Æ1=2 �
Z 1

0

(�x00(t)� x00(t))
2dt

�

8<
:

m3
1=6M2; m1=2M2 � 1;

m1(m1 � 2M2) + 4M2
2 =3; m1=2M2 � 1:

By means of decrease of K we can exclude the second case in (2.30) as before and get the

inequality

2K0Æ
1=3m1 + 4M3=2

2 Æ1=2 � m3
1=6M2:

From here and (2.29) it is not di�cult to obtain (2.26) and (2.27). Theorem 2.2 is proved.

Remark 2.2. We do not try to obtain any exact bounds. Our principal aim is to show

that the processing with a little changed output data gives results closing to optimal ones.

Due to that we can replace output data which have bad analytical properties. The better

analytical properties of modi�ed data make possible, as we shall see below, to consider

more constructive optimal problems than original ones.

Remark 2.3. The principal results of Theorem 2.2 remain valid if the conditions (2.18)

and (2.19) are replaced by the conditions

(2.31) �a(0) = 0; j�a(1)� a(1)j � Æ1; j
Z 1

0

�a(s)ds�
Z 1

0

a(s)dsjdt � Æ2:

A proof is similar to the proof in Remark 2.1.

Remark 2.4. For the classes Kn; n > 2; (see (1.7)) it is not di�cult to obtain the

analogous results. The following inequality

1

2

Z 1

0

x20(t)dt =
1

2

Z 1

0

(Pn�1(t) +

Z
t

1

(

Z
sn�1

1

:::(

Z
s1

1

x
(n)
0 (s)ds):::)dsn�1)

2dt

� 1

4

Z 1

0

P 2
n�1(t)dt�

1

2

M2
n

(2n+ 1)(n!)2
;

where

Pn�1(t) = x0(1) + x00(1)(t� 1) + ::: +
1

(n� 1)!
x
(n�1)
0 (1)(t� 1)n�1;

9



has an essential meaning for these classes (see the proof of the inequality (2.13) and the

corresponding place in the proof of Theorem 2.2). Note that the integralZ 1

0

P 2
n�1(t)dt =

Z 1

0

(x0(1) + x00(1)(t� 1) + :::+
1

(n� 1)!
x
(n�1)
0 (1)(t� 1)n�1)2dt

is a positive de�nite quadratic form with respect to x0(1);..., x
(n�1)
0 (1):

In conclusion let us remark that the requirements (2.20), (2.31) on �a(t) for proximity �a(t)
to a(t) in the case n = 2 are weaker than the requirements (2.14)-(2.15) in the case n = 1
and with growing n similar requirements are relaxed.

3. Reduction of maximum likelihood estimating to the problem of

optimal road profile

Let us return to the problem of construction of maximum likelihood estimate x̂(t) in the

classK1. This estimate can be found as a solution of the minimization problem (see (1.2))

(3.1) I =
1

2

Z 1

0

x2(t)dt�
Z 1

0

x(t)da(t) �! min
x(�)2K1

:

Consider also the following minimization problem

(3.2) �I =
1

2

Z 1

0

x2(t)dt�
Z 1

0

x(t)d�a(t) �! min
x(�)2K1

:

According to Theorem 2.1 or Remark 2.1 if �a(�) is close to a(�); then the solution �x(t) of
the problem (3.2) is close to the maximum likelihood estimate x̂(t): There are extensive
possibilities for choice of the function �a(t) such that the conditions (2.3)-(2.4) or (2.14)-

(2.15) are satis�ed. For instance, the function �a(t) can easily be found as a piecewise

linear function, which has a piecewise constant derivative.

Let �a(t) in (3.2) satisfy (2.3)-(2.4) or (2.14)-(2.15) and be piecewise di�erentiable. Denote

�a0(t) by b(t): Then the functional (3.2) transforms to the functional

�I =
1

2

Z 1

0

(x� b(t))2dt� 1

2

Z 1

0

b2(t)dt;

and the following minimization problem appears (for the functional modi�ed again we use

without ambiguity the initial notation I)

(3.3) I =
1

2

Z 1

0

(x� b(t))2dt �! min
jx0j�M

:

The problem (3.3) is a problem of mean-square approximation by functions with bounded

derivative. It can be interpreted as a problem of building road with pro�le x(t) which
cannot have steep ascents and descents and therefore jx0(t)j �M; 0 � t � 1: The function
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b(t) is interpreted as a pro�le of a locality and the integral I as a cost of building. First

this problem as the following problem of optimal control

(3.4) I =
1

2

Z 1

0

(x� b(t))2dt �! min
u:juj�M

;

(3.5) x0 = u

was studied by V.G. Boltyansky [2]. It has been studied in more detail and in more

general form in the paper [3]. In particular in this paper the su�ciency of Pontryagin's

maximum principle is proved when in place of one equation (3.5) one considers a general

m-dimensional non autonomous linear system with r-dimensional control and instead of

a functional with quadratic integrand one considers a functional with convex function.

