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Abstract

In the first part of this work we considered the properties of the first order
approximation with respect to the small parameter 3. In this part we present
the second order approximation which describes the evolution of amplitudes
and, consequently, establishes conditions of stability.

3.7 Equation for the amplitude of discontinuity

In the Part I we have exploited the conditions following from the first order approx-
imation. I order to find the evolution of amplitudes we proceed to investigation of
the second order approximation.

We begin with the second approximation to equations (2.8). We obtain the following
relations:

—zp o) (V) + 6(no)(Y&T) = (of 21 +ol 25 —af VI (YY) +10} (3.48)
IR N (L) ey N SNy 3-SR S N
—2(0p) (00, 05) (YY) + (0p T2 +05 x5 —0p V5 ) (YY) + F1

Ooy k(o)
— b0, (V{ + H{ 20) — k(n0)8a(of + HP 20) — n(V{ — V¢ + (H — H})2) = 0(8),
and _ P
—zp (V&) + o (V) = (3.49)
ST N Wle v N MU oo
= (252 —of zp V) (V) + 25 (YY)
TRg TEg

1 577 TFo \TF
— (V5 + o ze) (YY) + Fy — 8o + HP 20) — o§ 0. (V' + H{2) + 0(8),
TE

where the functions F7, 5 depend on the functions z, Hlf, Vlf, g{ and V.

We define the background functions Vlf , g{ , V7, ® and pf as a solution of the Cauchy
problem in Q7:
ob oV — k(no)dsof +m(V{ — V) =0, (3.50)
dvol + ah0: VY =0,
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050,V — E(ng)8,®% — (Vi — V&) =0,

8,8 — 9,V = 0,

and
00 + 030.V =0,

with the initial data

Vo = Vi(2), Vilmo=Vi(2), ®flimo = €5(a),

oflico = 0j(z), ofli0 = 0:().

The functions HY , Hf, H{*, H®' and H®*® are a solution of the characteristic Cauchy

problem in Qr:
8,HE! + ol 0, HI =0, (3.51)

ggatHlf — &(ng)asz’f + 7T(H1f — H}) =0,
antHls - E(nﬂ)asz’s - ﬂ-(Hlf - Hls) =0,

O,H — 8, H? =0,

and
OHY® + 050, Hy =0,

with the initial data on the front I'z:

.
Hilio = H(z), H'|imo = 22H(z), Hi=HP"|ig = HP* =0,

[¢]

Tg

Q{|t:0 = g}(x), 01li=0 = Qi(m)
This solution can be continued as a solution of the system (3.10) either in the domain
+ = {(z,t) € Qr,z > z(t),t € (0,T)}, if 27 = 1 (see (3.3)), or in the domain
Qr = {(z,t) € Qr,z < z(t),t € (0,T)}, if 25 = 0. The same result follows in the

case when (3.40) holds. We have commented already on this solution in the Part I
(p. 25-26).

The amplitude H 1f of jump for vy follows from the condition of existence of a solution
of the characteristic Cauchy problem (3.51). We obtain the following equation

~d— — o
ZQofEH{ +nH{ =0, H{|— = H{(0),
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which has the solution

— 1
H{(t) = H{(0) exp(—ﬁ t).
0

Then due to (3.48), (3.49) one obtains for the fast corrections

— zp o) (V) + k(no) (Y57 = (Qo 21 +of 25 —ol Vi )(Yzf)' + (1)’ (3.52)
(@22 ) IR (@ 4 1al 20 A VYT
(a5)? (Qoaé’o) (YY) + (0n 2 +05 T2 —0p V5 )(YY)
doy k(o)
+F, — o HI 8,20 + O(3),
and - o ) ~ o
— Tp (YE’,g’f), + Q(J)C(Y;sf)’ = o_( TpTy Q1 Ty —Qovl )(Yzf)’ (3.53)

Tg

1
+2 2 (VY)Y — (el — %2 o] + o] 8) (Y] + Fo — HET 8,20 + O(B).
Tg Tg

3.8 Stability of the structure of soliton-kink solutions

The system (3.42), (3.43) has the nontrivial kink solutions V3, V7 if the following
compatibility condition holds

2(of &1 —dh V) (YY) + 114

—~Ong
214 of
( +o007— Bo;

! n o~ —— o~ o o~ ——
2 (g, )<L 0))95(Y1szf)'+2(95 zy —o) Vi) (V)
k(o)

+f1+ :%E Fz — 2QUfH1f3tZ[)
Due to (3.19) we can simplify this equation

30 5~ K (no)\ 757 _—
(1 + QO a (QO) QO) H(no) )QOHI (1 - 2’20)(1/2 ) +
—30n —~. K'(ng)\ 7
2(1 + Qf a e (QO; QO) (nO) ) Hl z[]Yv2 + H, gl; (354)

where . P
Gi = —2(of T2 —0)V{ ) (YY) — Fi— 25 Fo + 20) H 0,2,

Simultaneously, the first approximation to the equation (2.7) yields

o 67’7/ 7
—zp ' + (p(no) — 0o} —— do; (Qo, ) (YS) + 1, = F, (3.55)



where the function F3 depends on the functions zO,Hlf, Vlf, Q{ and V°. Let Yzf =
ngg + .Ag, i.e. we separate a kink part from the soliton part of the second order
approximation. Then we can rewrite the system (3.54), (3.55) in the form

F0np 5 < K (10)\ 5o £y

(1 + Qoa—Qf(Qo, ) )QoHl (1 — 22)(Az)'+ (3.56)

K(no)

A

f3E AK,(TL))

2(1 + (Qo, Q) - Hj ZoAf +1I} =Ky - 2(00 Ty — sz)(Ylf)’,
Ooy k(no)

and

° / 30 /
~ & T+ (o) — o 5% o 5)) (ALY + T = K, (357)

where the soliton-like functions K1, Ks depend on Vlf, g(’; g{, 20, Hlf, H{ and Z,,Zp.

Integrating equation (3.45) one obtains

50ng 7y K —~—
= (1+ 05— 90, = (of, 0%) ((ns)))aﬁH{Ag— (3.58)

/ o~ o — o~ — ——

21+ A g e ) ) ] o+ [ rdon = 2(ed &~V
H(no) —00

i.e. the form of equation (3.56) leads to the product of the kink z, and the soliton

.Ag which is again a solition-like structure. This means that the first order approx-

imation of porosity II; is defined by a soliton-like contribution .A£ of the second

approximation of the velocity vy.

