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Abstract

The aim of this article is to show that moment approximations of kinetic equations

based on a Maximum Entropy approach can su�er from severe drawbacks if the

kinetic velocity space is unbounded. As example, we study the Fokker Planck equa-

tion where explicit expressions for the moments of solutions to Riemann problems

can be derived. The quality of the closure relation obtained from the Maximum

Entropy approach as well as the Hermite/Grad approach is studied in the case of

�ve moments. It turns out that the Maximum Entropy closure is even singular in

equilibrium states while the Hermite/Grad closure behaves reasonably. In particu-

lar, the admissible moments may lead to arbitrary large speeds of propagation, even

for initial data arbitrary close to global eqilibrium.

Keywords. maximum entropy, moment methods, Fokker-Planck equation, exact

solution, Grad expansion, moment realizability

1 Introduction

1.1 Objectives of this study

In this article, we study both the MaximumEntropy method and theHermite/Grad

approach as moment approximations of the Fokker Planck equation.

There are several advantages in the Maximum Entropy approach like non-negativity

of distribution functions and global symmetric hyperbolicity which are in general

not achieved with expansion methods like theHermite/Grad approach. Moreover,

the Hermite/Grad system can be identi�ed with a linearization of the Maximum

Entropy system which seems to indicate that the approach based on the Maximum

Entropy Principle is superior to the Grad expansion method.

Our main objective is to show that this impression is not justi�ed.

These observations also apply to more general cases: whenever the velocity space

in the underlying kinetic equation is unbounded, when the entropy functional is

essentially given by H(f) = �
R

IRd
f log f dc, when equilibrium states are related to

Maxwellian distributions and when velocity moments of order four and higher are

used (these assumptions are satis�ed for the Fokker Planck equation but also

for the Boltzmann equation of gas dynamics or the semiconductor Boltzmann

equation with parabolic bands). It turns out that in such cases the equilibrium
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states are located on the boundary of the domain of de�nition of the Maximum

Entropy system. Moreover, the �ux is singular in these states which leads to a

very unexpected behavior of the systems. Note that there are kinetic equations

and corresponding entropy functionals where these problems do not appear. One

example is the kinetic model of phonons as carriers of heat in crystals, see [4], [5].

Both complications do not arise in the Hermite/Grad approach which will lead to

two conclusions: �rstly, the Grad system is a bad approximation of the Maximum

Entropy system because the singular behavior is not captured. Secondly, the Grad

system is in better coincidence with the Fokker Planck equation. Thus, despite

of the disadvantages concerning positivity of even moments and hyperbolicity, the

Hermite/Grad system seems to be favorable.

We conclude the introduction with an outline of the article. In the remaining sections

of the �rst chapter, we introduce the Fokker Planck equation as well as the

basic moment approximations. In the second chapter, we then construct explicit

solutions of the Cauchy problem for the Fokker Planck equation and give analytic

formulas for the �rst �ve moments of the solution with Riemann initial data. In

chapter 3, theMaximum Entropy system is studied in more detail with respect to its

domain of de�nition and the singular behavior of the �ux. In the last chapter, the

approximation properties of both the Hermite/Grad and the Maximum Entropy

approach are investigated.

1.2 Brownian motion and the Fokker Planck equation

In 1827 the English botanist Robert Brown studied macroscopically small but

microscopically large particles that are suspended in a liquid. He observed that

the particles perform a steady irregular motion. Today this phenomenon is called

Brownian motion and the particles are called Brownian particles. Soon after its

discovery, it became evident that Brownian motion is caused by the interaction

of Brownian particles with the liquid molecules which are permanently in thermal

motion. At room temperature a Brownian particle su�ers about 1021 collisions

per second with the liquid molecules and this can be considered as a continuous

interaction process. For details see [2]. A Brownian particle with an initial speed

being larger than the thermal velocity
p
(k=m)T , is slowed down to the thermal

value, while it is accelerated to the thermal velocity when it has initially a smaller

speed than
p
(k=m)T . Here T is the (absolute) temperature of the liquid, m is the

mass of the Brownian particle, and k denotes the Boltzmann constant.

