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Abstract

The paper is devoted to the asymptotic analysis of the multicomponent

model of poroelastic materials in which the porosity is described by its own

�eld equation. The model is weakly nonlinear due to the kinematic contribu-

tions and a nonlinear dependence of material parameters on an equilibrium

porosity. It is shown that the model contains two small parameters. The �rst

one describes the coupling of the skeleton (solid component) with the �uid

and its contribution through partial stresses is similar to a dynamical pressure

of extended thermodynamics. Mathematically it leads to a dispertion e�ect

similar to this appearing in the Korteweg - de Vries equation. The second

small parameter describes a relaxation of porosity. We consider two cases. In

the �rst one the order of magnitude of both small parameters is the same.

This seems to correspond to usual porous materials. In the second case the

dimensionless relaxation time is propotional to the square of the other param-

eter. We call such materials granular-like porous. They seem to correspond

to compact granular materials with hard and smooth particles.

We prove the existence of soliton-like solutions for the porosity and kink-

like solutions for the partial velocities under a natural entropy-like selection

condition which is also presented in the paper. The proof is based on the

asymptotic analysis in which two steps of approximations were investigated.

We show that the di�usive interaction force of components - a kind of an in-

ternal friction - yields decaying amplitudes of discontinuities. We show as well

that in one class of Riemann problems a Sa�man-Taylor instability appears.

The paper is divided into two parts solely for technical reasons. Therefore

the references appear after the second part. In the Appendix we show a few

examples of a numerical simulation of a two-dimensional Riemann problem.

These were obtained by dr. O. A. Vassilieva (Moscow University). The full

numerical analysis shall be presented separately.

1 Physical preliminaries

Continuous multicomponent models of porous materials with di�usion di�er from

the classical theory of mixtures due to the fact that one of the components is a

solid. This yields a microstructure whose description requires additional �elds. In

the simplest case of porous materials it is a single scalar �eld of porosity.

In a few recent works (e.g. [1; 2; 3]) a new continuous model of such porous materials

has been introduced. For the sake of brevity we call it the W-model. There are two

main features which distinguish this model from previous multicomponent models.

First of all on the basis of geometrical arguments it is argued that the porosity

satis�es a balance equation of its own. Secondly there is an additional coupling of

�eld equations which is due to changes of porosity. These two features motivate the

analysis presented in this work.
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A mathematical asymptotic analysis of this work is based on the assumption that

the coupling coe�cient is small. In this section we present the physical justi�cation

of this assumption.

Let us begin with the presentation of the linearized version of the model for poroe-

lastic materials saturated with an ideal �uid. In such a case the �elds of a continuous

model reduce to the partial mass densities of components �s, �f , the displacement

of the skeleton us, the velocity of the �uid vf , and the porosity n. Instead of the

latter we use the deviation of porosity � := n � nE from the equilibrium value

nE. The equilibrium porosity is either assumed to be constant or to be given by

a constitutive relation in which solely a dependence on partial mass densities may

appear. Further in this paper we use dimensionless quantities which shall be de�ned

further in this Section. In such a dimensionless form the relations for equilibrium

porosity are either

nE(%f ; %s) � const;

or, in a weaker form, solely

nE(%
f
0 ; %

s
0) = n0 = const; (1:1)

and

@%fnE(%
f
0 ; %

s
0) = 

f
0 = const > 0; @%snE(%

f
0 ; %

s
0) = 

s
0 = const < 0;

where %
f
0 ; %

s
0 are reference equilibrium values of the dimensionless partial mass den-

sities of �uid and skeleton, respectively.

Physical justi�cation of this extension of the original W-model shall be discussed

elsewhere. All above �elds are de�ned on the domain Q
3
t := B t � (0; T ), Bt � <3.

Within the W-model they satisfy the following set of local �eld equations

Æ mass balance equations (without mass sources!)

@t�f + div (�fvf) = 0; @t�s + div (�svs) = 0; vs := @tus; (1:2)

Æ momentum balance equations

�f (@t + (vf ; grad))vf = divTf � � (vf � vs) ; (1:3)

�s (@t + (vs; grad))vs = divTs + � (vf � vs) ;

where (vf ; grad), and (vs; grad) are scalar products, Tf ;Ts denote the partial

Cauchy stress tensors given by the following constitutive relations

Tf = �
h
p
0
f + �(nE)

�
�f � �

0
f

�
+ ��

i
1;

Ts = �s(nE)tres1+2�s(nE)es + ��1; es := sym gradus;

and p0f is a reference value of the partial �uid pressure, �(nE) denotes a coe�cient of
compressibility of the �uid component, �s(nE); �s(nE) are e�ective Lamé coe�cients

of the skeleton. � denotes the above mentioned coupling coe�cient, and � is the

permeability coe�cient;
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� balance equation of porosity

@t (� + nE) + (vs; grad) (� + nE) + div ('(nE) (vf � vs)) = �
�

�
; (1:4)

where � is a constant relaxation time of porosity. Functions �s; �s; � and ' depend

smoothly on nE. The structure of the �ux in equation (1.4), in particular the form

of the coe�cient ', is explaind in [1].

All material parameters are chosen in such a way that they satisfy thermodynamic

conditions (the second law of thermodynamics and the stability of the thermody-

namic equilibrium) if they are positive. In particular the dissipation in the system

is described by the following local dissipation function

d := � (vf � vs) � (vf � vs) +
�2

�
� 0: (1:5)

The W-model follows from the assumption that deviations of processes from the

thermodynamic equilibrium: d = 0 are small, i.e. the model is linear with respect

to the di�usion velocity vf � vs, as well as with respect to the deviation of porosity

�.

The above described model has been analysed for various steady-state processes -

also for large deformations of the skeleton, and for dynamic processes of propagation

of acoustic waves (e.g. see: [4� 9]). Results have been compared with experimental

data quoted, for instance in the book [10]. We proceed to present those results

obtained in these papers which are essential for our present work.

First of all in Table 1 we show typical orders of magnitude of various material

parameters appearing in the W-model.

Table 1

reference porosity nE 0:3
mass density of the �uid

�f
n

103 kg
m3

mass density of the skeleton �s
1�n

3� 103 kg
m3

e�ective Lamé coe�cient �s 40 GPa

coe�cient of compressibility � 106 m2

s2

coe�cient of permeability � 108 kg
m3s

relaxation time � 10�6 s
coupling coe�cient � 102 MPa

These values yield the following characteristic orders of magnitude of the �elds.
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Table 2

speeds of longitudinal acoustic waves cs; cf 3km
s

and 1 km
s

changes of the �uid mass density
����f � �

0
f

��� 0:1 kg
m3

di�usion velocity jvf � vsj 0:1 m
s

partial pressure in the �uid 0:1 MPa

partial stresses in the skeleton 200 MPa

changes of porosity j�j 10�7

We use these estimates to write the �eld equations in the dimensionless form. Vari-

ables and �elds shall be replaced by dimensionless quantities according to the fol-

lowing scheme.

t !
t

t0
; xk !

xk

L
;

vf !
vf

v0
; vs !

vs

v0
; v0 :=

L

t0

�f !
�f

�0f

; �s !
�s

�0f

; (1:6)

pf !
pf

p0f

; Ts !
Ts

p0f

:

This scheme is chosen in order to preserve the structure of �eld equations. For

instance we normalize both partial mass densities with the same reference mass

density �0f , and both velocities with the same reference value v0 in order to keep the

same form of the di�usion term: � (vf � vs) in both momentum balance equations.

Let us mention that initial values of pf ; %f are frequently heterogeneous. Then the

parameters used in normalization should be understood as (for instance) maximum

equilibrium values.