Since 11, A; should be soliton-like functions we get
G _gpr, L[
0y Ta2—= QU‘/Z + 5 Klddl. (359)

Substituting (3.58) in (3.57) we obtain the so-called variational equation for (3.21).
We remind that the first approximation for the propagation velocity of the front
had a form of a pendulum. On the other hand the above second approximation is
unique. It means that the solution is stable. Namely

(oton) — ah 52 8)— e 1] (1+ 1522 el M)y 1 o)) (afy

% ag, (no)
~0ng 7y k' (ng ,
+2 Zp QoHl (1 +ol 5 do; = (o}, ) ((TLU))A%C 20
o~ 6 ! n —
+2h(1 + A G e 2 (1 = 2:0) A = K (3.60)
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where due to (3.59) K3 is a soliton-like function. Certainly, the unique solution of
the homogeniuos equation (3.60) is 2. Therefore the solution of the equation (3.55)
can be sought in the form

Aé = C(t,0)z + Coz,

where C' is an unknown kink function and Cy is constant. Then for the function C
one has the equation:

) - 2z0)> o=t

2y

—30n —~ o 3 A ,(n )
_ o B ip ol HI(1 &
(W(no) %5 — Bo; (QO,QO) TE O 1( +oj5— Bo; (QOaQO) k(1)

Whence
f anE —

Clort) = [ (ilna) — e 5.7 (of 28)-

o 8 -1
—ZE 90H1 (1 + Qo doy (Qo; Qo) (n(?) )(1 - 220)) Z_,?’dal-
It is not difficulty to see that

Clo,t) =O0(lo])) o> 1.

Comment 8 The solution is constructed in an analogous manner for each step of
asymptotics. Consequently, we can construct the solution with an arbitrary accuracy.
Hence we have proved the Theorem 3.1.

3.9 Strong discontinuity of v,
Analogously to section 3.3 we can obtain the results for the case when v}, o, are the

smooth approximations of discontinuous functions and functions v,, o, are smooth
approximations of some continuous functions. As above we have

T =/
Then

Theorem 3.3 Let the following condition hold:
E'(ng) # 0.

Then the propagation velocity T of the front I'p and its first correction 1 are defined
by the relations

2 K
9o
o TF  ,—~w0ng, 7 ~ F'(ng) 3
o=V + (&)’ (ol o) o) b7

B0, 2 Eng) T
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The asymptotic solution (3.1), (3.4), (3.7) exists on the short time interval (0,T)
with any accuracy. The leading part of this asymptotics

vs, = BV (,t) + H(x,8)20(0, 1)) + O(6°),
O3, = B(®; + Hy *z0(0,t) + O(5%),

vl, = B(U{ (z,t) + H (z,t)20(0, 1)) + O(8%),
05, = ai(x) + Bai(z, t) + HP"20) + O(5%),
ol, = of(z) + Blel (z, 1) + HP (z,1)20) + O(8%),
Mae = Yo(t, 8) + Af (o, t) + O(B),

satisfies system (2.7)-(2.12) up to the order O(B). Corresponding to (3.2) the
leading part of the outer expansion has the form (3.8). The background functions
v, VE, ol 05 and ®% satisfy the Cauchy problem (3.9) in the strip Qr.

The functions H{, H: H?*, H®' and H®® are the solution of the characteristic
Cauchy problem (3.10) in a sufficiently small neighborhood Qr of the front I'r with
the Cauchy data on the front I'r:

1 e
Hiler = H(z), H™lr, = —o H(z), H =:"H(z),
E E

H1f|FT = H197f|FT = 0.

This solution can be continued as a solution of the system (3.9) either in the domain
= {(z,t) € Qr,z > z(t),t € (0,T)}, if 25 = 1(see (3.2)), or in the domain

Qr = {(z,t) € Qr,z < z(t),t € (0,T)}, if z5 = 0.

Also

t

To(t, 8) = Y{exp(——=5), T = const.

B
The function
ong 7 E'(ng)
aQs (QO; QO) E(ng)

is soliton-like. The kink-like function z, satisfying (3.2) is a strictly monotonic
solution of the nonlinear equation

—
S

Iy = —(0})? (HI)? 2(1 — 2),

—~on 5 —~ 6 90 E
() + @5 (e 28) + (e 20)° 5 (e )Y

ng 7 —~—E'(ng
1— 22 )z' =
. Blng) '~ %))

— @ @ ) ) Bl 21— ), (3.61)

Moreover the function z, increases if

6TLE

89 (QO; QO)E’(nO)Hlf > 07 te [OaT]a
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and it decreases if

anE

8—93( )E'(nO)H1 <0, te0,T].

The solution of (3.61) exists if

(o(no) + B2 (o, ) /Elno)
(082|222 (of, ) B (o)

|| < (3.62)

The amplitude 7{? of the strong discontinuity of v, satisfies the following equation
~d= 5 7 .
200%[{1 +mH =0, H§li=o = H;(0), (3.63)

so that

— s m
Hi(t) = H;(0)exp ( — 20 t).

Remark 3.1 Let us note that due to the physical condition (1.1) the inequality

Aan
90( )_ 25 0. E(QO,QO) 0,

is identically satisfied.

In the case of the opposite sign of the first correction to Z of the propagation velocity
of the front a Theorem, analogous to the Theorem 3.3 holds with an appropriate
change of signs. For completeness we quote it here in the full form.

Theorem 3.4 Let the following condition hold:
E'(no) # 0.

Then the propagation velocity T of the front T'p and its first correction x, are defined
by the relations
2 K
2 Bl
9

8nE —~ F' (ng)

xl— ‘/1 ( ) 3@5 (Q[)faQO) E(’I’L )

HY.

The asymptotic solution (3.1), (3.4), (3.7) exists on the short time interval (0,T)
with any accuracy. The leading part of this asymptotics

vs, = B(V{ (z,t) + Hy (x,t)20(0, t)) + O(6%),

35



= B(®} + H{ "z (0,t) + O(5%),
( {(z,t) + H{ (z,t)20(0, 1)) + O(8?),
05, = 0o(z) + B(&5 (2, t) + HP"20) + O(6%),
of, = ol (z) + B(o] (z, 1) + HP' (z,1)20) + O(6%),
oy = Yo(t, B) + Af(o, 1) + O(B),

satisfies system (2.7)-(2.12) up to the order O(B). In accordance to (3.2) the lead-
ing part of the outer expansion has the form (3.8). The background functions
v, Ve, ol 0} and ®% satisfy the Cauchy problem (8.9) in the strip Qr.