The quantitative description of Brownian motion started in 1905 with a series of

papers by Albert Einstein, see for example [6], [7] and his investigations �nally

leads to the formulation of the Fokker Planck equation which serves in our study

as the kinetic model.
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The central quantity of the kinetic model is the function W : IR+
0 � IRd� IRd ! IR+

0 ,

d=1,2,3, which is the phase density of Brownian particles. Physically speaking,

W (t;x; c) is the number density of Brownian particles in the vicinity of the phase

point (x; c) at time t. We will assume that the Brownian particles are contained

in a liquid at rest and at constant temperature T , which is not set into motion by

the motion of the Brown ian particles. Furthermore, we neglect interaction among

the particles and do not consider external forces. In this case, the evolution of the

phase density W is determined by the Fokker Planck equation, see [2],

@W

@t
+ ck

@W

@xk
=

1

�

@

@ck

�
ckW +

�
k

m
T

�
@W

@ck

�
: (1)

The positive quantity � is a relaxation time, and A. Einstein showed that � is

related to the di�usion constant D and the viscosity � of the liquid by the famous

relations

m=� =
k T

D
= 6��a ;

see [6], [7]. The positive constant a is the radius of the Brownian particle.

In the following, we will work with a scaled version of (1) by going over to new

time, space, and velocity coordinates (�t; �x; �c) according to t = ��t; x = �
p
(k=m)T �x;

c =
p
(k=m)T �c. After dropping the bar superscripts, we end up with the Fokker

Planck equation in dimensionless coordinates

@W

@t
+ ck

@W

@xk
=

@

@ck

�
ckW +

@W

@ck

�
: (2)

For theoretical investigations of equation (2), we refer to the articles of [2] and [15].

1.3 General equations of transfer and H-theorem

Based on the phase density W , other important physical quantities can be derived

by taking velocity moments. For example, the number density n : IR+
0 � IRd ! IR+

0

is given by

n (t;x) =

Z
IRd
W (t;x; c) dc: (3)

More generally, any function  : IR+
0 � IRd � IRd ! IR gives rise to the mean value

h i (t;x) =
1

n (t;x)

Z
IRd
 (t;x; c)W (t;x; c) dc: (4)

In the following, we assume that the phase space density W decays su�ciently fast

for all appearing c-integrals to be valid. This will certainly be satis�ed for the

solutions of (2) which we construct in section 2.
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The Fokker Planck equation implies a balance equation for nh i

@nh i
@t

+
@nh cki
@xk

= E + C : (5)

The production density on the right hand side of the balance equation consists of

two contributions, viz.

E = n

�
@ 

@t
+ ck

@ 

@xk

�
and C =

Z
IRd
 
@

@ck

�
ckW +

@W

@ck

�
dc: (6)

These contributions are called eigen production and collision production, respec-

tively. The collision production can be represented by two alternative but equivalent

forms:

C = �
Z

IRd

�
ckW +

@W

@ck

�
@ 

@ck
dc = �

Z
IRd
W
@ log

�
W
W eq

�
@ck

@ 

@ck
dc: (7)

Here, the newly introduced function W eq is the standard Maxwellian distribution

function which is de�ned by

W eq (c) =
1

(2�)
d
2

exp

�
�
jcj2

2

�
: (8)

In section 1.4.1 and 1.4.3 we will consider special choices for the generic function  

that will lead to moment systems relying on (5). To this end the �rst alternative of

(7) will become useful. The second alternative of (7) will be used now to establish

the H-theorem. We choose

 (t;x; c) = � log

�
W (t;x; c)

W eq (c)

�
; (9)

and de�ne entropy density, h, and entropy �ux, 'k, of the Brownian particles ac-

cording to

h (t; x) = �
Z

IRd
W (t;x; c) log

�
W (t;x; c)