Certainly the number of independent reference parameters can be reduced according

to methods of dimensional analysis. For instance we can choose according to the

momentum balance equation for the �uid

p
0
f =

�
0
fL

t20

; t0 :=
�
0
f

�
� 10�5 s; =) L :=

s
p0f�

0
f

�2
� 10�4m; (1:7)

where we accounted for data of Table 1 and chosen �
0
f � 103 kg

m3 , p
0
f � 0:1MPa.

Now we have to compare the contributions to the partial pressure in the �uid

�

�
�f � �

0
f

�
and ��. We have

�

�
�f � �

0
f

�
= p

0
f

"
��

0
f

p0f

# 
�f

�0f

� 1

!
: (1:8)

The quantity in the square barckets de�nes the dimensionless coe�cient of com-

pressibility. For the above quoted data it has the value:
��0

f

p0
f

= 104. Simultaneously
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the changes in the round brackets are of the order (see: Table 2) 10�4. On the other

hand the second contribution has the form

�� = p
0
f

"
��0

p
0
f

#
�

�0

: (1:9)

�0 is a parameter which normalizes � to the same order as changes of mass density

in (1:8), i.e. it must be of the order 10�3. Consequently the normalized coe�cient
��0

p0
f

appearing in the square brackets has the order of magnitude 1: This should be

compared with the value 104 estimated above for the dimensionless compressibility

coe�cient
��0

f

p0
f

. Hence it is clear that the coupling term is a small correction and

we can rescale the problem in such a way that these contributions appear with a

small parameter in the �eld equations. Simultaneously the above scaling yields the

conclusion that dimensionless quantities ��0

p0
f

and �
t0

(compare: � and the value t0

in (1:7)) di�er on one order of magnitude. This di�erence may be much bigger for

systems in which the porosity relaxation time is much shorter. For instance, this

seems to be the case in granular materials made of very rigid and smooth particles.

This observation shall be usefull in further considerations. In the sequel we denote

dimensionless quantities by the same symbols as in the case of quantities possessing

physical dimensions.

2 Motivation of the mathematical problem - disper-

sion in the W-model of poroelastic materials

Bearing the above dimensional analysis in mind we consider for simplicity a 1-

D problem in the strip QT = fx 2 R
1
; t 2 [0; T ]g. However all results can be

obtained analogously for 2-D and 3-D cases. We reduce the system (1.1)-(1.4) to

the equivalent system of hyperbolic equations of the �rst order in the dimensionless

form. We have

@t (� + nE) + vs@x (� + nE) + @x ('(nE) (vf � vs)) = �
�

�
; (2:1)

and

@t�f + @x (�fvf ) = 0;

@t�s + @x (�svs) = 0; (2:2)

�f(@tvf + vf@xvf ) + @x

�
�(nE)(�f � %

f
0)
�
+ �@x�+ � (vf � vx) = 0;

�s(@tvs + vs@xvs)� @x (E(nE)�s)� �@x�� � (vf � vx) = 0;

@t�s � @xvs = 0

5



with the initial conditions

vsjt=0 = v
s
0(x) + V

s
0(x; �; �); vf jt=0 = v

f
0 (x) + V

f
0 (x; �; �);

�sjt=0 = �
s
0(x) +R

s
0(x; �; �); �f jt=0 = �

f
0(x) +R

f
0(x; �; �); (2:3)

�jt=0 = �0(x) + �0(x; �; �) �sjt=0 = @xu
0
s + F

s
0(x; �; �):

The functions E; �; ' of nE are smooth. All quantities are dimensionless and the

motion of both components is assumed to appear only in the x-direction. As usual

we denote by E an elastic coe�cient which is a dimensionless combination of �s+2�s
divided by the normalization parameter.

Equilibrium values of velocities and mass densities appearing in (2.3) are solutions

of the stationary limit problem of (1.2-3) as � = 0:

%
0
sv

0
s@xv

0
s � E(n0)@x

�
@xu

0
s

�
� �(v0f � v

0
s) = 0; (2:4)

%
0
fv

0
f@xv

0
f + �(v0f � v

0
s) = 0;

and

v
s
0 = const; %

0
sv

0
s = const; %

0
fv

0
f = const; '(nE(%

f
0 ; %

s
0)) = const; �0 = 0:

Whence one obtains that vs0; %
s
0 are constant. Equilibrium values v

f
0 ; v

s
0; %

s
0;�

s
0; %

f
0

are either any stationary solution of (2.4) in the case of nE � const, or a constant

stationary solution of (2.4) in the case of the state equation (1.1).

As already mentioned in Sec.1 an estimation of characteristic values of positive pa-

rameters � and � as well as a preliminary asymptotic analysis of a possible structure

of solutions yields the smallness of the parameter � and

� = �0�

;  = 1; 2; �0 = O(1): (2:5)

Let for simplicity �0 = 1. In the case  = 2 we shall speak about granular-like porous
materials (compare the remark at the end of Section 1). It corresponds to the class

of materials which are made of hard and smooth grains remaining in contact with

each other in the range of processes under considerations.

Taking into account (2.5) the transformation

� = �� (2:6)

yields the following form of the system (2:1� 2) with the small parameter �:

�@t�+ �vs@x� + @x ('(nE) (vf � vs)) = �
�

��1
� @tnE; (2:7)
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@t%f + @x (%fvf) = 0;

@t%s + @x (%svs) = 0;

%f (@tvf + vf@xvf) + @x

�
�(nE)(%f � %

f
0)
�
+ �

2
@x�+ � (vf � vs) = 0; (2:8)

%s(@tvs + vf@xvf )� @x (E(nE)�s)� �
2
@x�� � (vf � vs) = 0;

@t�s � @xvs = 0;

Firstly in the case � = �
2, initial data (2.3) are a small perturbation of order O(�)

of a the stationary solution of (2.4) such that �0 = v
0
s = v

0
f = 0 and %

f
0 > 0; %s0 > 0,

�s
0 are constant. The functions E; �; nE are not necesserly constant.

Secondly in the case � = �, initial data (2.3) are a perturbation of stationary solution

of (2.4) such that �0 = 0; v0f = v
0
s and %

f
0 ; %

s
0; v

f
0 ; v

s
0;�

s
0 are constant. In this case

without loss of genarality we assume that �;E; nE are constants. Then '(nE) is
constant too.

Our goal is an investigation of the evolution of solutions of system (1.2-3), when

either the functions Vf
1 ;Vs

1 ;R
f
1 ;Rs

1;F s
1 of initial data (2.3) (in the �rst case) or

Vf
0 ;Vs

0 ;R
f
0 ;Rs

0;F s
0 of initial data (2.3) (the second case) are smooth approximations

of discontinuities (strong and weak) with respect to �; �.

Recently grows an interest of physicists, mathematicians and mechanicians for the

problem of description of wave processes in media with dispersion. The simplest

model of this type with the dispersion �
2 is described by the following Korteweg -

de Vries equation

@tu+ 3@xu
2 + �

2
@
3
xu = 0; x 2 <1

; t 2 [0; T ] : (2:9)

If � = 0 this equation, similar to the Burgers equation, is quasi-linear hyperbolic.