The functions H , Hf, HP*, H®' and HZ® are the solution of characteristic Cauchy
problem (3.10) in sufficiently small neighborhood Q7 of the front I'r with the Cauchy
data on I'p:

1 3
=~ H(z), H* = "H(a)

Tg Tg

HIS|FT = H(J)), H{)’S I'r

H1f|FT = H197f|FT = 0.
This solution can be continued as a solution of the system (3.9) either in the domain
Qr = {(z,t) € Qr,z > z(t),t € (0,T)}, if zg = 1(see (3.2)), or in the domain
Qr = {(z,t) € Qr,z < z(t),t € (0,T)}, if z5 = 0.

Also ;
Yo(t,8) = 1) exp(—@), T) = const .
The function
—~Ong 3 ~ FE'(ny) 7
I, = (0%)2 f =5 H2 2.(1
0= (@) G e 20 e () 201+ ),

is soliton-like. The kink-like function zy is a strictly monotonic solution of the
nonlinear equation

Aane —~\9 on 5 = —F ) ,
8 — s)H S 1+2 =
(90(”0) + 07— B0, (QO) Qo) E (05) B0, (00, 05)H; E(no) (1+22) ) 2

(QO) ags (QO) QO) E(’I’L ) Hl ZO(l + z[)) (364)
satisfying the following conditions in infinity
lim 2y =-—1, lim 2y =0,
o——00 o——00
or
lim z5 =0, hm 2o = —1,

o —>—00 — 00
The function zy increases if

6TLE

ag (QO; QO)E,(nO)HIf <0 t S [O)T]a
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and it decreases if
anE

90s
A solution of (3.64) exists if relation (3.62) holds.

S (o], ) E (no)HI >0 te0,T].

The amplitude ﬁ? of the strong discontinuity for v, satisfies equation (8.63), so that

A , m
H;(t) = H{(0) exp ( " 20 t).
0

4  Strong discontinuity of porosity.

Now let us investigate the case when Il,, is a smooth approximation of the strong
discontinuity of porosity. Simultaneously the functions v:,, ®¢_, 0f , v/, and of, are
smooth approximations of weak discontinuous functions.

as)

We consider two cases. In the first one the functions v/, and of, are smooth ap-
proximations of weakly discontinuous functions with respect to the small parameter
B, and, simultaneously, the functions v , ®%  and g, are smooth approximations
of smooth functions. In the other case the functions v:,, ol,, @3 . are smooth ap-
proximations of weakly discontinuous functions and the functions vy, oy are smooth
approximations of smooth functions.

Further we investigate again in details the first case, i.e. when the functions v/, and
ol are smooth approximations of weakly discontinuous functions with respect to
the small parameter 3. For the second case we present results.

4.1 Weak discontinuity of vy

We proceed to investigate the first case, i.e. a smooth approximation of a strong
discontinuity of porosity and weak discontinuities of vy and p;. We begin with
the derivation of equations specifying the leading part of asymptotics for v; and
IT. These should be equations having weakly discontinuous and kink-like solutions,
respectively.

Setting 7 = [ we investigate the system (2.7), (2.8).

The ansatz for the asymptotic expansion of an unknown function II in a neighbor-
hood Qr = {z € R',|z — z(t)| < §,t € [0,T]}, & being sufficiently small, of the
front 'y = {z € R',z = z(t),t € [0, T]} has the form:

Zﬁ’ (z,t) + Y] (o,2,1)), (4.1)

where
Y} =1;(o,t)) + HY (z,t)20(0, 1)), 5 > 1,

J
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and
o= (z—=(1)/8,
is the fast variable. The function zy(o,t) is a smooth bounded kink-like function

and the functions II;(o,t),j > 1, are smooth bounded soliton-like functions. The
functions II;, z; are stabilized in the infinity:

akiild—k(y —y*) =0, Vk, 5,0l >0 if 0 — 400, lim y=0, (4.2)
do dt' dz* = oo o0
for y = 2y and y = II;, where
2z = Jlimzp=1, I} = lim ;=2 = lim =0. (4.3)
Here y*(z,t) = lim,_, o ¥.

In order to get a smooth approximation of the discountinuous function II, we assume
that Y;(z,t), H} (z,t) H}(z,t),j > 1 are smooth bounded functions and

Hf(x,t)\FT +0.

The ansatz for the smooth approximation of weak discontinuities of the velocity vy
and the density o; has the form:

N
vf, = Vi (z,t) + H{(z,t)z + Zﬁj(ij(x, t) + ij)’ (4.4)
j=1
and
N .
Q({s = Q[]f(w, t) + Ho’f(gj, t)zo + Zﬂ](g_{(th) + }/‘j@af),
j=1
where

Y/ = B, 0m(00) + Af(,0), YT = H ao,1) + A (0,0)

The functions V]-f, g;-c and H]f, Hf’f,j > 1 are smooth in Qr. The functions .Af, .A;-”f
are smooth bounded soliton-like functions.

To define the smooth approximation of weak discontinuities one has to require

H§' = Hf =0,

and . .
O, HE, 8,HI # 0.

The ansatz for the smooth approximation of the velocity v, the deformation ®, and
the density g, has the form:
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N
vh, = Vi (z,t) + Hi(z, )20 + Y B (Vi (z,t) + Y} (0, 7, 1)), (4.5)

i=1

N
B,y = Bf(z, 1) + Hy*(z,t)20 + Y B (®S(2, t) + V" (0, 7, 1)),

j=1
N .
Q(szs = Q[S)(if, t) + Hg’s(;p,t)ZU =+ ZB](Q-;(x, t) 4 Y;-Q’s),
j=1
where
V) = (e, O)z(0,0) + Aj(0,0), V™ = H*(2,0)(0,0) + AT (0,0)
Y = H"20(0,t) + A" (0, 1).

In this case

Hi = HY* = HS® = 9, H&' = 8, HY* = 8, H{ =0,

and

O2Hg, 2Hy*, 92HE*,# 0.

The functions V7, @5, V7, o2, of, H:, H*, HI, H?® and H{’,j > 1 are smooth in

Qr. The functions A7, Af’s are smooth bounded soliton-like functions.

Then the functions
Ve 4 Héz &2 —i—H(I)’SZ s 2138 Vf Hf f HQ,f
0 0205 Py 0 20, Oy + 115" 20, Vg + Hy 2o, 05 + Hy™ 20,

are smooth approximations of C*-functions.