Besides in [3] the iterative procedure is recommended for �nding optimal solution. Both

V.G. Boltyansky and the authors of [3] made an assumption that b(t) is piecewise dif-

ferentiable. However this assumption is not essential; we are interested in the case where

b(t) is only piecewise continuous, since the simplest method of approximating a(t) is

realized by means of piecewise linear functions. As a result, as already mentioned, b(t)
will be piecewise constant. Therefore, but also for completeness of exposition we develop

the required results from [3] with proofs, which are simpli�ed substantially in the case

considered.

Beforehand let us remark that the solution to problem (3.4)-(3.5) exists and is unique,

which can be proved by traditional way in optimal control.

Let us write down necessary conditions for the optimal solution of problem (3.4)-(3.5).

Pontryagin's function H has the form

H(t; x; u; p) = pu� �0

2
(x� b(t))2:

It is not di�cult to prove that �0 6= 0 and hence we can put �0 = 1: The optimal solution

u(t); x(t) satis�es the system of di�erential equations

(3.6)
dx

dt
=
@H

@p
= u;

(3.7)
dp

dt
= �@H

@x
= x� b(t);

the conditions of transversality

(3.8) p(0) = 0; p(1) = 0;

and the maximum condition

(3.9) p(t)u(t) = max
jvj�M

p(t)v:

Theorem 3.1. The solution u(t); x(t) of problem (3.6)-(3.9) is optimal for (3.4)-(3.5).

Therefore, in view of the uniqueness of the optimal solution, the extreme solution is unique,
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in other words, the su�ciency of the maximum principle for problem (3.4)-(3.5) takes

place.

Proof. Let �u(�); �x(�); �p(�) be a solution of (3.6) - (3.9), i.e.

d�x

dt
= �u;

d�p

dt
= �x� b(t); �p(0) = �p(1) = 0;

�p(t)�u(t) = max
jvj�M

�p(t)v:

Let u(t) be an admissible control and x(t) be some solution of equation (3.5). We have

(3.10) I(x(�)) = 1

2

Z 1

0

(x(t)� b(t))2dt =

Z 1

0

(
1

2
(x(t)� �x(t))2 � �p(t)u(t))dt

+

Z 1

0

(
1

2
(�x(t)� b(t))2 � (�x(t)� b(t)) � �x(t))dt:

This equality follows from the obvious relation

(3.11)

Z 1

0

�p(t)u(t)dt =

Z 1

0

�p(t)
dx(t)

dt
dt = �

Z 1

0

x(t)(�x(t)� b(t))dt:

As the second integral on the right-hand side of (3.10) is a constant, the functional I(x(�))
attains its minimum simultaneously with the functional

L(x(�)) =
Z 1

0

[
1

2
(x� �x)2 � �p(t)u]dt:

Since �p(t)�u(t) � �p(t)u for arbitrary juj � M , the functional L obviously attains a

minimum at x(�) = �x(�); u(�) = �u(�) . Theorem 3.1 is proved.

Let us adduce three lemmas which will be used in the next section.

Lemma 3.1. Let the functions ~x(t); ~p(t) satisfy (3.7)-(3.8), i.e.

d~p(t)

dt
= ~x(t)� b(t); ~p(0) = ~p(1) = 0;

and the functions u(t); x(t) satisfy equation (3.6), i.e.

dx(t)

dt
= u(t):

Then we have (analogously to (3.11))

(3.12)

Z 1

0

~p(t)u(t)dt = �
Z 1

0

x(t)(~x(t)� b(t))dt:

Proof. This assertion implies immediately by simple calculations.
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Lemma 3.2. To any admissible control u(t) there corresponds a unique solution of the

boundary value problem (3.6)-(3.8).