However limit solutions as � ! 0 of the Korteweg - de Vries equation are principally
di�erent from limit solutions of the Burgers equation. For example consider the

following particular solution of the equation (2.9):

u (x; t; �) = u0 + A cosh�2 ((x� x(t))=�) ; (2:10)

where A = a
2,  = a=2, x (t) = (a2 + 6u0) t; a > 0, u0 is some constant. Indeed the

limit in D0 1 as � ! 0 of the function (u(x; t; �) � u0)=� is equal to 2aÆ(x � x(t))
2. At the same time the pointwise limit as � ! 0 of the function u(t; x; �)� u0 for

x 6= x(t) is equal to 0. However the limit as � ! 0 of the maximum of the function

u(t; x; �)� u0 is equal to A. As indicated in [11-14, 17] these solutions are in�nitely

thin soliton-like functions.

1i.e. H(x; t) is called a weak limit of the function H(x; t; �) in D
0 as � ! 0 if

for any t 2 [0; T ] the following relation holds: (H(x; t);  (x)) =
R
1

�1
H(x; t) (x)dx =

lim�!0

R
1

�1
H(x; t; �) (x)dx; 8 2 C1

0
.

2Æ(x� ') is the Dirac function: (Æ(x � ');  (x)) =  (').
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Let us analyse the equation for porosity (2.7). Considering smooth approximations

of strong discontinuities for the porosity and the velocities vs and vf in the form

of kink functions one gets soliton-like functions in all terms of the left-hand side of

this equation and a kink function in the right-hand side. This contradiction means

that a solution for � should be a soliton-like function. On the other hand if we

consider smooth approximations of weak discontonuities for vs and vf the same

analysis shows that a smooth approximation of the strong discontinuity for porosity

in the form of a kink function may exist. In the sequel we construct for W-model the

solution using two-scales asymptotic approach [11-14] which allows us to describe

singularities analogous to those which appear for the Korteweg - de Vries equation.

We show that the term �@x� (see (2.2)) plays the role of dispersion with respect to

porosity.

Proposition 2.1 Let � = �
2
, �0 = v

f
0 = v

s
0 = 0, %f0 > 0; %s0 > 0; �s

0 are constant,

satisfying (1.1), with nE 6= const. Then asymptotic solutions of any accuracy with

respect to � of system (2.7-8) exist on a �nite time interval, and they possess the

following properties: they are smooth approximations with respect to � of order

O(�) of strong discontinuities either for vf ; %f or for vs; %s;�s and the in�nitely thin

soliton function [11] of order O(�) for � along a small perturbation of characteristics

of the linearized problem to (1.2-3). These solutions have properties of solutions

of the model for a pendulum around the stable equilibrium point, i.e. any small

perturbations of the following two equlibrium velocities of the front
Æ

xE= �
q
�(n0),

Æ

xE= �
q
E(n0)=c%s0 tend to zero. c�s0 denotes the value of �

s
0 on the front.

Proposition 2.2 Let � = �, �0 = 0; %f0 = %
s
0, %

f
0 > 0; %s0 > 0; vf0 ; v

s
0;�

s
0 are con-

stant. Then there exist asymptotic solutions of any accuracy of system (2.7-8) with

the following properties: they are smooth approximations with respect to � of order

O(1) of weak discontinuities either for vf ; %f or vs; %s;�s and a smooth approxima-

tion of order O(�) of a strong discontinuity for � along a small perturbation of

characteristics of linearized problem to (1.2-3).

Next we prove the existence of a weak solution for the Cauchy problem (1.1-3), (2.3)

such that

vs = v
s
as + !s; vf = v

f
as + !f ;�s = �s

as + 's;

%s = %
s
as + ws; %f = %

f
as + wf ; � = �as + w

p
;

!s; !f ; ws; wf ; w� 2 W
1
p (QT ); 8p � 2;

and

jj!s; L2(QT )jj+ jj!f ; L2(QT )jj+ jj's; L2(QT )jj

+jjws; L2(QT )jj+ jjwf ; L2(QT )jj = O(�3=2);

jjwp
; L2(QT )jj = O(�5=2);

where vfas; v
s
as; %

f
as; %

s
as and �as are asymptotic solutions of (2.1-2).
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3 Construction of the asymptotic solution for the

propagation of the front

We consider two cases. In the �rst one the functions vfas and %
f
as are smooth approx-

imations of discontinuous functions with respect to the small parameter �, simul-

taneously the functions vsas;�
s
as and %

s
as are smooth approximations of continuous

functions. In the other case the functions vsas; %
s
as;�

s
as are smooth approximations

of discontinuous functions and the functions vf ; %f are smooth approximations of

continuous functions.

In the paper we investigate in details the �rst case, i.e. when the functions vfas and

%
f
as are smooth approximations of discontinuous functions with respect to the small

parameter �. For the second case we present results.

3.1 Strong discontinuity of vf

We proceed to investigate the �rst case, i.e. a smooth approximation of strong

discontinuities of vf and %f . We begin with the derivation of equations specifying

the leading part of asymptotics for vf and �. These should be equations having

kink-like and soliton-like solutions, respectively.

Setting � = �
2 we investigate the system (2.7), (2.8).

The ansatz for the asymptotic expansion of an unknown function � in a neighbor-

hood 
� of the propagation front �T has the form:

�as = �0(t) + �0(�; t) +
NX
j=1

�
j(�1(x; t) + Y

p
j (�; x; t)); (3:1)

where

Y
p
j = �j(�; t)) +H

p
1 (x; t)z0(�; t)); j � 1;

and

� = (x� x(t))=�2;

is a fast variable. We assume that�0 depends solely on t and�j(x; t);�j; H
p
j , z0; j �

1 are smooth bounded functions. The functions �j; z0(�; t) are smooth, bounded

soliton-like and kink-like functions, respectively, stabilized in the in�nity:

�
k d

j

d�j

d
l

d tl

d
i

d xi
(y � y

�) = 0; 8k; j; i � 0 if � ! �1 (3:2)

for y = z0 and y = �j, where

z
�

0 (t) = lim
�!�1

z0 = 0; z+0 (t) = lim
�!+1

z0 = 1;

or

z
�

0 (t) = 1; z
+
0 (t) = 0: (3:3)
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The ansatz for the smooth approximation of the strong discontinuity of velocity vf
and density %f has the form

v
f
as =

NX
j=1

�
j(V f

1 (x; t) + Y
f
j (�; x; t)); %

f
as = %

f
0(x; t) +

NX
j=1

�
j(%fj (x; t) + Y

%;f
j (�; x; t)):

(3:4)
Here

Y
f
j = H

f
j (x; t)z0(�; t) +A

f
j (�; t); Y

%;f
j = H

%;f
j (x; t)z0(�; t) +A

%;f
j (�; t); (3:5)

and d
H

f
j ;

d
H

%;f
j 6= 0; j � 1: (3:6)

The current position of the front is described by the following asymptotic formula

Æ

x (t) =
Æ

xE (t) + �
Æ

x1 (t) +O(�2):

We show further that the zero order approximation
Æ

xE is identical with either of the

two zero order approximations of two eigenvalues of �eld equations which are given

by elastic properties of both components.

On the other hand the �rst order approximation
Æ

x1 follows from the solvability

condition of the equation for the kink-like and soliton-like solutions (compare formula

(3.30)).

Notation
Further on we use the following notation

bG(t; �) = G(x; t; �)
���
x=x(t)

;

for any smooth function G(x; t; �). This is the cutting of the function G

to the following front

�T = [0�t�T�t; �t = fx 2 
; x = x(t)g:

Conditions (3.5), (3.6) mean that we are smoothing the strong discontinuities. In

relations (3.5) Af
j and A%;f

j ; j � 1 are smooth, bounded soliton-like functions. It

means that in condition (3.2) y� equals zero.

The functions V
f
j +H

f
j z0; %

f
j +H

%;f
j z0 are smooth approximations of strong discon-

tinuities.