For the smooth part of asymptotic expansions we obtain the following Cauchy prob-
lem in the strip Qr:

05 (8 Vs + V58, V) — B9, @5 — n(Vi — V) =0,
0, P, — 0,V =0,
ob BV + Vi 8.V + kol + m(Vi — Vi) =0,

8,0 + 8.(Vi of) = 0,

9:0p + 0:(Vy 0p) = 0, (4.6)
with the initial data

Vel = V(@) W limo = V7 (2), ®F)i0 = 83 (2),
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0t=0 = QS(CL’), Qof|t:0 = Qof(if)- (4.7)

The functions H¢, HI, Hy**, H®* and H&’ can be defined as the solutions of the
Cauchy problem in a sufficiently small neighborhood Qr of I'z:

04O Hy + H30. Hy + 0, (Vi H;)) — EO, Hy " — m(H] — Hy))

+H§*(0:(Vy + Hg) + (Vg + Hg)0:(Vy + Hg) =0,
8,Hy»* — 8, HS =0,
0y04 + O (HSHS®) + 0.(Hyoh + Vi HY®) = 0, (4.8)

and
o} (8, H] + HI8,H + 8,(V{f H))) + k0, HZ! + n(HI — H?)

+HE @V + H) + (Vi + H)ao(H] + V) =0,

O.HET + 0,(H{HE') + 0,(H{ o} + Vi HE') = 0, (4.9)
with the initial data on 'y
M =H =H»=H"=H =0. (4.10)
Theorem 4.1 Let
T=p.
Consider a strictly decreasing function zo(o) , satisfying (4.2), (4.3) such that
lim % =[* /oo ozydo =0 (4.11)
o—too exp(—(£(*)o) VAR ’ '
where z, = %zg, the positive constants I fulfil
(1)< ! T (4.12)
max — if =k :
) \/E E )
and p
T= %x(t) =z +0(0B).

Then an asymptotic solution (4.1), (4.4), (4.5) of (2.7), (2.8) exists on the short
time interval (0,T) with any accuracy.

The leading part of this asymptotics
Has = Yoz, t) + HY (z,t)20 + Ab (0, 2, 1)) + O(6), (4.13)
vty = Vi (e, 8) + Hi(a 1)z + BVE + Y2) + O(6?),
s = Of(2,1) + Hy " (, )20 + B(®] + Y1) + O(8?),
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vf, = Vi (z,t) + H{(z,t)2 + BV + V) + O(8
05, = 05(z, 1) + HE"(z,t)20 + B0} + Yi*°) + O(5%),
ol = ol (z,t) + H® (2, )z + B(of + V27) + O(
satisfies the system (2.7), (2.8) up to the order O(f).
Here

[ M)
~—

@®
N

To(w,t) = ~0,(V{ — V), Hi(w,t) = —0,(H{ — H). (4.14)

The equilibrium velocity T of the front I'r satisfies the following equation:

(Vi—zp)? =k and Vi— zp#0. (4.15)
The functions
Aﬁ:exp(— — O )/ exp(,\alO )Fé’dal if Vi—z>0,
0o~ Tg o Vi—zg

and

Af = —exp ( — VOSjEJE) /:o exp (%\ST%E)ngUI if Vi— 2<0,

are soliton-like functions, where

—

— 0, H{
FP = —HP 2l + "2 o2,
TE —V;)s

The background functions V[)f, Vi, ®o, 0) and g(’; are the solutions of the Cauchy prob-
lem (4.6), (4.7) in the strip Qr. The functions H, HI, HY® H®* and H®' are the
solutions of characteristic Cauchy problem (4.8)-(4.10) in sufficiently small neigh-
borhood Qr = {(z,t), |z — z(t)| < 6,¢t € [0,T]} of the front I'r.

The amplitude of jump 8mH({(t) of a weak discontinuity of vy is the solution of the
nonlinear problem:

d —_ — —
O, HY + (0, H)? + [ + 0,V - (4.16)
dt o7
(4
L ad AT T —
—5 (- d5) 22 - (Vo —V0) |6, H{ = o.

o  20(V{ - zg)

The function Hlf(t) is defined by the nonhomogeneuos linear equation on I'r:

d—5 FTF T T T A or T T
! = a0 a0 BN L = 9ol Vi, 0V ol V), (1)
o

where the function q; depends on the functions V[)f, 3$H[{, g(’;, while the function gf
depends on the functions g(’;, Vof, g{, Vlf and their first derivatives.
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Remark 4.1 Let us note that the solution of (4.9)- (4.11) exists in Qr if § < dy
is sufficiently small. This solution can be extended to the region Qr = {(z,t),z <
z(t),t € (0,T)} such that it remains to be a soliton for (4.9), (4.10).

As in the preceding cases the proof of the theorem 4.1 is devided into several steps.
First we obtain the equation for the propagation velocity of the front I'y.
4.2 Propagation velocity of the front.

Lemma 4.1 Weak discontinuities of vy and v, cannot exist simultaneously. The
propagation velocity of the front of the weak discontinuity of v; satisfies the equation

(Vi — z5)? = k. (4.18)

and the propagation velocity of the front of the weak discontinuity of v, satisfies the
equation

— o E
(Vbs_ $)2 = —=.
00

Let us denote
N o _ N
TN — B> Zﬁ]—l'rj, yﬁf = [~ Zﬁ]_lyjp’ x]ﬁv(t) — Zﬁ]wj(t)_ (4‘19)
Jj=1 j=1 =0
N ] N . . .
V]sv = Zﬁ]vjs’ V]{, = Zﬂivjf’ y}sv — ZB]Y;, y]/\} — Zﬁ]yjf
7=0 7=0 j=1 j=1

Now let us substitute (4.1), (4.4), (4.5) in the first equation of (2.7). Using standard
procedure one gets the following relation specifying the functions TV and Y%

0 0 0
g o YR+ Vi + Vi + Vi) YR+ 5Pk = Vi) + 80" + R

+(Vi + V)0 V% + 0:(VE — Vi + Y — Vi) + TN = YN fR (0, 2,t),  (4.20)

where f§ € C*°(Qr x R' x [0,T]) is some function bounded in the norm C(Qr). Tt
should be noted that in (4.20) the slow variables z and ¢ and the fast variable o are
assumed, as before, to be independent.

Setting coefficients of 37 equal to zero one gets the system of recurrent equations for
the definition of the functions Y;(z,t), H} (2,t) and A%(0,t). The lowest approxi-
mation leads to the following relation:

(Vo — 2)(AD) + Ab = —(Vg— &) Hbz) — 1 — HEz (4.21)
—8,(Vf = V) — 8u(H{ — HE)zo — (8, H — 8, H)o 25 + O(8).
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This relation is fulfilled if

and

A ~ S

(Vo= &p) (L) + A = —(Vy— &) H}zh — (0,H) — O Hy)o 2y = FY,  (4.22)

where R . N A s
FY = —(Vo— &5) Hy 2 — (8:Hy — 8:H;)o 2.