W eq (c)

�
dc;

'k (t; x) = �
Z

IRd
ckW (t;x; c) log

�
W (t;x; c)

W eq (c)

�
dc:

(10)

With these de�nitions we obtain from (5) the entropy inequality

@h

@t
+
@'k

@xk
=

Z
IRd
W
@ log

�
W
W eq

�
@ck

@ log
�
W
W eq

�
@ck

dc � 0: (11)

The right hand side of the entropy inequality gives the entropy production which

is non-negative. The entropy production is zero only if W = nW eq for some c

independent n 2 IR+. This statement establishes the H-theorem for Brownian

particles. Since equilibrium is de�ned as a process where the entropy production

vanishes, we conclude that in global equilibrium, the distribution of Brownian

particles is a Maxwellian distribution.
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1.4 Moment systems of the Fokker Planck equation

For simplicity, we consider from now on the one-dimensional model problem d = 1
exclusively.

In thermodynamics the phase density is not the quantity of primary interest. Here

the main objective is the solution of initial and boundary value problems for the

velocity �rst moments. For this reason thermodynamicists do not consider the

Fokker Planck equation by itself, rather they consider the equations of balance for

the moments as the basic equations.

Assuming that, for some M 2 IN, the function c 7!W (t; x; c) is contained in the set

WM = fW 2 L
1(IR) : c 7! jcjM�1W (c) 2 L

1(IR);W � 0g (12)

we introduce the (ordinary) moments

uA (t; x) =

1Z
�1

cAW (t; x; c) dc; A = 0; 1; 2; :::;M � 1: (13)

To express the dependence of the moments u = (u0; u1; :::; uM�1) on the phase

density, we sometimes use the notation u = �
(M)(W ). Note that the �rst four

moments have a direct physical interpretation: u0 = n is the number density of

Brownian particles, u1 = nv is their momentum density with v being the velocity,

u2=2 is the energy density, and u3=2� is the energy �ux.

The balance equations for the moments are easily obtained from (5) for the choice

 (t;x; c) 2 f1; c; c2; :::g

@uA

@t
+
@uA+1

@x
= PA; with PA = �AuA + A (A� 1) uA�2: (14)

We conclude that these equations form an in�nite hierarchy of coupled equations.

If we pose an initial value problem for the �rst M moments u0; u1; :::; uM�1 as the

variables, then the balance equation for the highest moment uM�1 contains the �ux

uM which does not occur among the variables and we are confronted with a closure

problem.

In thermodynamics the closure problem is solved by two assumptions: (i) the

thermodynamic state of the process under consideration is su�ciently described by

the �rst M moments as variables, where M depends on the degree of deviation of

the considered process from equilibrium, (ii) the highest moment uM is given by a

function F : IRM ! IR of the variables, and we write

uM = F (u0; u1; :::; uM�1) : (15)

There are many di�erent strategies to derive expressions for the unknown function F .

Two of these will be studied in detail now. In particular, we will answer the question,
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whether the resulting moment systems (14) constitute reasonable approximations of

the solution of the original Fokker Planck equation. Both strategies rely on the

assumption that the dependence of the phase density on time and space is in fact a

dependence on the variables u(t; x)

W (t; x; c) = Ŵ (u0 (t; x) ; u1 (t; x) ; :::; uM�1 (t; x) ; c) : (16)

Note that, in view of (16) and (15), any such relation gives rise to a closure of the

moment system.

1.4.1 The Maximum Entropy system

The determination of the function Ŵ by the Maximum Entropy Principle (MEP)

relies on the requirement that, even in non-equilibrium, the phase density should

maximize the entropy density under the constrained of prescribed values of of the

M variables u0; u1; :::; uM�1 (see for example [3]). More precisely, Ŵ (u; c) is taken
as solution of the problem

maxfH(W ) : W 2 WM ; �
(M)(W ) = ug (17)

where H is the entropy density as a functional of the phase density

H(W ) = �

1Z
�1

W log

�
W

W eq

�
dc: (18)

Note that H(W (t; x; �)) = h (t; x) as given in (10).