The anzatz of asymptotic expansions for vs;�s and %s is of the form

v
s
as =

NX
j=1

�
j(V s

1 (x; t) + Y
s
j (�; x; t); %

s
as = %

s
0 +

NX
j=1

�
j(�sj(x; t) + Y

%;s
j (�; x; t)); (3:7)
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and

�s
as =

NX
j=1

�
j(�s

j(x; t) + Y
�;s
j (�; x; t));

where

Y
s
j = H

s
j (x; t)z0 +A

s
j; Y

%;s
j = H

%;s
j (x; t)z0 + A

%;f
j ; Y

�;s
j = �s

j(x; t)z0 +A
�;s
j ;

and dHs
1 =

d
H

%;s
1 =

d
H

�;s
1 = 0;

d
@xH

f
1 6= 0; and

d
@xH

%;f
j 6= 0; j � 1:

Then the functions vsj +H
s
j z0; %

s
j +H

%;s
j z0; �

s
j +H

�;s
j z0 are smooth approximations

of weak discontinuities.

The functions

V
f
j ; V

s
j ;�

s
j; %

s
j; %

f
j ;

H
f
j ; H

s
j ; H

%;s
j ; H

�;s
j ; H

%;f
j ; j � 1;

are smooth and bounded, and, on the other hand, the functions

Af
j ;A

%;f
j As

j;A
%;s
j ;A%;s

j ; j � 1;

are as before smooth, bounded soliton-like functions, satisfying condition (3.2).

Corresponding to (3.3) the outer asymptotic expansion has the following form:

V
as
s =

(
�V

s
1 (x; t) +O(�2) when x < x(t);

�(V s
1 (x; t) +H

s
1(x; t)) +O(�2) when x > x(t)

(3:8)

�as
s =

(
��s

1(x; t) +O(�2) when x < x(t);

�(�s
1(x; t) +H

�;s
1 (x; t)) +O(�2) when x > x(t)

V
as
f =

(
�V

f
1 (x; t) +O(�2) when x < x(t);

�(V f
1 (x; t) +H

f
1 (x; t)) +O(�2) when x > x(t)

%
as
s =

(
%
s
0 + �%

s
1(x; t) +O(�2) when x < x(t);

%
s
0 + �(%s1(x; t) +H

%;s
1 (x; t)) +O(�2) when x > x(t)

%
as
f =

(
%
f
0 + �%

f
1(x; t) +O(�2) when x < x(t);

%
f
0 + �(%1(x; t) +H

%;f
1 (x; t)) +O(�2) when x > x(t)

Pas = �0(t; �) + O(�);
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or

V
as
s =

(
�V

s
1 (x; t) +O(�2) when x > x(t);

�(V s
1 (x; t) +H

s
1(x; t)) +O(�2) when x < x(t)

(3:8cont:)

�as
s =

(
��s

1(x; t) +O(�2) when x > x(t);

�(�s
1(x; t) +H

�;s
1 (x; t)) +O(�2) when x < x(t)

;

V
as
f =

(
�V

f
1 (x; t) +O(�2) when x > x(t);

�(V f
1 (x; t) +H

f
1 (x; t)) +O(�2) when x < x(t)

;

%
as
s =

(
%
s
0 + �%

s
1(x; t) +O(�2) when x > x(t);

%
s
0 + �(%s1(x; t) +H

%;s
1 (x; t)) +O(�2) when x < x(t)

;

%
as
f =

(
%
f
0 + �%

f
1(x; t) +O(�2) when x > x(t);

%
f
0 + �(%1(x; t) +H

%;f
1 (x; t)) +O(�2) when x < x(t)

;

�as = �0(t; �) +O(�):

For the smooth part of the asymptotic expansions we obtain the following Cauchy

problem in the strip QT :

%
f
0@tV

f
1 + �(n0)@x%

f
1 + �(V f

1 � V
s
1 ) = 0; (3:9)

@t%
f
1 + %

f
0@xV

f
1 = 0;

%
s
0@tV

s
1 � E(n0)@x�

s
1 � �(V f

1 � V
s
1 ) = 0;

@t�
s
1 � @xV

s
1 = 0;

@t%
s
1 + %

s
0@xV

s
1 = 0;

with initial data:

V
f
1 jt=0 = V

1
f (x); V

s
1 jt=0 = V

1
s (x); �s

1jt=0 = �1
s(x);

%
f
1 jt=0 = %

1
f (x); %

s
1jt=0 = %

1
s(x):

On the other hand the amplitudes of discontinuities should satisfy the following

characteristic Cauchy problem in a su�ciently small neighborhood 
� of the front

�T :

%
f
0@tH

f
1 + �(n0)@xH

%;f
1 + �(Hf

1 �H
s
1) = 0; (3:10)

@tH
%;f
1 + %

f
0@xH

f
1 = 0;
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%
s
0@tH

s
1 � E(n0)@xH

�;s
1 � �(Hf

1 �H
s
1) = 0;

@tH
�;s
1 � @xH

s
1 = 0;

@tH
%;s
1 + %

s
0@xH

s
1 = 0;

with the Cauchy data on the front �T :

H
f
1 j�T = H(x); H%;f

1 j�T =
c
%
f
0
Æ

xE

H(x); Hs
1 j�T = H

�;s
1 j�T = H

%;s
1 j�T = 0;

which corresponds to the linear Rankine-Hugoniot conditions.

This solution can be continued as a solution of the system (3.9) either in the domain

Q
+
T = f(x; t) 2 QT ; x > x(t); t 2 (0; T )g, if z+0 = 1 (see (3.2)), or in the domain

Q
�

T = f(x; t) 2 QT ; x < x(t); t 2 (0; T )g, if z+0 = 0.

3.2 Propagation equation for the front

Now let us analyse nonlinear terms in (2.7), (2.8). One has

nE = n0 + �

�@nE
@%f

(%f0 ; %
s
0)(%

f
1 + Y

%;f
1 ) +

@nE

@%s
(%f0 ; %

s
0)(%

s
1 + Y

%;s
1 )

�

+
1

2
�
2
n@2nE
@%2f

(%f0 ; %
s
0)(%

f
1 + Y

%;f
1 )2 + 2

@
2
nE

@%f@%s
(%f0 ; %

s
0)(%

f
1 + Y

%;f
1 )(%s1 + Y

%;s
1 )+

@
2
nE

@%2f

(%f0 ; %
s
0)(%

s
1 + Y

%;s
1 )2

o
+O(�3):

Also we have

@x

�
�(nE)(%

f
as � %

0
f )
�
= ��(n0)@x(%

f
1 + Y

%;f
1 ) + �

2

�
�(n0)@x(%

f
2 + Y

%;f
2 )+

+�0(n0)(%
f
1 + Y

%;f
1 )@x

�@nE
@%f

(%f0 ; %
s
0)(%

f
1 + Y

%;f
1 ) +

@nE

@%s
(%f0 ; %

s
0)(%

s
1 + Y

%;s
1 )

��
+O(�3):

Using equations for mass densities in (2.8), one obtains

@tnE = NE � 
s
0%

s
0@xvs � 

f
0%

f
0@xvf ;

where

NE = �@%fnE@x
�
(%f�%

f
0)vf

�
�@%snE@x

�
(%s�%s0)vs

�
�@%fnE vf@x%

f
0�@%snE vs@x%

s
0�

(@%fnE � 
f
0 )%

f
0@xvf � (@%snE � 

s
0)%

s
0@xvs:

Then it is not di�cult to show that NE = O(�).