Then the soliton-like solution Af of (4.22) has the form:

o F? N o
AP = exp(——7 )/ exp(—2 )"0 doy if VP— 2> 0,

VI)S_%E —o0 ‘/OS_%E %s—fE
or
o o0 o F? oA o
AP = —exp(——2 )/ exp(—21 )0 4oy if VP— 2< 0.
V'Os_xE a V'Os_wE ‘/E]s—fE

Remark 4.2 Under conditions (4.11), (4.12) the following estimate holds true:

Ap
22 =0(ol) ol >1.

0
>From the subsequent equations of (2.7) one obtains in the lowest approximation:
&V~ &8)(T7) — B =
(V3 #r)0LH — EO,HY*)o 2
—(0) + H§*20) ((0(Vg + Hizo) + (Vi + Hi20)0x(V5 + Hizo))

—E8,(®o + Hy *20) — m(V{ = Vg + (H] — H§)z) + O(B), (4.23)

— g (V") = (V) =

(zg 8, Hy* + 8, HE)ozh — 8i(®o + Hy*2) — 8, (Vi + Hiz) +O(8),  (4.24)

(V5 - 25) (V") + (@ V7) =
~((V§— 2R)0.Hy" + 0:(08 H)) o2
~ 00} + HE"20) — 0:((af + HE) (Vi + Hyz)) + O(8), (4.25)

and
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ob (Vi — zp) () + w(V") =
- (Qg(ng— 25)0,Hf — /ﬁﬁzHO’f)a 2
—(of + HE 20) ((0(Vi] + HYz0) + (Vi + HI )0, (V] + H{z))

—k0; (0f + Hi20) +m(V = Vi + (H] — Hp)z) + O(B), (4.26)

(Vi = zp) (V7)) — of (V) =
—((V = 25)0:HE? + 0. (o H{)) 02
—8(} + HE 29) + 8,((0d + HE)(VE + H{z)) + O(B). (4.27)

First we define the smooth background functions Vof , Vi, ®o, 05 and QOf as the solution
of the Cauchy problem in the strip Qr:

0 (8, Vg + V50, V) — B9, @ — m(V{ — Vi) =0,

atq)g — 81‘/03 = O,
oy (B Vi + Vo, Vi) + kol + m(Vi — Vi) =0,

8,08 + 8.(Vi of) = 0,

9:0p + 0:(Vy 0p) = 0, (4.28)
with the initial data

Vilizo = V. (@), Vi lizo = V{(2), ®ffi=o = 2)(),
O5li=0 = 03(x), 0fli=0 = 0} (). (4.29)

Then the functions Hg, HI, Hy"*, H®® and H&' can be defined as the solutions of
the Cauchy problem in a sufficiently small neighborhood Qr of I'7:

05 (8, Hy + Hy9, Hy + 8,(Vg Hy)) — Ed, Hy* — m(H{ — Hy))

FHEH OV + H) + (Vi + )0 (Vg + ) =0,

8, Hy* — 8, HS =0,
OHE® + 0,(HS ) + 0,(HSHE® + VEHE®) =0, (4.30)
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and
ob(6,H{ + H{8,H{ + 8,(V{ H])) + k0, HY' + n(H{ — H?)

+HY 0,V + HY) + (V{ + H))o,(H] + Vi) =0,

8 HE! + 8,(H{ of) + 8, (H{ HZ' + Vi HZT) = 0, (4.31)

with the initial data on I'p
Hy=H{=Hy"=Hy = H =o0. (4.32)

As it is well-known (4.30)-(4.32) has a nontrivial solution if this problem is charac-
teristic, i.e. either

(Vi — z5)? = k. (4.33)
if .
8, HI, 9, HS' # 0.
or
(Vo— 25)> = E/ 0} (4.34)
if

O, Hg, 0, HY®, 9, HE* + 0.

Due to the physical interpretation of speeds of P1- and P2- waves the relations
(4.33), (4.34) cannot hold simultaneuosly.

The solution of (4.30)-(4.32) can be extended to the region Q7 so that it remains a
solution of the above equations for a sufficiently small ¢t < T, < T. Any solution of
(4.30)-(4.32) has the following properties:

Lemma 4.2 For the characteristic Cauchy problem (4.30)-(4.32) on the front the

amplitude of the jumps 8mH({ of the weak discontinuily of vy satisfies the following
nonlinear equation:

d — — —
SO, HY + (0, H)? + [ + 0,V -
dt 20

_1("/'0?_ %E)azgof _ m( Of - V5)
2 of  205(V{— zp)

and the following relations on 't hold:

[8,H] =0, 9,H{|io = 8, H)0)  (4.35)

_ 7 A - e
3zH0’f — —/\Qiooazﬂg, awH(‘)g — azH(;I’,S — awHO’s _ O,
Vo — zg
_ g — I
el = -2 gl x0, Hi=H=H" =0,
Vo — Tg

45



where the function Hlf satisfies the following equation

d 5 T TF O TR o7 G T T

o+ { =+ d. o1 il = g5V 0.V ol V), (4.36)
209
with the function q; dependent on the functions Vof, awH({, gof, and the function gy
dependent on the functions g(’;, Vof, Q{, Vlf and their first derivatives.

Proof Due to (4.32) it follows from (4.30), (4.31) on I'r that
000, H + (Vi — z)0, HE' = 0, (4.37)

and e - .
O, H = 0, H* = 8, H® = 0.

Differentiating (4.30), (4.31) with respect to = one gets the following relations on
FTI

2 d _— ) o 7 - 7 o -

Q(J)’%ang + (Vof_ :EE) [Q(])caacazfv{dc + (Vof_ wE)azazHU’f]

A

— 80} v -V }
5

+{7T+ (Vi — 25)0s00 — & = -~ 8, HI =0,
o) Qo
and p e
0 JHE! 4 ol 8,0, HI + (Vof— T5)0,0, HS'
295 “f\2 Y é/’z o\ A o f
—ﬁ(ﬁzHo) + Q(QEQO - iﬁz% )awHO =0.
Whence

~d _— d

ol = —0: -0 L HEE 4 2] (a HU) (4.38)

—

+{7r — (Vof— xE)azg(’; +2000,V{ — & 2% _ ( 0 0 ) }8 Hf =o.
f f
% %
>From (4.37) one has

d

7 4. T
~(Vif = &) 0, 1Y = of -0, H{ + 0000, H{.

The statement of Lemma 4.2 follows from (4.38).