Formally, the solution of the constrained optimization problem (17) is obtained

with the method of Lagrange multipliers. To this end, we introduce the Lagrange

functional

L(W;�): =H(W ) + � � (�(M)(W )� u) (19)

and maximize it with respect toW for �xed Lagrange multipliers� 2 IRM . Assuming

that W� is an extremal point of L, we get

0 = ÆL(W�;�) = logW eq � 1� logW� +
M�1X
A=0

�Ac
A (20)

so that

W�(t; x; c) =W eq(c) exp

 
M�1X
A=0

�A(t; x)c
A � 1

!
: (21)

The elimination of the Lagrange multipliers by means of the constraints

uA =

1Z
�1

cAW�dc; A 2 f0; 1; :::;M � 1g (22)
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leads to two important questions: (i) Do the integrals on the right hand side of (22)

exist? (ii) Are the constraints (22) solvable for the Lagrange multipliers?

These questions will be studied in section 3. Let us assume here, for a moment, that

both questions can be answered positively. Then, we obtain a relation � = �(u)
from (22) which gives rise to the Maximum Entropy distribution function Ŵ (u; c) =
W�(u)(c). As outlined before, this particular choice leads to a speci�c closure relation
for the moment system which we call the Maximum Entropy System.

1.4.2 Properties of the Maximum Entropy system

Under the assumption that the Maximum Entropy distribution Ŵ (u; c) is well de-
�ned, we �nd the following properties.

Proposition:

The Maximum Entropy system is a quasi-linear hyperbolic system of �rst order,

that implies the entropy balance as a concave extension and can thus be brought

into the symmetric hyperbolic form.

A detailed investigation can be found in [3], [1] and [13].

1.4.3 The Hermite/Grad system

We study now a further moment system that we call Hermite/Grad System. This

moment system relies on the assumption that a phase density W (t; x; c), which
solves the Fokker Planck equation, can be expanded in a series with respect to

Hermite functions. We also refer to [8], [15], where the approach has been used for

the approximation of the Boltzmann equation and the Fokker Planck equation,

respectively.

Remark: This assumption confronts us with the problem that the positivity of

W (t; x; c) can in general not be guaranteed. This problem does not appear in the

Maximum Entropy system. However, one can show that at least for u out of certain

open neighborhoods of equilibrium states, the expansion is non-negative.

For the de�nition of Hermite polynomials and Hermite functions we consider a

weighted L2 space L2
! (IR) equipped with the scalar product

�
	; ~	

�
=

1Z
�1

	(c) ~	 (c)!(c)dc; !(c) = (W eq)�1 (c) (23)

and corresponding norm k	k2 = (	;	). A complete orthogonal basis in L2
! (IR)

is given by the Hermite functions 	A which are de�ned in terms of the Hermite
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polynomials HA:

	A (c) = HA (c)W
eq (c) ; HA (c) = (W eq)�1 (c)

�
�
d

dc

�A
W eq (c) : (24)

As particular examples, we mention the �rst six Hermite polynomials

H0 = 1; H2 = c2 � 1; H4 = c4 � 6c2 + 3;

H1 = c; H3 = c3 � 3c; H5 = c5 � 10c3 + 15c:

Apart from the orthogonality relation

(	A;	B) = A! ÆAB; (25)

there are four important identities between Hermite functions 	A of di�erent order

and their derivatives 	0

A

	A+1 = �	0

A; c	0

A + c	A � A	A�1 = 0;

c	A = A	A�1 +	A+1; 	00

A + A	0

A + A	A = 0:
(26)

Assuming that the phase density is contained in L2
! (IR), we can expand W in terms

of Hermite functions

W (t; x; c) =
1X
A=0

1

A!
hA (t; x)	A (c) ; with hA = (W;	A) : (27)