Substituting the expansions �as; v
f
as and %

f
as into (2.7), (2.8) one gets from the lowest

approximation ( of the order O(1=�)) :
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Lemma 3.1 Strong discontinuities cannot exist simultaneously for vs and vf . A

strong discontinuity of vs yields a weak discontinuity of vf and vice versa.

Propagation velocities of the fronts of strong discontinuity of vs and vf satisfy the

equation

Æ

x
2

E=
E(n0)c%s0 ; (3:11)

or
Æ

x
2

E= �(n0); (3:12)

respectively.

Comment 1 In what follows we consider in detail the case of a strong discontinuity

for vf . For the case of a strong discontinuity for vs we solely quote general results.

Let us denote

�N =
NX
j=0

�
j�j; Pp

N =
X
j=1

�
j�j; x

�
N (t) =

NX
j=0

�
j
xj(t);

Vs
N =

NX
j=0

�
j
V

s
j ; V

f
N =

NX
j=0

�
j
V

f
j ; Y

s
N =

X
j=1

�
j
Y

s
j ; Y

f
N =

X
j=1

�
j
Y

f
j ;

and use the fact that in 
� any smooth function g(�; x; t) admits an expansion

g(�; x; t) =
NX
j=0

1

j!

@
j

@xj
g

���
�
�
j(�1+�)j +O(jx� x(t)jN+1):

We need the lemma following from the stabilization condition (3.2):

Lemma 3.2 Let the function y(�) satisfy stabilization condition (3.2) and � =
(x� x(t))=�k

; k � 1. Then for any smooth function G one has

G(x; t)y0((x� x(t))=�k) = bG(x; t)y0((x� x(t))=�k)

+�k @

@t

bG(x; t)�y0((x� x(t))=�k) +O(�2k):

Proof. Let us expand the function G in the Taylor series on the front �T . One

obtains:

G(x; t) = bG(t) + d@xG(t)(x� x(t)) +O((x� x(t))2) =

= bG(t) + �
k d@xG� +O(�2k�2);

and

G(x; t)y0 = bG(x; t)y0 + �
k d@xG(t)� y0 +O(�2k):
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Due to (3.2) �
2jy0j < C2 and, consequently, O((x�x(t))2)y0((x�x(t)=�k) = O(�2k).

Now let us substitute (3.1), (3.4), (3.6), (3.7) in (2.7). Using a standard procedure

one obtains the following relation for the functions �N and Pp
N :

�@t(�N + �N) +
�N

�
+ @x('(nE)(V

f
N + Y

f
N � V

s
N � Y

s
N)) +

1

�

�
�

Æ

xN �0N +�N

+(V s
N + Y

s
N)�

0

N +
d

d�
('(nE)(V

f
N + Y

f
N � V

s
N � Y

s
N) = �

1+N
f
p
N(�; x; t); (3:13)

where Y 0 = d
d�
Y , f

p
N 2 C

1(
� �R
1 � [0; T ]) is some function bounded in the norm

C(
�). It should be noted that in (3.13) the slow variables x and t and the fast

variable � are assumed to be independent.

The leading part of the asymptotic expansion of (2.7) has the form:

�@t�0 +
�0

�
�

Æ

x0 �
0

0 +�0 ++
d

d�
('(n0)(Y

f
0 � Y

s
0 ) = O(1):

Whence the function �0(t; �) de�nes a boudary layer with respect to initial data

�@t�0 +
�0

�
= 0 ! �0(t; �) = �0

0 exp(�t=(�
2)); �0

0 = const;

and one gets the following equation for the function b�0

�
Æ

xE
b�00 + b�0 +

�
'(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�(Y s

1 )
0 = 0: (3:14)

Condition 3.1 Let us assume that the initial data �
f
0 and �

s
0 are such that

'(n0)�
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) > 0 on �T :

Upon substitution of (3.4) into (2.8) one obtains:

�
Æ

xE (
d
Y

%;f
1 )0 + b%s0(dY f

1 )
0 = O(1):

Obviously due to (3.2) the following equation holds true

Æ

xE
d
Y

%;f
1 = c%s0dY f

1 : (3:15)

Analogously, from equations (2.10) we obtain:

Æ

xE
c
%
f
0(
c
Y 1
1 )
0 + �(nE)(

d
Y

%;f
1 )0 = 0:
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This equation has a nontrivial solution

d
Y

%;f
1 = �

c
%
f
0
Æ

xE

d
Y

f
1 ; (3:16)

if

(
Æ

xE)
2 = �(n0): (3:17)

Thus from (3.17) it follows that discontinuities of vs and vf cannot exist simultane-

ously. Indeed, the front of the smooth approximation to the strong discontinuity of

vf moves with velocity �
q
�(n0) but the front of the smooth approximation to the

strong discontinuity of vs moves with velocity �
q
E(n0)=c%s0. However, due to the

physical interpretation (characteristic speeds of the so-called P1 - and P2 - waves)q
E(n0)=c%s0 6= q

�(n0):

Let us de�ne the functions

d
Y

f
1 =

d
H

f
1 (t)z0(�; t)

d
Y

%;f
1 =

d
H

%;f
1 (t)z0;

where d
H

%;f
1 =

c
%
f
0
Æ

xE

d
H

f
1 : (3:18)

The kink-function z0 will be de�ned below.

Let us note that the equation (3.18) de�nes the relation between the jumps of the

velocity vf and the density %f ( the so-called Rankine- Hugoniot condition on the

front of propagation). Equation (3.17) is the equation for the propagation velocity
Æ

xE of the front �T .

Lemma 3.2 is proved.

Let us note that functions V
f
1 ; H

f
1 ; z0;�0 are still unknown.

3.3 General result

Now we can formulate the general result. We show that pro�les of solutions depend

on the initial propagation velocity
Æ

x jt=0 of the front �T , the initial jump H
f
1 jt=0 of

the velocity vf and the initial correction
Æ

x1 jt=0 to the propagation velocity of the

front.

The results of the previous sections can be summarized in the form of the following

Theorem 3.1 Let

� = �
2
;
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and the following inequalities hold:

1 +
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)
> 0; and '(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) > 0:

Let us suppose that the propagation velocity of the front �T is de�ned by the equation

Æ

x
2

E= �(n0);

and that the �rst correction to the propagation velocity of the front is described by

the equation:

Æ

x1=
d
V

f
1 +

1

2

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 : (3:19)

Then asymptotic solutions (3.1), (3.4), (3.7) exist with any accuracy on the short

time interval (0; T ). The leading part of this asymptotics

v
s
as = �(V s

1 (x; t) +H
s
1(x; t)z0(�; t)) +O(�2);

�s
as = �(�s

1 +H
�;s
1 z0(�; t) +O(�2);

v
f
as = �(Uf

1 (x; t) +H
f
1 (x; t)z0(�; t)) +O(�2);

%
s
as = %

s
0(x) + �(%s1(x; t) +H

%;s
1 z0) +O(�2);

%
f
as = %

f
0(x) + �(%f1(x; t) +H

%;f
1 (x; t)z0) +O(�2);

�as = �0(t; �) + �0(�; t) +O(�);

satis�es system (2.7), (2.8) up to the order O(�).

The background functions V
f
1 ; V

s
1 ; %

f
1 ; %

s
1 and �s

1 are the solution of the Cauchy prob-

lem (3.9) in the strip QT . The functions H
f
1 ; V

s
1 ; %

f
1 ; %

s
1 and �s

1 solve the character-

istic Cauchy problem (3.10).