Taking into account (4.28), (4.30), (4.32) and Lemma 3.1, one gets the following
estimates:

dy(0f + H§' 20) + 0, ((0f + HET) (V] + Hz)) = O(8),
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(o + Hi 20) (8:(V§' + H{ 20) + (Vi + H{ 20)0: (Vi + H{z0))

+4(no)Bs (0} + Hi 2) + n(V{ — V& + (H{ — H)2) = O(B),

() + HE20) (B:(Vy + Hyzo) + (Vi + Hy20) 0 (V' + Hyzo))

—E8,(®o + Hy*20) — m(V{ — Vg + (H{ — H})z) = O(B),
at(q)o + H(;I)’SZO) - aw(vbs + ngf)) = O(ﬁ);

0:(0) + Hg" 20) + 0x((ef + Hg ") (V§' + Hiz0)) = O(B).
Thus relations (4.23)-(4.27) hold if

05(Ve— z)(A}) — E(A) =

—(5(Ve - 2p)H; — EH*) %, (4.39)
— Z (AP*) — (A]) = —((@r H* — H )2,

(Vo — 2r)(AP") + ab(A}) = — (Ve — zr) HE* — 0 H ) 2,

and
oh (Vi = 2e)(A]) + (AP*) = —(of (Vi = 2p) A + wHET) 2,

(Vi — zp) (AP — o (A]) = —((V{ - zp) HE' + of HY)) 2,
Due to (4.2) the solvability condition of the system (4.39) in the class of soliton-like

functions is equivalent to the existence of a nontrivial solution H{ , H®', H?, P/[FS, HD*
for the following system

— o

— 03 (V§— zg)Hi + EH}® =0, (4.40)
zp HY* — Hf =0,

(Vo — zp)HS® — ob H = 0,
and
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(Vi — zp)HI + kH? =0, (4.41)
(Vi - &) EY + ] =0,
Condition 4.1 Let
Vi—zp#0 if (Vf—zp) =k«
Then the algebraic noncharacteristic system (4.40) has only the trivial solution

— /(}\ —
Hf:Hl’s:Hl’s:O.

The characteristic algebraic system (4.41) results in the relation:

—

— gf —
o = ——="—H{.
%f— TE

Whence we get the nontrivial soliton-like solutions of (4.39)

~f
AT = Al Ay = AP = A =,
%f— TE

Comment 9 For the velocity vy the smooth approzimation of weak discontinuities
of order O(1) genarates a smooth approxzimation of the strong discontinuity of order
O(B). For v, the smooth approzimation of the weak discontinuity of order O(83) may
or may not appear.

4.3 Correction of the propagation velocity of the front

Now we are in the position to show which functions can be specified by the first
approximation.

Lemma 4.3 The first correction 1 to the velocity T of the front I'r satisfies the
following equation:

o 5 HP
n=W+ ==
20y Hj
Consequently either
—~ 8, Hf
Vi—z>0 if Af">0,
Hj

or
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= O, HY
Vi—-z<0 if 2= <o.

Hi

It means that, when the background function Vlf = 0, the propagation front decel-
erates if the amplitude of weak jump H[{ of velocity vy increases and Hlf > 0. The
latter corresponds to the local increment of porosity A} and the global decrement of
porosity Y behind the front. Since due to (4.37)

~f
9 5, Hof ,

0, HE' =

e}

this case corresponds to the Saffman-Taylor instability.

>From the second approximation of the equations (2.8) one has:
o(Vi = 3) Y + w(VET) = —((Vi— 806 + (Vi — 3p)el ) () — (A3
—HY 2y — of (VY + 0u(H] )z + (Vi + Hf 20)0. (Vi + H 20)) — k0u(o] + H 2)
—(o] + HY 20) (0, + 0 (H]) 20 + (Vi + H{20)0.(V] + H{ z0))

—r(V = V¢ + (H{ — H})z0) — 8,(e} Vi )o (V) (4.42)
and ;
(Vi = 2m) (V7Y + o (v ) = =2—(v/ - 2,)(v{Y

Vo — g

—

of _
A [
A0+ =B (O~ el — 0 0 (el + 1t )+ ]
0 — TE

~f —
~ f ~f 0
+(eh + HE' 20) (Vi + H 2)) — (8205 — 82V = ) (v{y. (4.43)
0o — TEe

The smooth background functions g{ , 07, Vlf , V> and ®7 are defined as a solution of
the following Cauchy problem in Q7:

ob OV + 8, (ViV)) + kdwol + ol (B VY + Vi 0, V{) + (Vi — Vi) =0, (4.44)

o] + 8:(of Vi + ol Vi) =0,
05OV + 0. (Vi VYY) — B85 + 0 (8:V5 + V5 0u V) — (Vi — V) = 0,
0,®7 — 9,V =0,
Bs0f + 8, (Vi + o V) =0,
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with the initial data
Vili=o = Vi (z), Vi i=0 = V} (2), ®}|t=0 = ®L(2), 0}|i=0 = 0}(@), o] |t=0 = 0}(2).

Then the functions H{, Hf, H*, H?® and H®! can be obtained as a solution of the
Cauchy problem in Qr:

0} (0 H{ + 0, (Vi H] + H{V{")) + ko, H{ (4.45)

+HP (8,(V{ + HY) + (Vi + H)o,(V{ + HY))
+ol (8, H{ + H{0, H{ + 8,(V{ H{)) + n(H{ — H}) =0

O + 0,(HE Hi + HP' H]) + 0, (ol H] + of HY + HI'V{ + HETV) =0,

00 (O H} + 8, (HVY + HiVG + HyHY)) — B, Hy™
HE*(0(Vy + Hp) + (V0 + H)0.(V5 + Hp))
+0} (05 + Hd, Hy + 0, (Vi Hy)) — m((v] —V7') =0,

O,H"* — 8, H? =0,

O HY* + 0,(HY Hy + HP HY) + 0, (0} Hy + o) Hy + HY*Vy + HP V) =

with the initial data on I'z:

ngvf —

—=__H], H}"=Hj=H=0.
TR —‘/0

Equations (4.42), (4.43) can be simplified to:
AV - 56) (V) + 6 (VT = ~HEz) — (Vi - &1)f (4.46)

(V- &m)e] ) (V) — (A5 — 0u(efVi Yo (¥,

and
— — — — ~f —
0 . Y
= 2) (V7Y + () =~ (of - 2= - 2)) () (447
Vi —zp
&l ol vz
(= udl + =20V )o 2+ =2 (7)) = 0.
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Analogously to (4.34) we can derive the equation for the amplitude H of the strong
discontinuity of vy from the characteristic problem (4.45):

d—5 [T F g opoT
i o sl b0 [T = o(el Vi of, Vi)
0

Here the function g; depends on the functions Vof, ﬁzHg, éof, the function g; depends
on gof , Vof , g{ , Vlf and their first derivatives.