The quantities

hA (t; x) =

1Z
�1

	A (c)W (t; x; c)!(c)dc =

1Z
�1

HA (c)W (t; x; c) dc (28)

are called Hermite moments. In analogy to the former case of ordinary moments,

we obtain an in�nite hierarchy of balance equations for the Hermite moments. The

hierarchy can easily be derived from the general equations of balance for the choice

 (t; x; c) 2 fH0 (c) ; H1 (c) ; H2 (c) ; :::g and by means of the identities (26). The

resulting system reads

@hA

@t
+
@ (AhA�1 + hA+1)

@x
= �AhA: (29)

Assuming again that a thermodynamic process is su�ciently described by the �rst

M Hermite moments as variables, we consider

~W (h0 (t; x) ; h1 (t; x) ; :::; hM�1 (t; x) ; c) =
M�1X
A=0

1

A!
hA (t; x)	A (c) (30)
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as a good approximation of the exact phase density. This statement will be studied in

detail in section 4, where we compare the consequences of (30) with exact analytical

solutions of the Fokker Planck equation.

We conclude that the highest Hermite moment hM , appearing in the highest balance

equation, vanishes due to the orthogonality condition (25), and this solves the closure

problem. The resulting system of �eld equations is

@hA

@t
+

M�1X
B=0

MAB

@hB

@x
= �

M�1X
B=0

RABhB; A 2 f0; 1; 2; :::M � 1g; (31)

where the constant matrices MAB and RAB are de�ned by

(MAB) =

0
BBBBBB@

0 1
1 0 1

2 0 1
�

�
M � 1 0

1
CCCCCCA
; (RAB) =

0
BBBBBB@

0
1

2
�
�
M � 1

1
CCCCCCA
:

(32)

The system (31) with (32) is called Hermite/Grad System. Observe that the Her-

mite/Grad System can be rewritten as a set of equations for ordinary moments by

a linear transformation of variables. In the case M = 5, which we consider more

detailed in section 4, the transformation u = Qh is given by

Q =

0
BBBB@
1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 3 0 1 0
3 0 6 0 1

1
CCCCA : (33)

One easily checks that u = Qh satis�es the moment system with the closure relation

u5 = �15u1 + 10u3: (34)

1.4.4 Properties of the Hermite/Grad System

The Hermite/Grad system is simpler than the Maximum Entropy System, because

it is linear. However, it has the hyperbolicity property in common with the Entropy

Maximum System.

Proposition:

The Hermite/Grad System is a linear hyperbolic system of �rst order, that im-

plies the entropy balance as a concave extension and can thus be brought into the

symmetric hyperbolic form.
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Proof: The proof relies on the fact, that the matrixMAB hasM distinct eigenvalues.

Thus its left and right eigenvectors of dimension M exist and can be used to bring

the Hermite/Grad System into the symmetric form. Moreover, a simple calculation

of the entropy density leads to

h = �
M�1X
A=0

1

A!
hAhA < 0: (35)

We conclude that the entropy density is a concave function of the variables.

2 The initial value problem for the Fokker Planck

equation and its exact solution

2.1 The general initial value problem

We consider the Cauchy problem for the linear Fokker-Planck equation in one

space dimension

@W

@t
+ c

@W

@x
=

@

@c

�
cW +

@W

@c

�
; W (0; x; c) =W0(x; c) : (36)

To solve this initial value problem, we proceed in three steps: At �rst, we remove the

inhomogeneity of the Fokker-Planck equation by choosing a new phase density

f = f(t; x; c), which describes the deviation from equilibrium and is given by

W (t; x; c) =W eq(c) f(t; x; c) ; with W eq(c) =
1

p
2�

exp

�
�
c2

2

�
: (37)

Note that the equilibrium distribution function W eq(c) is a time and space inde-

pendent solution of the Fokker-Planck equation (1). The resulting equation for f

reads
@f

@t
+ c

�
@f

@x
+
@f

@c

�
=
@2f

@c2
: (38)

In the second step we transform the phase space variables x and c by introducing

new time dependent variables, viz.