Also one has

�0(t; �) = �0
0 exp(�

t

�2
); �0

0 = const :

�0 is the soliton-like function

�0 =
c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(
d
H

f
1 )

2
z0(1� z0); (3:20)

where the kink-like function z0 satisfying (3.2) is a strictly monotonic solution of

the nonlinear equation�
'(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)� Æ

xE
c
%
f
0

d
H

f
1

�
1+

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(1�2z0)

�
z
0

0 = (3:21)

= �c%f0�1 + c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 z0(1� z0):
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Moreover the function z0 increases if

d
H

f
1 < 0 t 2 [0; T ]; (3:22)

and it decreases if d
H

f
1 > 0 t 2 [0; T ]:

The strictly monotonic bounded solution of nonlinear equation (3.10) exists if the

following condition is satis�ed:

���dHf
1

��� <
�
'(n0)�

c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�c

%
f
0

q
�(n0)

�
1 +

c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

� : (3:23)

Amplitude
d
H

f
1 of the jump of strong discontinuity for vf is de�ned uniquely as the

smooth solution of the following ordinary di�erential equation

2
c
%
f
0

d

dt

d
H

f
1 + �

d
H

f
1 = 0; d

HF
0 jt=0 = H

f
1 (0); (3:24)

i.e. d
H

f
1 (t) = H

f
1 (0) exp(�

1

2%f0
t);

which is, of course, the decreasing function.

Comment 2 Inequalities (3.22) de�ne the time of existence of asymptotic solutions.

They form an entropy-like condition for the jump of discontinuity of vf .

3.4 Soliton-like solution for porosity

Now we �nd the functions z0 and �0.

Lemma 3.3 Let the correction
Æ

x1 of the propagation velocity
Æ

xE of the front �T

satisfy the equation:

Æ

x1=
d
V

f
1 +

1

2

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 :

Then the soliton-like function �0 has the form:

�0 =
c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(
d
H

f
1 )

2
z0(1� z0): (3:25)

The kink function z0 is strictly monotonic solution of the nonlinear equation�
'(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)� Æ

xE
c
%
f
0

d
H

f
1

�
1+
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) frac�0(n0)�(n0)�(1�2z0)�z00 =

18



= �c%f0�1 + c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 z0(1� z0); (3:26)

satisfying the Cauchy data (3.2). Here the variable t is a parameter.

The function z0 increases if

d
H

f
1 < 0 t 2 [0; T ]; (3:27)

and it decreases if d
H

f
1 > 0 t 2 [0; T ]:

The solution of (3.26) exists on the time interval (0; T ) in which the following in-

equalities hold:

1 +
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)
> 0; '(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) > 0;

and ���dHf
1

��� < '(n0)�
c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�

1 +
c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�c
%
f
0

q
�(n0)

: (3:28)

The �rst correction to the equations (2.8) yields:

�
Æ

xE
c
%
f
0(
d
Y

f
2 )

0 + �(n0)(
d
Y

%;f
2 )0 =

�
Æ

x1
c%s0+ Æ

xE %
f
1 �

c
%
f
0

d
V

f
1 )(

d
Y

f
1 )

0

��00 � 2
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0) c

%
f
0

�(n0)
Y

f
1 (Y

f
1 )

0

; (3:29)

�
Æ

xE (
d
Y

%;f
2 )0 +

c
%
f
0(
d
Y

f
2 )

0 = (
Æ

x1 �
c
%
f
1 �

d
V

f
1

c
%
f
0
Æ

xE

)(Y f
1 )
0 � 2

c
%
f
0
Æ

xE

d
Y

f
1 (
d
Y

f
1 )

0

:

The system (3.29) has the solution

Æ

xE
d
Y

%;f
2 =

c
%
f
0

d
Y

f
2 +

�
Æ

x1 �
c
%
f
1 �

d
V

f
0

c
%
f
0
Æ

xE

�
Y

f
1 �

c
%
f
0
Æ

xE

�
Y

f
1

�2
;

if the following compatibility condition is satis�ed

2
c
%
f
0

�
Æ

x1 �
d
V

f
1

�
(
d
Y

f
1 )

0 � 2
c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
Y

f
1 (Y

f
1 )

0 = �00: (3:30)

Integrating (3.30) one gets

�0 = 2
c
%
f
0

�
Æ

x1 �
d
V

f
1

�d
Y

f
1 �

c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(Y f

1 )
2
: (3:31)
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From (3.30) one can de�ne the �rst correction
Æ

x1 for the velocity
Æ

xE of the front �T :

2
c
%
f
0

�
Æ

x1 �
d
V

f
1

�
=
c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 :

Then the expression (3.31) for �0 can be simpli�ed

�0 =
c
%
f
0

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(
d
H

f
1 )

2
z0(1� z0): (3:32)

Comment 3 Let us assume that

1 +
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)
> 0; and '(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) > 0: (3:33)

The �rst one follows from the physical assumption (1.1) while the second one limits

the �ux function '.

Substituting (3.32) into (3.14) one gets an equation for the kink function z0:�
'(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)� Æ

xE
c
%
f
0

d
H

f
1

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(1� 2z0)

�
z
0

0 =

= �c%f0�1 + c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 z0(1� z0): (3:34)

Condition 3.2 The amplitude
d
H

f
1 should be bounded

���dHf
1

��� <
�
'(n0)�

c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�c

%
f
0

q
�(n0)

�
1 +

c
%
f
0
@nE
@%f

(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

� ; t 2 [0; T ]; (3:35)

for the �nite time of existence of the soliton-like solution.

Obviously under condition (3.35) equation (3.34) has the unique strictly monotonic

solution z0 satisfying (3.2). The function z0 increases ifd
H

f
1 < 0 t 2 [0; T ]; (3:36)

and it decreases if d
H

f
1 > 0 t 2 [0; T ]:

Simultaneously

lim
�!�1

z0 = 0; lim
�!1

z0 = 1;

or

lim
�!�1

z0 = 0; lim
�!1

z0 = �1:

Comment 4 The product (
d
H

f
1 z0) is always decreasing. Hence the inequality (3.36)

is the entropy-like condition for the jump of discontinuity of vf .

Lemma 3.3 is proved.
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3.5 Negative soliton-like solution

Let us formulate the similar result for the case of the �rst correction
Æ

x1 of the prop-

agation velocity of the front
Æ

xE corresponding to the negative soliton-like solution

of the system (3.14), (3.30).

Theorem 3.2 Let

� = �
2

and the following inequalities hold:

1 +
c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) �0(n0

�(n0)
> 0; and '(n0)�

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0) > 0:

Let us suppose that the propagation velocity of the front �T is de�ned by the equation

Æ

x
2

E= �(n0)

and the �rst correction to the propagation velocity of the front is described by the

equation:

Æ

x1=
d
V

f
1 �

1

2

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 : (3:37)

Then the asymptotic solution of (3.1), (3.4), (3.7) exists with an arbitrary accuracy

on the short time interval (0; T ). The leading part of this asymptotics

v
s
as = �(V s

1 (x; t) +H
s
1(x; t)z0(�; t)) +O(�2);

�s
as = �(�s

1 +H
�;s
1 z0(�; t) +O(�2);

v
f
as = �(Uf

1 (x; t) +H
f
1 (x; t)z0(�; t)) +O(�2);

%
s
as = %

s
0(x) + �(%s1(x; t) +H

%;s
1 z0) +O(�2);

%
f
as = %

f
0(x) + �(%f1(x; t) +H

%;f
1 (x; t)z0) +O(�2);

�as = �0(t; �) + �0(�; t) +O(�);

satis�es system (2.7)-(2.12) up to the order O(�).