Proof. Indeed

x(t) = x(0) +

Z
t

0

u(s)ds;

p(t) =

Z
t

0

[x(0) +

Z
�

0

u(s)ds� b(� )]d�:

From the condition p(1) = 0we uniquely determine x(0) :

(3.13) x(0) = �
Z 1

0

�Z
�

0

u(s)ds� b(� )

�
d�:

Lemma 3.3. Let u(t) and v(t) be some admissible controls, u 6= v; and

w(�; t) = �u(t) + (1� �)v(t); 0 � � � 1:

Then there exist values x0; � , which realize the minimal value of the function

G(x0; �) =
1

2

Z 1

0

(x0 +

Z
t

0

w(�; �)d� � b(t))2dt

in the domain �1 < x0 < +1; 0 � � � 1 : The values x0; � can be found by the

following rule.

First calculate the functions �(t) and �(t) :

(3.14) �(t) =

Z
t

0

(u(s)� v(s))ds�
Z 1

0

Z
�

0

(u(s)� v(s))dsd� ;

(3.15) �(t) =

Z 1

0

b(� )d� +

Z
t

0

v(s)ds�
Z 1

0

Z
�

0

v(s)dsd� :

Then �nd the constant � :

� =

R 1

0
�(t)(b(t)� �(t))dtR 1

0
�2(t)dt

:

Finally for �� we have

(3.16) � =

8<
:

�; if 0 < � < 1;
0; if � � 0;
1; if � � 1;

and for x0 we have

(3.17) x0 = �
Z 1

0

�Z
t

0

w(�; s)ds� b(t)

�
dt:
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Proof. The lemma concerns the minimization of the function G(x0; �) which is quadratic
in x0 and � where x0 varies from �1 to +1 and 0 � � � 1 . Since the function
G is unbounded for x0 ! �1; the existence of values x0; � easily follows. The function

G(x0; �) of one variable x0 obviously takes a minimal value at x0 = x0 which is calculated

from the formula (3.17). Furthermore consider the function G(x0(�); �) depending on

0 � � � 1 where x0(�) is determined by the right hand side of (3.17) with � substituted

for � . Obviously G(x0(�); �) takes its minimal value at � = � . This function is a

quadratic polynomial in � which can immediately be calculated :

G(x0(�); �) =
1

2

Z 1

0

�2(t)dt � �2

�
Z 1

0

�(t)(b(t)� �(t))dt � � +
1

2

Z 1

0

(b(t)� �(t))2dt:

From this we obtain the rule (3.16). Let us remark that in case u 6= v the integralZ 1

0

�2(t)dt 6= 0 :

4. Iterative approximations

As a �rst approximation of the optimal control we take an arbitrary admissible control

u1(t) . The �rst approximation of the trajectory x1(t) and the function p1(t) are found

according to Lemma 3.2. Let the k -th approximation be constructed: uk(t); xk(t); pk(t) .
Knowing pk(t); we �nd vk(t) from the condition

pk(t)vk(t) = max
jvj�M

pk(t)v ;

that is, in particular, one may put

vk(t) = Msignpk(t) =

8<
:

M; pk(t) > 0;
0; pk(t) = 0;

�M; pk(t) < 0:

Then we apply Lemma 3.3 with

w(�; t) = wk(�; t) = �uk(t) + (1� �)vk(t);

assuming that vk 6= uk (in the opposite case, as will be shown below, uk is an optimal

control). Let the point x0
k+1; �k realize the minimal value of the function

Gk(x
0; �) =

1

2

Z 1

0

(x0 +

Z
t

0

wk(�; � )d� � b(t))2dt:

Then the ( k + 1) -st approximation of the control is chosen in the form

(4.1) uk+1(t) = �kuk(t) + (1� �k)vk(t);

14



and xk+1(t) and pk+1(t) are found according to Lemma 3.2. In this manner we construct

a sequence fun(t); xn(t); pn(t)g . It is easy to see that xk+1(0) = x0
k+1 (by comparing the

formulae (3.13) and (3.17)). Let us write down xk+1(t) :

(4.2) xk+1(t) = �
Z 1

0

(�k

Z
t

0

uk(s)ds� �kb(t))dt

�
Z 1

0

((1� �k)

Z
t

0

vk(s)ds� (1� �k)b(t))dt + �k

Z
t

0

uk(s)ds

+(1� �k)

Z
t

0

vk(s)ds = �kxk(s) + (1� �k)�k(s):

Let In be the value of the functional (3.3) at x = xn(t) . By construction the sequence

In is non increasing and is bounded from below by the least value of the functional I :
I1 � I2 � � � � � In � � � � � I0 .