� = x� c  (t) ; � = c  0(t) ; with  (t) = 1� exp(�t) : (39)

Note that t 7! (�(t; x); �(t; x)) are the characteristic curves of the equation

@W

@t
+ c

@W

@x
� c

@W

@c
= 0 (40)
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which is (36) up to the term W + @2cW on the right hand side.

Rewriting f in terms of � and �, we obtain a new quantity g = g(t; �; �) by

f(t; x; c) = g(t; x� c  (t); c 0(t)) : (41)

Obviously we can construct the function g from the function f in a unique way, and

vice versa. The phase space function g satis�es the following di�usion equation with

time dependent coe�cients:

@g

@t
=  2 @

2g

@�2
� 2  0

@2g

@�@�
+  02

@2g

@�2
: (42)

In the �nal step we solve the initial value problem for the di�usion equation (42).

To this end we de�ne primitives of the coe�cients in the di�usion equation,

F (t) = 2

Z t

0

 (#)2 d# = 2t� 3 + 4 exp(�t)� exp(�2t) ; (43)

H(t) = 2

Z t

0

 (#) 0(#) d# = (1� exp(�t))2 ; (44)

G(t) = 2

Z t

0

 0(#)2 d# = 1� exp(�2t) ; (45)

and set for abbreviation

�(t) = F (t)G(t)�H(t)2: (46)

The following propositions are then checked by straight forward calculations:

a) We obtain �(0) = 0 and �(t) > 0 for t 6= 0 due to the Cauchy-Schwarz in-

equality, because the functions  and  0 are not collinear on any time interval.

b) The function g
�
: IR+ � IR2 ! IR, which is de�ned by

g
�
(t; �; �) =

1

2�
p
�(t)

exp

�
�
G (t) �2 + 2H (t) �� + F (t) �2

2� (t)

�
; (47)

is a solution of the di�usion equation (42) for t > 0.

c) g
�
satis�es the normalization conditionZ +1

�1

Z +1

�1

g
�
(t; �; �) d�d� = 1 ; (48)

which can be proved by the integral substitution

u =
G� +H�
p
G�

; v =

p
� �

p
G�

: (49)
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d) For t! 0 we �nd the following asymptotic behavior:

F (t) =
2

3
t3 +O(t4); H(t) = t2 +O(t3);

G(t) = 2t+O(t2); �(t) =
1

3
t4 +O(t5):

(50)

e) If � and � are shifted by the constants �0, �0 then g
�
(t; � � �0; � � �0) is also a

solution of the di�usion equation (42).

Finally we conclude from a) - e) that g
�
is a fundamental solution of (42), i.e. the

initial value problem for the di�usion equation (42) with given initial data

g(0; �; �) = g0(�; �) (51)

is solved by

g(t; �; �) =

Z +1

�1

Z +1

�1

g0(�
0; �0) g

�
(t; � � �0; � � �0) d�0d�0 : (52)

In order to solve the original initial value problem (36) for the Fokker-Planck

equation, we conclude from (39) that for t = 0 the transformed variables � and �

meet � = x and � = c. Therefore the initial functions for the problems (38) and (42)

are the same, and we calculate g(0; �; �) = g0(�; �) from the given initial function

W0 according to

g0(�; �) = W0(�; �)=W
eq(�) : (53)

This is introduced in (52), expressing g(t; �; �) explicitly by the initial function W0:

The solution of the original initial value problem (36) then reads

W (t; x; c) = W eq(c) g(t; x� c (1� exp(�t)); c exp(�t)): (54)

To our knowledge, this solution formula has �rst been presented in [2]. Its current

derivation, however, is slightly modi�ed and is better suited to deal with Riemann

initial value problems.