The background functions V
f
1 ; V

s
1 ; %

f
1 ; %

s
1 and �s

1 are the solution of the Cauchy prob-

lem (3.9) in the strip QT . The functions H
f
1 ; V

s
1 ; %

f
1 ; %

s
1 and �s

1 satisfy the charac-

teristic Cauchy problem (3.10).

Also one has

�0(t; �) = �0
0 exp(�

t

�2
); �0

0 = const :

�0 is the soliton-like function

�0 = �c%f0�1 + c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(
d
H

f
1 )

2
z0(1 + z0): (3:38)
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The kink-like function z0 is strictly monotonic solution of the nonlinear equation�
'(n0)�

c
%
f
0

@n

@%f
(
c
%
f
0 ;
c%s0)+ Æ

xE
c
%
f
0

d
H

f
1

�
1+

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�
(1+2z0)

�
z
0

0 = (3:39)

=
c
%
f
0

�
1 +

c
%
f
0

@n

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 z0(1 + z0);

satisfying the following conditions in in�nity

lim
�!�1

z0 = �1; lim
�!�1

z0 = 0;

or

lim
�!�1

z0 = 0; lim
�!�1

z0 = �1:

Hence the function z0 increases if

d
H

f
1 > 0 t 2 [0; T ]; (3:40)

and it decreases if d
H

f
1 < 0 t 2 [0; T ]:

The strictly monotonic bounded solution of nonlinear equation (3.39) exists if the

condition (3.23) holds.

The amplitude
d
H

f
1 of jump of strong discontinuity of vf is de�ned uniquely as a

smooth solution of the ordinary di�erential equation (3.24), so that

d
H

f
1 (t) = H

f
1 (0) exp(�

1

2%f0
t);

is the decreasing function.

3.6 Comments.

We have shown above that the asymptotic solution has a strongly de�ned structure

of the leading part. Namely:

1) the monotonic increment of the leading part of asymptotic solution to vf

d
H

f
1 (t)(z

+
0 � z

�

0 ) > 0; t 2 (0; T );

corresponds to the negative leading part of the asymptotic solution for � and vice-

versa. Hence one has always�
(
d
Y

f
1 )

+ � (
d
Y

f
1 )

�

�
sign�0 < 0 t 2 (0; T ): (3:41)
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2) the following inequality, which is the consequence of the relation (3.18)

Æ

xE

�
(
d
Y

f
1 )

+ � (
d
Y

f
1 )

�

��
(
d
Y

%;f
1 )+ � (

d
Y

%;f
1 )�

�
=

=
Æ

xE
d
H

f
1
cH%;f
1 (z+0 � z

�

0 )
2
> 0 t 2 (0; T ); (3:42)

holds true, i.e. the sign of the product
�
(
d
Y

f
1 )

+ � (
d
Y

f
1 )

�

��
(
d
Y

%;f
1 )+ � (

d
Y

%;f
1 )�

�
corre-

sponds to the sign of the propagation velocity of the front.

Let us investigate the in�uence of the behavior of the leading part of the amplitude

H
f
1 on the pro�le of the function Y

f
1 in a neighborhood 
� of �T .

Due to equation (3.10) there exists a potential function Z(x; t) such that

@tZ = %
f
0H

f
1 ; @xZ = �H%;f

1 in 
�;

because, according to the Cauchy data, the functions Hs
1 ; H

%;s
1 may be zero in a

neighborhood 
0� 2 
�. Then condition (3.18) on �T can be rewritten as

Æ

xE @xZ + @tZ =
d

dt
Z = 0 t 2 (0; T ):

Hence we can suppose that on the propagation front

Zj�T = 0: (3:43)

The system of the �rst two equations (3.10) can be reduced to the equation

@
2
tZ � �(n0)@

2
xZ +

�

%
f
0

@tZ = 0 in 
T : (3:44)

After the transformation

� =
1

2
(t�

x

Æ

xE

); � =
1

2
(t +

x

Æ

xE

);

(3.44) has the form

@�@� Z +
�

2%f0
(@� + @�)Z = 0; (3:45)

in a neighborhood of the line � = 0 if
Æ

xE=
q
�(n0) or � = 0 if

Æ

xE= �
q
�(n0) such

that Zj�=0 = 0 or Zj�=0 = 0, respectively.

A solution of the problem (3.45) is sought in the form:

Z =
X
j�1

aj(�)
�
j

j!
or Z =

X
j�1

aj(�)
�
j

j!
;

depending on whether � = 0 or � = 0. We show that it corresponds to the following

coe�cients

aj(�) = Pj(�) exp(�
�

2%f0
�); or aj(�) = Pj(�) exp(�

�

2%f0
�);
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where Pj are polynomials of degree j � 1; j � 1.

To be speci�c let us consider the case when
Æ

xE=
q
�(n0). Then for example the

coe�cient a1 satis�es the following equation

d

d�
a1 +

�

2%f0
a1 = 0 =) a1 = a1(0) exp(�

�

2%f0
�):

Hence the solution has the form:

H
f
1 (x; t) =

1

%
f
0

@t

�X
j�1

Pj(
1

2
(t+

x

Æ

xE

)) exp(�
�

4%f0
(t+

x

Æ

xE

))
(t� x

Æ

xE
)j

2jj!

�
;

or

H
f
1 (x; t) =

1

%
f
0

@t

�X
j�1

Pj(
1

2
(t�

x

Æ

xE

)) exp(�
�

4%f0
(t�

x

Æ

xE

))
(t+ x

Æ

xE
)j

2jj!

�
;

and

H
%;f
1 (x; t) = �@x

�X
j�1

Pj(
1

2
(t +

x

Æ

xE

)) exp(�
�

4%f0
(t+

x

Æ

xE

))
(t� x

Æ

xE
)j

2jj!

�
;

or

H
%;f
1 (x; t) = �@x

�X
j�1

Pj(
1

2
(t�

x

Æ

xE

)) exp(�
�

4%f0
(t�

x

Æ

xE

))
(t+ x

Æ

xE
)j

2jj!

�
;

respectively.

Therefore for both cases of
Æ

xE= �
q
�(n0) the function

H(t) = H
f
1

���
�T

= a1(0) exp(�
�

2%f0
t);

is decreasing in 
T and obviously the second condition of (3.18) is ful�lled. Hence

we have four di�erent pro�les of the function Y
f
1 in 
T :

1) if
Æ

xE=
q
�(n0);

d
H

f
1 > 0; and condition (3.19) is satis�ed, then the function �0 is

positive and the function Y
f
1 being a product of z0 and H

f
1 ;
d
H

f
1 > 0; becomes faster

decreasing than z0 ahead of �T and sharper than z0 behind �T . It means that the

function Y
f
1 has a sharper pro�le. Moreover the �rst correction to the propagation

velocity of the front has the form

Æ

x1= V
f
1 +

1

2

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 ;

so that if the background function V
f
1 = 0 then the direction of

Æ

x1 coincides with

the direction of propagation velocity of the front. The latter means that the front

�T is accelerating. This case correcponds to the physically plausible situation when
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an increment of velocity vf behind the front is coupled to an increment of porosity

in 
T and vice-versa. An increment of the velocity of the front �T results in the

local opening of pores. This correcponds to the classical condition of the stable

displacement (push) [11]. Namely a denser liquid pushes the one which is less

dense:

(
d
Y

%;f
1 )� > (

d
Y

%;f
1 )+ on �T :

Local opening of pores in a neighborhood of �T induces a wave in the liquid which

accelerates �T .

2) opposite to the case 1); let
Æ

xE=
q
�(nE);

d
H

f
1 < 0; and condition (3.19) is satis�ed.