System (4.46), (4.47) has a nontrivial solution

_ — — ~f —
o Y
(W ae)¥7 = -] (d - = (- 207
I o
Vb — Tg

f ~f —
H(—oudl+ ="—0]) [ o1 shdor + =2 — (W)
Vi zp > Vi - zg

if the following solvability condition holds:
26] (V= 21)(A]) = —(AB) — HI %

~20f (Vi — &) H{ 2 + (— 8, Vi) + 2V — £5)0.00))o 25,

Here we used the fact that, due to conditions of the Theorem 4.1, 8,z = 0. In-
tegrating this equation with respect to o and taking into account (4.6) we get the

equation for the correction z; of the velocity of the front 'z

o 3 HP
=V + , (4.48)
ZQng
and we define the function A
1 — —~ o T [7
A= (g (- 0@V + 2 30)0d) [ onsiden),
2Af(Vf— M ) —00
O\ V1 1
where _ —
o oy 9,H]
—1;#0 since — =20 +£0.
H  H

Conclusion 4.1 At any step of asymptotic construction the solution is derived anal-
ogously to the previous case. Thus this asymptotic solution can be constructed with
any accuracy.
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4.4 Comments

Comment 10 For simplicity let us consider the case when the background functions
Vi =vf = Vg = of = 0. Then the equation (4.16) has the form

d —_— —_— —
O, HY + (0,H]) + 2%@}1({ —0. (4.49)
0

Solving this nonlinear equation one obtains
0, H{ (0) exp(—%1)
2o

™ Af ™
7 + 0:H{(0) (1- exp(—ﬁt))

O, Hf =

This solution decreases and it is bounded if

T

8, H{(0) > .
20}

(4.50)

For the same case the functions FI{, H{”f satisfy the following system on the front
o8 H] + kd, HY' + 7 Hf =0,

o

TE
As above we reduce this system to the equation

d 3 T
— gl (=
dt +(295

8H + o0, H] + 2328, HIH] = 0.

+0,H{ ) H{ = 0. (4.51)

Due to the equation (4.49) the equation (4.51) has the unique solution

—

7w = 21O 5T,
8, H{ (0)

—_—

Therefore under the assumption (4.50) the functions 8, H{ (t), H{ (t) decrease.

Comment 11 The conditions of the decrement of amplitudes 8mH[{, Hlf allow one
to separate two asymptotic solutions for each direction of the equilibrium velocity
:%E, which correspond to physically plausible situations.

The first asymptotic solution describes the process being an analogy of the classical
Saffman-Taylor instability with the global closing of pores behind the front I't and the
second one is a non-classical case in which the Saffman-Taylor instability interacts
with the global opening of pores ahead of the front (see: Fig 2 and 3 in which the
position of the front is indicated by the vertical broken line). Namely
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Figure 2: A schematic x-distribution illustrating the appearance of the Saffman- Taylor
instability with the closing of pores behind the front U'r (the case 1 in Comment 11)

A

v

Figure 3: A schematic x-distribution illustrating the appearance of the global opening of pores
behind the front Tt (the case 2 in Comment 11)

1) the first case corresponds to the choice Tp> 0, the background functions v{; =

Vi =V =0l =0 and 8EAH0f(O) > 0 and H{(0) > 0. Then due to (4.48) 2,< 0.

The leading fast part of the asymptotic solution of porosity Y = HE zy + A} yields a
local opening of pores ( the soliton-like term A} is positive) in a small neighborhood
of the front, similar to the push displacement considered in the Section 3.6, and a
global closing of pores behind the front I'r. A global closing /gf pores dominates and

this yields the deceleration of the front since (4.51) T,= —8,H{(0)/HI(0) < 0. One
obtains as well negative values of the fluid velocity vl, = ngo—l-ﬁ(Hfzo—l—A{)—l—O(BZ)
behind the front. We deal in this case with an interaction of a wave of a local opening
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of pores and a reflection wave following from a global closing of pores behind of the
front.

2) The second case corresponds to the following choice: Tp> 0, the background
functions V§i = Vf =V = of =0, and 8,H{(0) < 0, H (0) > 0.

The leading fast part of the asymptotic solution of porosity Y = HEz, + Ab de-
fines the local closing of pores ( the soliton-like term A% is negative) in a small
neighborhood of the front, considered in the Section 3.6, and the global opening of
pores behind the front I'r. The global opening of pores dominates and this yields the
acceleration of the front since 1> 0.

The kink-like member HYz, drives the global increment of porosity behind the front,
which yields a push displasement in the fluid. We deal in this case with an interaction
of a stable displacement and a reflection wave ahead of the front following from a
local closing of pores.

The condition (4.50) bounding the amplitude of the jump from below eliminates the
breaking (blow up) of the push displacement.

As in the subsection 3.6 we have for these two cases an analogy of the entropy-like
conditions.

The proof of existence of the special exact solution of the considered problem, having
the same initial data as the asymptotic solution shows that the entropy-like condi-
tions yield the condition of stability of the asymptotic solution and the uniqueness
condition of the special solution.

Comment 12 Let us remind that due to (4.49), (4.51) the functions H{, HI de-
crease. On times t = O(In(1/8)) one obtains that HI = O(B), HI = 0(B).

For such asymptotic solutions these equations are discoupled and functions azH({,

Hlf satisfy the equation of the form:

d

it 2]

H=0.

Then for the first correction one obtains
Hl aoj]_: al-H[{ on FT

Hence due to the appearence of the term from the second order approximation we
may solely have the following solution

0,Hf =0, ;=0 and HI +0,

which was impossible in the previous case. This yields a bifurcation of ;.
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To prove this statement exactly it is necessary to pass to large times by means of the
following transformation

t:n/ﬁa a:—xE(t):y/ﬂ, 77>77*55a 0<d<1,n =const > 0.

Then the system (2.8) for v = 1 ie reduced to the system (2.8) with v = 2, cor-
responding to the case T = (3% with m replaced by 7/B3, as considered in Section
3. Consequently, we can consider the present case as a pendulum similar to this
considered in Section 3.

For large times t = O(In(1/8)) the soliton-like solution for porosity can be again
interpreted as a filter“which is an analogy of a pendulum in the vicinity of the stable
equilibrium point.

4.5 Weak discintinuity of the velocity v,

Theorem 4.2 Let
T=p.

Consider strictly decreasing function zy(o) , satisfying (4.2), (4.3) such that

2 00
l =l [ oddo=0
oo exp(—(£15)g) 0 TP

—~ E
(Vo—zp)* = =, (4.52)
Qo
where the positive constans [T are as follows
2

max([T,17) < 5

Then asymptotic solution (4.1),(4.4) and (4.5) of the system (2.7)-(2.12), exists on
the short time interval (0,T) with any accuracy.