2.2 The Riemann initial value problem

In order to compare the moment approximations with exact solutions of the Fokker

Planck equation, we use simple, physically realizable initial conditions, consist-

ing of two equilibrium states which coexist by some separation mechanism in dis-

joint space intervals (i.e. Riemann initial data). If the separation is removed, the

Fokker Planck process evolves with the tendency of levelling out density di�er-

ences. Relying on the linearity of the Fokker Planck equation, the Riemann

12



problem may serve as a building block for constructing further solutions. Moreover,

the Riemann solution may serve as an outstanding tool to study the evolution of

states which are initially in non-equilibrium. Note that, by reducing the height of the

initial density jump to arbitrary small values, the distance from global equilibrium

can nevertheless be controlled.

The prescribed initial data of the considered Riemann problem are

W0 (x; c) =

8<
:

nLW
eq(c) x � 0

for

nRW
eq(c) x > 0

: (55)

Here nL and nR are given positive constants and W eq(c) is the Maxwellian phase

density (37).

From (55) and (53) we calculate the initial data

g0 (�; �) =

8<
:

nL � � 0
for

nR � > 0
(56)

which corresponds to the initial value problem of the di�usion equation (42). Recall

that � = x and � = c holds only at t = 0. Since the function g0(�; �) does not depend
on �, it can be read o� from (52) that the solution g(t; �; �) is also independent on

�. In this special case the di�usion equation (42) reduces to the simple form

@g

@t
=  2 @

2g

@�2
: (57)

Thus in (52) we may avoid the �-integration for the calculation of the solution

g(t; �; �) in the following way: Let us assume that g(t; �; �) is the �-independent
solution of (57) for the Riemannian initial data (56). Then we may choose a new

function ĝ = ĝ(#; �) which does not depend on � according to

ĝ

�
1

2
F (t); �

�
= g(t; �; �): (58)

The transformation # = 1
2
F (t) of the time coordinate in (57) leads us to conclude

that ĝ solves the simple di�usion equation

@ĝ

@#
=
@2ĝ

@�2
: (59)

The initial data for ĝ are the same as for g and are given by the right hand side of

(56). There results the solution

ĝ(#; �) = nR �(�=
p
2#) + nL�(��=

p
2#); (60)

13



where �(z) denotes the Error Function

�(z) =
1

p
2�

Z z

�1

exp(�u2=2) du : (61)

From (54) and (58) we obtain immediately the explicit solution of the Fokker

Planck equation (1) for the Riemannian initial data (55):

W (t; x; c) = W eq(c)

"
nR �

 
x� c (t)p

F (t)

!
+ nL�

 
�
x� c (t)p

F (t)

!#
(62)

where  (t) = 1� exp(�t).

2.3 Ordinary moments calculated from the exact solution

In order to compare solutions of the Fokker Planck equation with those of the

moment approximations, we calculate the moments u = (u0; u1; u2; u3; u4) and u5
from the exact analytical solution (62) of the Riemann problem (36) and (55). First,

we rewrite (62) in the form

W (t; x; c) = nRW+(t; x; c) + nLW�
(t; x; c) ; (63)

where the phase densities W
�
(t; x; c) are given by

W
�
(t; x; c) = W eq(c) �

 
�
x� c(1� exp(�t))p

F (t)

!
: (64)

The Error Function obeys the relation �(z) + �(�z) = 1 which yields

W+(t; x; c) +W
�
(t; x; c) =W eq(c) : (65)

Next we derive analytical expressions for the moments

uA(t; x) =

Z +1

�1

cAW (t; x; c) dc ; A 2 f0; 1; :::; 5g (66)

in terms of the moments

u�A(t; x) =

Z +1

�1

cAW
�
(t; x; c) dc and u

eq
A =

Z +1

�1

cAW eq(c) dc : (67)

From (65) we obtain at �rst

uA(t; x) = nL u
eq
A + (nR � nL) u

+
A(t; x) : (68)

14



The �rst contribution nL u
eq
A is immediately calculated since

u
eq = (1; 0; 1; 0; 3; :::) : (69)