Theorem 4.1. The sequence xn(t) converges uniformly on [0; 1] to the optimal trajec-

tory.

Proof. Let us �rst of all show that if In+1 = In then xn(t) is an optimal trajectory

and consequently xn+1(t) = xn(t) . In view of the fact that xk+1(0) = x0
k+1 and xk+1(t)

corresponds to the control uk+1(t) we have

In+1 = Gn(x
0
n+1; �n) = minGn(x

0; �):

Since In+1 = In; the least value of the function Gn is attained at �n = 1 and x0 = x0
n
:

Since Gn is a quadratic parabola in � , it follows that

@Gn(x
0
n
; 1)

@�
� 0;

i.e., Z 1

0

��
x0
n
+

Z
t

0

un(�)d� � b(t)

�Z
t

0

(un(� )� vn(� ))) d�

�
dt � 0:

Putting in lemma 3.1

ex(t)� b(t) = x0
n
+

Z
t

0

un(� )d� � b(t);

u(t) = un(t)� vn(t); x(t) =

Z
t

0

(un(�)� vn(�))d�;

we obtain Z 1

0

pn(t)(vn(t)� un(t))dt � 0:

But since pn(t)vn(t) � pn(t)un(t) for almost all t; the integral in the last relation is zero

and we have almost everywhere

pn(t)un(t) = pn(t)vn(t) = max
juj�M

pn(t)u:
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Thus un(t); xn(t); pn(t) satisfy the Pontryagin maximum principle (3.6)-(3.9) and ac-

cording to Theorem 3.1 xn(t) is the optimal trajectory.

Consider now the general case, where for all n the strict inequality In+1 < In is ful�lled.

In view of weak compactness of the unit ball in the space L2[0; 1] there are sequences

un
k

(t) and vn
k

(t) which weakly converge to admissible controls u(t) and v(t) . Since the
sequence x0

n
is bounded (this can easily be shown), we can assume without restricting

generality that the sequences xn
k

(t) and pn
k

(t) converge uniformly on the interval [0; 1]
to x(t) and p(t) respectively. Also without restricting generality we can assume that the

sequence xn
k
+1(t) is convergent ; its limit we denote by x(t) .

Let us demonstrate that x(t) = x(t) . From the assumption In+1 < In it follows that

xn
k
+1 6= xn

k

, hence �n
k

6= 1 , i.e. 0 � �n
k

< 1 . Since at � = �n
k

the parabola

Gn
k

(x0
n
k
+1; �) attains its minimal value, we have

@Gn
k

@�
(x0

n
k
+1; �nk) = 0

in the case 0 < �n
k

< 1 (the branches of the parabola point upwards), and

@Gn
k

@�
(x0

n
k
+1; 0) � 0

in the case �n
k

= 0 (the branches point downwards). As a result we get

(4.3)
@Gn

k

@�
(x0

n
k
+1; �nk)

=

Z 1

0

[(x0
n
k
+1 +

Z
t

0

wn(�n
k

; �)d� � b(t)) �
Z

t

0

(un
k

(�)� vn
k

(� ))d� ]dt � 0:

Furthermore from (4.1)

un
k

� vn
k

=
1

1� �n
k

(un
k

� un
k
+1);

and from (3.17) we obtain

(4.4)

Z 1

0

[x0
n
k
+1 +

Z
t

0

wn(�n
k

; �)d� � b(t)]dt = 0:

Finally, Z
t

0

(un
k

(� )� vn
k

(�))d� =
1

1� �n
k

Z
t

0

(un
k

(�)� un
k
+1(�))d�

=
1

1� �n
k

(xn
k

(t)� xn
k
+1(t)� (x0

n
k

� x0
n
k
+1)):

Inserting this integral into (4.3) and utilizing (4.4), we arrive at the inequality

(4.5)

Z 1

0

(x0
n
k
+1 +

Z
t

0

wn(�n
k

; �)d� � b(t)) � (xn
k

(t)� xn
k
+1(t))dt � 0:
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Passing to the limit in (4.5), we get

(4.6)