Leading part of this asymptotics
Mo = To(z, ) + HE (2, 8)20 + A0, 2, 1) + O(8),

s = V5 (2, 1) + Hy (2, 1) 20 + BV + Y7') + O(8%),
o = i, 1) + Hy (2, 1)z + B(®] +¥7™) + O(6%),
ol, = Vi (2,0) + H{(z,0)z0 + BV +Y{) +0(6%),
One = €0(,t) + HE"(z,t)20 + Blei + Y17") + O(8%),
ol = ol (z,0) + HE (2, 1)z + B(ef + YiT) +O(8?),
satisfies the system (2.7)-(2.12) up to order O(B).
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Here
Yo(z,t) = —0,(Vi = Vi), Hi(z,t) = —0,(H{ — H}),

and the equilibrium velocity T of the front T'p satisfies the following equation:

~ E
(Vi—z5)? = —. (4.53)

A

The functions

.Af)’zexp(— - Uo )/J exp(ASUlO )AFé) doy if Vi— x>0,

Vii—zp’ /- Vii—zp” Vi— zg
and
o o o F? N o
.Af)’:—exp(— — )/ exp(A 10 )A ' doy if Vi— zp<0.
Vbs— TE o VE)S— TE ‘/Os_ TE

are soliton-like , where
o e ~ o f
FY = (zg —V3)HE 2y — 0, Hyo 2.

The background functions V[)f, Vi, ®o, 0f and g(’; are the solutions of the Cauchy prob-
lem (4.21), (4.29) in the strip Qr. The functions HS,H({,HSI)’S,HO’S and HZ' are
the solutions of characteristic Cauchy problem (4.30), (4.31) in a sufficiently small
neighborhood Qr = {(z,t), |x — z(t)| < é,¢t € [0,T]} of the front I'r.

The amplitude of jump 8;?[3(15) of weak discontinuity of v, is defined by the nonlinear

problem:
d —— _
J0:H3 + (0. H)* + [

. 8 r(VI-T E0,®5
(T a2y T V) P00
%  200(Vi—zp) 205(V5— <)

T 1d —
—— g+ oV
2% T zat® T

|- Hg = 0. (4.54)

The fuction 8;?]3 is defined by the equation
= o d_ = d = < — — 1d73
—(Vo— xE)%azHo’ = Q[)%amHO + 0,000, H§ + 5%95-

Also the function fl\f(t) is defined by the nonhomogeniuos linear equation on I'p:

d —
EHf—i-{

T
205
where the function q, depends on the functions Vi, 0, H, 0, the function gs depends
on o), Vs, 0}, V)’ and their first derivatives.

+ . (V3, 65, 0. Hg) Y HE = g.(e5, Vi, @5, 65, VP, 83), (4.55)

Remark 4.3 Let us note that the solution of (4.80)- (4.32) exists in Qr if 6 < &y is
sufficiently small. This solution can be extended to the region Q1 so that it remains
a solition-like solution of (4.30), (4.32).
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5 APPENDIX

In the paper we presented main results for a 1-D case of the Riemann problem. As
already mentioned most of them can be also proved for 2-D and 3-D cases.

However there are additional effects accompanying multidimensional cases which
cannot appear in the 1-D case. The most important effect of this type is an instability
appearing due to the curvature of an initial profile of the velocities. The evolution
of this curvature yields instabilities connected with a local concaving of the front.
They appear, for instance, in the form of loss of symmetry of the initial data.

We demonstrate these effects with a simple 2-D example in which the initial value
problem is chosen to be either

1)

vfm(t = 07 z, y) = 07 vfy(t = 07 z, y) = BZO(O-)a

a::%lzn(x), O<z<m —o0o<y < o0,
where zo(o) has the form (3.47) and we use periodic boundary conditions in z-
direction,
or
2)

o = (y +sin(z))/8?

with other conditions being the same as above.

In Figures 4 and 5 we show the behavior of components of the fluid velocity v,, vsy,
and of the changes of porosity Il for a chosen instant of time.

Figure 4: Distribution of velocity components vy, and v, (left upper part), vs, vs, (right
upper part), and changes of the porosity (lower part) for the dimensionless time instant 0.3125 in

the first case of initial conditions
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Figure 5: Distribution of velocity components vy, and vy, (left part), vs,, vs; (right part) for

the dimensionless time instant 0.46875 in the second case of initial conditions

It is clear that, in contrast to a stable behavior of the case 1) in Fig. 4, in the
case 2) (Fig. 5) the velocity profile is loosing its symmetry. As in the 1-D case its
disturbance hase the character of a soliton wave (in the normal sections) but the
instability of the 2-D front yields a creation of a mushy region (compare the middle
part of regions shown in the Figure ).

These problems will be investigated in details in a forthcoming paper.

6 FINAL REMARKS

We have shown that the balance equation of porosity leads to a definite structure of
solutions of Riemann problems for partial velocities vy and v,. Kink-like solutions
for velocities propagate with characteristic velocities modified in the second order
terms by contributions whose sign depends on initial amplitudes.

This is conneced with the existence of two effects. In the case of a positive second
order correction of the propagation velocity there appears a Saffman-Taylor insta-
bility. On the other hand in the case of a negative second order correction we deal
with the so-called stable push displacement.

Simultaneously we have proved that disturbances of porosity propagate as soliton-
like waves accompanying the disturbances of velocity. This proves as well that the
model of porous materials used in this paper does not require additional boundary
conditions which could arise due to the additional balance equation.

We have shown as well that the model is stable in large times which is the conse-
quence of the attenuation arising due to diffusive forces.

In addition we have indicated that the existence of kink-like and soliton-like solu-
tions requires entropy-like conditions. These were formulated in the paper but their
physical interpretation in terms of thermodynamics is still missing.

It has been indicated as well that the behavior of the model depends on the choice of
relation between two small parameters of the model: the relaxation time of porosity
7 and the coupling parameter (. In the case of the same order of magnitude of these
parameters, i.e. O(7/8) =1, we deal with classical porous materials. In the second
case, when the relaxation time 7 is much smaller than 3, c.g. O(7/8) = O(B),
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we deal with granular-like maaterials. Both cases were investigated in the paper.
They are quite similar in the first order effects but they do differ considerably in the
behavior of amplitudes of the waves. This is the second order effect.

Finally let us mention that the 1-D character of the model hides certain essential
properties of waves connected with the curvature of the front. This was illustrated
by a numerical example in Appendix and it should be investigated in the forthcoming

paper.

7

10.
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