Then the function �0 is positive, the function Y
f
1 , being a product of z0 and H

f
1 ,

becomes �ater than z0 in 
T . This case is an analogy of a rarefaction wave. It

does not correspond to any physically reasonable situation, since an increment of

porosity is connected with a decrement of velosity vf ahead of the front �T .

3) if
Æ

xE=
q
�(n0);

d
H

f
1 > 0; and condition (3.37) holds true , then the function �0 is

negative and the function Y
f
1 being a product of z0 and H

f
1 ;
d
H

f
1 > 0; becomes faster

increasing than z0 ahead of �T and sharper then z0 behind �T . It means that the

function Y
f
1 has a sharper pro�le. The �rst correction to the propagation velocity

of the front has the form

Æ

x1= V
f
1 �

1

2

�
1 +

c
%
f
0

@nE

@%f
(
c
%
f
0 ;
c%s0)�0(n0)

�(n0)

�d
H

f
1 ;

so that if the background function V
f
1 = 0 then the direction of

Æ

x1 is opposite to

the direction of the propagation velocity of the front. This leads to the deceleration

of the front �T . This case correcponds to the physically plausible situation when

locally in 
T a decrement of porosity � results in a decrement of velocity vf ahead

of �T . A decrement of velocity of the front is connected with the e�ect of the local

closing of pores. In this case, opposite to the case 1), the condition of the so-called

Sa�man-Taylor instability

(
d
Y

%;f
1 )� < (

d
Y

%;f
1 )+ on �T :

holds true. This correspond to the case when a less dense liquid pushes a denser one.

Then the direction of the �rst correction
Æ

x1 is opposite to the direction of velocity
Æ

xE of �T . The local closing of pores results in a weakening of the Sa�man-Taylor

instability. The local closing of pores in a neighborhood of �T yields a re�ection

wave in the liquid which delays the front �T .

4) opposite to the case 3); let
Æ

xE=
q
�(n0);

d
H

f
1 < 0; and condition (3.50) holds true.

Then the function �0 is negative and the function Y
f
1 , being a product of z0 and

H
f
1 , becomes �ater than z0 in 
T . This is also an analogy of a rarefaction wave.

This case is physically meaningless , since there is a decrease of porosity whereas

the velosity vf increases behind �T .
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In the case of the negative velocity
Æ

xE= �
q
�(n0) we follow the same way of argu-

ment with an appropriate change of the sign. It is easy to see that in this case two

waves are physically meaningful.

5) for
d
H

f
1 < 0 and under the condition (3.19) we obtain the case 1) considered before

with z0 replaced by �z0.

6) for
d
H

f
1 < 0 and under the condition (3.37) we obtain the case 3) corresponding

to the Sa�man-Taylor instability.

Comment 5 In the case when � = �
2
we have four di�erent waves: each propaga-

tion velocity
Æ

xE of the front de�nes two waves: one is characterized by the closing

of pores and another one is characterized by the opening of pores. The analysis of

properties of these waves, i.e. an analysis of structure of the pro�les of Y
f
1 and �0

allows one to choose proper initial data. This choice is an analogy of the entropy-like

conditions which de�ne necessary and su�cient conditions of the stable solution and

necessary and su�cient conditions for the uniqueness theorem.

Comment 6 We illustrate the case 3) ( Sa�man-Taylor instability) with a numer-

ical example. We present a sequence of 10 graphs for � and vf as the functions of

x.

They were obtained for the following conditions on the front �T

vf j�=0 = �y

 
x

�2

!
; �f j�=0 = �

f
0 + �

�
f
0p
�
y

 
x

�2

!
; vsj�=0 = �sj�=0 � 0;

�sj�=0 = �
s
0; �j�=0 = 0; (3:46)

where

y = �
e
��

1 + e��
(3:47)

and the parameters were chosen to be � = 0:1, �s0 = 1, �f0 = 1
7
, � = 2:25, � = 3. The

value of the small parameter � is for real materials much smaller. However the above

choice speeds up the computer calculations without changing a qualitative behavior of

solutions. The curves presented in Figure 1 correspond to the following dimension-

less time instances f0:075; 0150; 0225; 0:300; 0:375; 0:450; 0:525; 0:600; 0:675; 0:750g.
The choice (3.47) of the function y follows as a solution of equation (3.21) in the

case of ' = 1, nE � const. In such a case the pro�le of vf forms the main part of

the solution. Evolution of this solution yields the correction of the solution in poros-

ity and, simultaneously, it is smoothing the front of the velocity vf . The coe�cient

� and its powers create a series of �lters which result in solutions of the order �,

�
2
, �

3
, and so on. Asymptotic analysis shous that the modes �

3
and higher lead

to stagnation waves. This is visible in the Figure. First two modes propagate in a

positive direction of x - axis and remaining modes stay behind the point indicationed

by the thin line in the Figure.
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Figure 1: Propagation of the soliton of porosity and of the kink of velocity vf for the case 3

27



Comment 7 (Contact problem) Asymptotic solutions constructed above allow

one to investigate the contact problem when the propagation velocity

Æ

xE (t; �) =
Æ

xE +�
Æ

x1 + : : :

of the front is known and has the form bg = (g0 + � g1(x) + : : :)j�T , where g0 is

constant. In this case if � is not constant we can de�ne uniquely the initial values

%
f
0 ; %

s
0 and the jump H

f
1 on the front. Namely for the above conditions 1), 3) with

the amplitude
d
H

f
1 (t) > 0; the following equation:

Æ

xE= �
q
�(n0) = g0; (3:46)

in which we choose the sign according to the sign of g0, together with the equation

cg1 = V
f
1 �

1

2

�
1 +

c
%
f
0

@n

@%f
(
c
%
f
0 ;
c%s0)�0(nE)

�(nE)

�d
H

f
1 ; (3:47)

determine these quantities provided we make use of the state equation

nE(%
f
0 ; %

s
0) = n0:

In equations (3.47) the sign is also chosen according to the sign of g(x)1. Con-

sequently boundary conditions for the functions vf ; vs; %s;�s and %f on �T can be

de�ned from the relation (3.10). The latter means that we de�ne the leading part of

the asymptotic solution of contact problem. Following the same procedure one can

de�ne next corrections %
f
j ; %

s
j; j � 1 to %

f
0 ; %

s
0 and H

f
j ; j � 2 to H

f
1 , using corre-

sponding equations for next corrections
Æ

xj of the velosity
Æ

xE of the front.

Let bg be a known velocity of �T and
Æ

xE the velocity of the longitudinal wave of the

second kind (P2) corresponding to the initial density %
f
0 . Then it is not di�cult to

show that the di�erence bg� Æ

xE de�nes the sign of changes of the porosity n � nE

and the amplitude of the leading part of asymptotic solution to n � nE. It means

that the acceleration of the front �T induces a local increament of porosity and,

vice-versa, a local increament of porosity accelerates the front �T . Therefore the

soliton-like solution for porosity can be interpreted as a ��lter�. It opens in the

case when a denser liquid pushes a less dense one, and it closes in the opposite case.

Consequently, in the case of the above considered Cauchy problem, the �lter prevents

the Sa�man-Taylor instability. For su�ciently small perturbations of
Æ

xE, i.e. under

the existence condition (3.23) of the kink-like solution due to the solvability condition

(3.24) for a solution of the characteristic Cauchy problem (3.10) the amplitude
d
H

f
1

of discontinuity of vf decreases in time according to (3.24) and j
Æ

x1 j ! 0. Hence

the �lter is an analogy of a pendulum in the vicinity of the stable equilibrium point.
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