Z 1

0

(x(t)� b(t))(x(t)� x(t))dt � 0:

Furthermore

In
k

� In
k
+1 =

1

2

Z 1

0

(xn
k

(t)� b(t))2dt� 1

2

Z 1

0

(xn
k
+1(t)� b(t))2dt

=

Z 1

0

(xn
k
+1(t)� b(t)) � (xn

k

(t)� xn
k
+1(t))dt+

1

2

Z 1

0

(xn
k

(t)� xn
k
+1(t))

2dt:

Passing to the limit in this inequality, we obtain

(4.7)

Z 1

0

(x(t)� b(t))(x(t)� x(t))dt+
1

2

Z 1

0

(x(t)� x(t))2dt = 0:

In case x(t) 6= x(t) the relation (4.7) would imply the opposite inequality to (4.6). Hence

we have in fact x(t) = x(t) . This implies that pn
k

(t)! �p(t); pn
k
+1(t)! �p(t) .

We note two further equalities. The �rst one is obtained from the relation (4.3) by means

of Lemma 3.1:

(4.8)
@Gn

k

@�
(x0

n
k
+1; �nk) =

Z 1

0

pn
k
+1(t)(vn

k

(t)� un
k

(t))dt:

We remind that

xn
k
+1(t)� b(t) =

dpn
k
+1(t)

dt
:

The second one is obtained by the some reasoning as with (4.5). At �rst we write

@Gn
k

@�
(x0

n
k
+1; �nk) =

Z 1

0

pn
k
+1(t)(vn

k

(t)� un
k

(t))dt

=
1

1� �n
k

Z 1

0

(xn
k
+1(t)� b(t))(xn

k

(t)� xn
k
+1(t))dt

which implies the equality, required in the sequel:

(4.9)

Z 1

0

(xn
k
+1(t)� b(t))(xn

k

(t)�xn
k
+1(t))dt = (1��n

k

)

Z 1

0

pn
k
+1(t)(vn

k

(t)�un
k

(t))dt:

The set of all indices nk is such that either �n
k

= 0 or �n
k

6= 0 . If the set of indices nk
with �n

k

= 0 is in�nite, then passing to the limit in (4.9), we obtain

(4.10)

Z 1

0

p(t)(v(t)� u(t))dt = 0:

If this set of indices is �nite, then for the remaining indices the left part of (4.8) vanishes,

and we again get (4.10).
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The condition

pn
k

(t)vn
k

(t) = max
jvj�M

pn
k

(t)v

implies that for any admissible control u(t) one has the inequality

pn
k

(t)vn
k

(t) � pn
k

(t)u(t):

Let E be an arbitrary measurable subset of the interval [0; 1] . The following inequality
holds: Z

E

pn
k

(t)vn
k

(t)dt �
Z
E

pn
k

(t)u(t)dt:

Passing to the limit here we getZ
E

�p(t)v(t)dt �
Z
E

p(t)u(t)dt:

Since E is arbitrary, this implies for almost all t

(4.11) �p(t)v(t) � p(t)u(t):

In particular (4.11) holds also for u(t) = u(t) . Therefore (4.10) implies that almost

everywhere

p(t)v(t) = p(t)u(t):

Returning to (4.11), we obtain that

p(t)u(t) � p(t)u(t)

for an arbitrary admissible control u(t) . This implies that u(t); x(t); p(t) satisfy the

necessary conditions of the maximum principle. As a consequence of Theorem 3.1 x(t)
is the optimal trajectory. In view of the uniqueness the sequence xn(t) itself converges

to the optimal trajectory uniformly. Theorem 4.1 is proved.

Remark 4.1. The sequence un(t) can be seen to converge to the optimal control weakly.

Remark 4.2. Since obviously uk(t) is a piecewise constant function, xk(t) is always a

piecewise linear continuous function. Therefore if b(t) is a piecewise constant or contin-

uous piecewise linear function, pk(t) is a quadratic spline (of defect 2 or 1). The knots

of this spline are the switching points of uk(t) and the non regular points of the function

b(t) .

5. Inserting a parameter

In this section we give another approach for constructive solving the problem (3.4)-(3.5).

Let us consider the following problem of optimal control

(5.1) I =
1

2

Z 1

0

((x� b(t))2 + �u2)dt! min
juj�M

;
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(5.2)
dx

dt
= u;

which depends on the parameter � � 0: For � = 0 the problem coincides with (3.4)-(3.5).

Clearly, the solution of problem (5.1)-(5.2) for small positive � is close to the required

solution of (3.4)-(3.5).

Pontryagin's function H of the problem (3.4)-(3.5) has the form

H(t; x; u; p) = pu� 1

2
(x� b(t))2 � 1

2
�u2:

Necessary conditions (it can be proved that they are su�cient as well) for the optimal

solution under � > 0:

(5.3)
dx

dt
=
@H

@p
= u;

(5.4)
dp

dt
= �@H

@x
= x� b(t); p(0) = p(1) = 0;

(5.5) p(t)u(t)� 1

2
�u2(t) = max

jvj�M

(p(t)v � 1

2
�v2):

The condition (5.5) gives for u the following expression:

(5.6) u = u(p;�) :=

8<
:
�M; p < ��M;
p=� ; jpj � �M;
M; p > �M:

Therefore to �nd the optimal solution we have to solve the boundary value problem

(5.7)
dx

dt
= u(p;�);

dp

dt
= x� b(t); p(0) = p(1) = 0:

A little below we justify that for all su�ciently large � the restriction jpj � �M is ful�lled

and consequently problem (5.7) acquires the form

(5.8)
dx

dt
=

p

�
;
dp

dt
= x� b(t); p(0) = p(1) = 0:

Problem (5.8) has the following explicit solution

x =
1p
�
(sinh

1p
�
)�1 � cosh tp

�

Z 1

0

cosh
1� �p

�
b(� )d� � 1p

�

Z
t

0

sinh
t� �p

�
b(� )d�;

p = (sinh
1p
�
)�1 � sinh tp

�

Z 1

0

cosh
1� �p

�
b(� )d� �

Z
t

0

cosh
t� �p

�
b(� )d�:

Now it can be veri�ed that the above-mentioned restriction is ful�lled in fact if, for

example, p
� exp(� 1p

�
) >

B

M
;

where B := max0�s�1 jb(s)j:
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Let us denote x(t;�; x0); p(t;�; x0) the solution to the Cauchy problem

(5.9)
dx

dt
= u(p;�);

dp

dt
= x� b(t); x(0) = x0; p(0) = 0:

To solve the boundary value problem (5.7) for a � > 0 it is necessary to �nd x0(�) such
that

(5.10) p(1;�; x0(�)) = 0:

The transcendental equation (5.10) can be solved easily (for example, by the chord

method) if an initial approximation for x0(�) is known accurately enough.

Let x0(�) be known. Then x0(����) can be found from the equation

p(1;����; x0(����)) = 0

if we take x0(�) as an initial approximation for x0(�� ��): Thus, knowing the optimal

solution for some � > 0 (fortunately, we do know it for a large � > 0); we can �nd it for

�� �� in a constructive manner. Resting on these ideas, it is not di�cult to construct

a numerical procedure for solving the problem (5.1)-(5.2) for any � > 0 and consequently

for approximate solving the required problem (3.4)-(3.5).

6. Some generalizations

The problem of �nding a maximum likelihood estimate x̂(t) in each class Kn (see (1.7)),

n � 2; is solved analogously. After substituting a(t) by a nearby a(t) such that there

exists the piecewise continuous derivative a0(t) = b(t); this problem is also reduced to the

�problem of �nding the optimal road pro�le�. For example, in the case n = 2 we obtain

the problem of minimization of the functional

(6.1) I =
1

2

Z 1

0

(x1 � b(t))2dt! min
juj�M

(6.2)
dx1

dt
= x2;

dx2

dt
= u:

The problem (6.1)-(6.2) can be solved with using [3] as the problem (3.4)-(3.5) was done

above. And due to Theorem 2.2 the optimal solution �u(t); �x1(t); �x2(t) of the problem is

such that �x1(t) is close to x̂(t):

The same approach is possible also in the case of stronger information on the unknown

signal. For instance, it may be known that the signal is a non decreasing function with

the �rst derivative bounded from above. Then

K
�

1 =
n
x(�) : x(t) is absolutely continuous and 0 � x0(t) �M

o
;
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and the optimal control problem takes the form

(6.3) I =
1

2

Z 1

0

(x� b(t))2dt! min
0�u�M

,

(6.4) x0 = u:

Let us introduce a new control v and a new phase variable y:

v = u� M

2
; y = x� M

2
t:

Then the problem (6.3)-(6.4) transforms to

I =
1

2

Z 1

0

(y � c(t))2dt! min
jvj�M=2

;

y0 = v;

where c(t) = b(t)�Mt=2 , which coincides with the problem (3.4)-(3.5).

Now consider the class

K
�

2 =
n
x(�) : x0(t) is absolutely continuous and 0 � x00(t) �M

o
which corresponds to information on the signal being a convex function with bounded

second derivative. As above it can be reduced to the problem

I =
1

2

Z 1

0

(y1 � c(t))2dt! min
jvj�M=2

,

dy1

dt
= y2;

dy2

dt
= v;

where

v = u� M

2
; y1 = x� Mt2

4
; c(t) = b(t)� Mt2

4
;

which coincides with the problem (6.1)-(6.2).

Analogously one treats the case where it is known that there exists absolutely continuous

x(n�1)(t); and 0 � x(n)(t) �M . Such a class appears if it is known that the signal does

not have more than n pieces of monotonicity (and, of course, if it is su�ciently smooth

and its n- th derivative is subject to the bounds indicated).

Another quite natural information on the signal would be

K =
n
x(�) : A � x(t) � B; x(n�1)(t) is absolutely continuous and 0 � x(n)(t) �M

o
;

i.e. besides the fact that the signal does not have more than n pieces of monotonicity

it is known that it is in a certain band. This problem can also be reduced to a typical

optimal control problem but already with bounded phase variables. To �nd a su�ciently

constructive solution of such problems is a more complicated task.
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7. Maximum likelihood estimate for signal of Sobolev type

The optimal control problem (1.4)-(1.5) in the class (1.6) has the form

(7.1) I =

Z 1

0

(
1

2
x2 + a(t)u)dt� a(1)x(1) �! min;

(7.2) x0 = u;

(7.3)
1

2

Z 1

0

(�x2 + u2)dt�M � 0:

It is not di�cult to prove the existence of a solution to this problem for an arbitrary

continuous function a(t) and constants � � 0; M > 0 .

Let us write down necessary conditions for an optimal solution of the problem (7.1)-(7.3)

(we use the book [1] in this connection). There exist nonnegative constants �0 � 0; �1 � 0
and a function p(t); 0 � t � 1; which cannot vanish simultaneously such that Pontryagin's

function

H(t; x; u; p) = pu� �0(
1

2
x2 + a(t)u)� �1(

1

2
�x2 +

1

2
u2)

receives the maximal value under optimal control, i.e. the equality

(7.4) p� �0a(t)� �1u = 0

is ful�lled.

The optimal solution u(t); x(t) satis�es the system of di�erential equations

(7.5) x0 =
@H

@p
= u

(7.6) p
0

= �@H
@x

= �0x + ��1x:

In addition the conditions of transversality

(7.7) p(0) = 0; p(1) = �0a(1)

and the condition of the complementary slackness

(7.8) �1 � (
1

2

Z 1

0

(�x2 + u2)dt�M) = 0

are ful�lled.

Using the necessary conditions (7.4)-(7.8), we can �nd the optimal solution of the problem

(7.1)-(7.3). Let us prove �rst that

�0 > 0:

Indeed, if �0 = 0 then �1 6= 0 since otherwise from (7.6)-(7.7) we have p � 0 , which
is impossible since �0; �1; p cannot vanish simultaneously. So, if �0 = 0; then �1 > 0 .
Therefore (7.4) implies u = p=�1; and from (7.7) p(0) = p(1) = 0 . The system (7.5)-(7.6)

gives p00 = �p; p(0) = p(1) = 0 . Since � � 0 ; we have p � 0 and then u � 0; �x � 0:
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Consequently both multipliers in (7.8) are nonzero (remember that M > 0) and the

condition (7.8) is violated. So �0 > 0 and we can put

�0 = 1 :

Further, according to �1 � 0 we have two cases: �1 = 0 or �1 > 0 . The case �1 = 0
yields p = a in view of (7.4). Hence, from (7.6) x = a0 . Such a solution is possible only

if there exists a00 2 L2[0; 1] and

1

2

Z 1

0

(�a0
2
(t) + a00

2
(t))dt � M:

This is interesting in itself. But for the problems considered here this case must be

excluded beforehand since (1.1) implies that a(�) is a non-di�erentiable function.

Thus we have �1 > 0 . Consequently (we write � for �1 )

(7.9) p00 =
1 + ��

�
� (p� a); p(0) = 0; p(1) = a(1);

(7.10)
1

2

Z 1

0

(�x2(t) + u2(t))dt = M;

(7.11) u =
p� a

�
; x =

1

1 + ��
p0 :

The solution to the boundary value problem (7.9) is of form

(7.12) p(t) = C sinh �t + �

Z
t

0

a(s) sinh�(s� t)ds;

where

(7.13) � =

�
1 + ��

�

�1=2

; C =
1

sinh�
� (a(1) + �

Z 1

0

a(s) sinh�(1� s)ds):

Let us prove now that the unknown constant � can be found uniquely from (7.10) where

u and x are from (7.11)-(7.13). Thereby it will be proved the uniqueness of the extreme

solution for the optimal problem (7.1)-(7.3) or, that is the same, the su�ciency of the

necessary conditions (7.4)-(7.8). To this end consider the following problem

(7.14) J� =

Z 1

0

(
1

2
x2 + a(t)u)dt+

�

2

Z 1

0

(�x2 + u2)dt� a(1)x(1) �! min;

(7.15) x0 = u;

which is a problem without restrictions on control.

It is not di�cult to obtain that for every � > 0 the problem (7.14)-(7.15) has a unique

optimal solution u(t); x(t) which has a form like (2.11)

(7.16) u =
p� a

�
; x =

1

1 + ��
p0 :
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The function p(t) in (7.16) has the form (7.12)-(7.13) with

(7.17) � =

�
1 + ��

�

�1=2

:

Introduce the functional

(7.18) L =
1

2

Z 1

0

(�x2 + u2)dt:

If we prove that the functional (7.18) calculated along optimal solution (7.16)-(7.17)

strongly monotonically decreases as a function of �; then the univalent solvability of the

equation (7.10) with respect to � will be proved.

Denote the functionals I; L; and J� calculated along the optimal solution u�(�); x�(�) of
problem (7.14)-(7.15) by

I(�) = I(u�(�); x�(�)); L(�) = L(u�(�); x�(�)); J�(�) = J�(u�(�); x�(�)) = I(�) + �L(�):

Let 0 < �1 < �2: Due to uniqueness of optimal solution of problem (7.14)-(7.15), we have

J�2(�2) = J�2(u�2(�); x�2(�)) < J�2(u�1(�); x�1(�)) = J�2(�1);

J�1(�1) = J�1(u�1(�); x�1(�)) < J�1(u�2(�); x�2(�)) = J�1(�2)

Consequently

(7.19) J�
2
(�2) = I(�2) + �2L(�2)

< I(u�1(�); x�1(�)) + �2L(u�1(�); x�1(�)) = I(�1) + �2L(�1):

Analogously

(7.20) I(�1) + �1L(�1) < I(�2) + �1L(�2):

From (7.19) and (7.20) the inequality

(7.21) �1(L(�1)� L(�2)) < I(�2)� I(�1) < �2(L(�1)� L(�2))

follows.

But (7.21) is possible if and only if

L(�1) > L(�2):

The strong monotonicity of the function L(�) is proved.

As a result we obtain the following theorem.

Theorem 7.1. The maximum likelihood estimate x̂(�) in the model (1.1) in the class of

signals (1.6) is given by formula

(7.22) x̂(t) =
1

1 + ��
p
0

(t)

where p(t) and � are found uniquely from (7.10)-(7.13).
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Remark 7.1. The estimate (7.22) is nonlinear with respect to observation a(�) since �;
which must be found from (7.10)-(7.13), depends on a(�): At the same time the estimate

(see (7.16)-(7.17))

(7.23) x̂(t) =
1

1 + ��
p
0

(t)

for every �xed � is linear with respect to observation a(�): The estimate (7.23) can be

treated due to the problem (7.14)-(7.15) as maximum likelihood estimate with penalty.

Remark 7.2. It is possible to consider analogously the problem (1.2) in other Sobolev's

classes of functions, for instance, in the class

K =

�
x(�) : 9x00(�) 2 L2[0; 1] ;

1

2

Z 1

0

(�0x
2(t) + �1x

0
2

(t) + x
00
2

(t))dt �M

�
;

where �0 � 0; �1 � 0; M > 0:
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