It remains to determine the moments u+A(t; x). Since u
+
A(t; x)! 0 for x! �1, we

may write, with  (t) = 1� exp(�t),

u+A(t; x) =

Z x

�1

@u+A
@x

(t; y) dy =

Z x

�1

Z +1

�1

�cAW eq(�c) �0

 
y � �c (t)p

F (t)

!
1p
F (t)

d�c dy:

(70)

Due to the de�nition of �, the right hand side of (70) can be simpli�ed to

u+A(t; x) =
1p
F (t)

Z x

�1

Z +1

�1

�cAW eq(�c)W eq

 
y � �c (t)p

F (t)

!
d�c dy: (71)

Using the substitution (y; �c) = (z
p
F +  2; �c+ 
z) with

�(t) =

s
F (t)

F (t) +  (t)2
; 
(t) =

 (t)q
F (t) +  (t)2

(72)

leads to

u+A(t; x) =

Z �(t;x)

�1

W eq(z)

Z +1

�1

(�c+ 
z)AW eq(c) dc dz ; (73)

where � is de�ned by

�(t; x) =
xq

F (t) +  (t)2
: (74)

The c-integration of the expressions

JA = JA(t; z; c) =

Z +1

�1

(�c+ 
z)AW eq(c) dc (75)

may easily be done, resulting in

J0 = 1; J2 = �2 + 
2 z2; J4 = 3�4 + 6�2
2z2 + 
3z3;

J1 = 
z; J3 = 3�2
z + 
3z3:
(76)

Finally, the calculation of the z-integrals in (71) relies on the recurrence relations

�0(�) = �(�) ; �1(�) = �W eq(�) ; �n+2(�) = (n + 1)�n(�)� �n+1W eq(�) (77)

for the Momentum Error Functions

�A(�) =

Z �

�1

zAW eq(z) dz : (78)
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If we use these relations and equations (68), (73) we obtain

u0 = nL + (nR � nL) �(�) ; (79)

u1 = �(nR � nL) 
W
eq(�) ; (80)

u2 = nL + (nR � nL) (�(�)� 
2�W eq(�)) ; (81)

u3 = �(nR � nL) 
 (

2�2 � 
2 + 3)W eq(�) ; (82)

u4 = 3nL + (nR � nL) (3�(�)� 
2�(
2�2 � 3
2 + 6)W eq(�)) ; (83)

u5 = �(nR � nL) 
 (

4�4 + (10
2 � 6
4)�2 � 10
2 + 15 + 3
4)W eq(�) : (84)

where


(t) =
1� exp(�t)p

2(exp(�t)� 1 + t)
; �(t; x) =

xp
2(exp(�t)� 1 + t)

: (85)

2.4 Normalized moments

In order to visualize the moments u = (u0; : : : ; u4) of the phase density W , we will

resort to the following normalization: at �rst we de�ne three functions of u

n = u0; v = u1=n; � = u2=n� v2 (86)

which represent the number density n of the Brownian particles, their average

velocity v, and the kinetic energy n�=2 of their random movement.

Next, we de�ne normalized moments of the phase density W by

ûA(t; x): =

1Z
�1

1

n(t; x)

 
c� v(t; x)p

�(t; x)

!A

W (t; x; c)dc: (87)

A straight forward calculation reveals a relation between the ordinary moments u

and û of the form

û =
1

n
L

�
�

v
p
�

�
D

�
1

�

�
u; u = nD(�)L

�
v
p
�

�
û (88)

where

L(�) =

0
BBBB@

1
� 1
�2 2� 1
�3 3�2 3� 1
�4 4�3 6�2 4� 1

1
CCCCA ; D(�) =

0
BBBB@
1

�
1

2

�

�
3

2

�2

1
CCCCA : (89)
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By construction, we always have û1 = 1; û2 = 0; û3 = 1. Taking into account

that the normalized moments of any equilibrium distribution are of the form û
eq =

(1; 0; 1; 0; 3), it is natural to introduce the functions

q(u) = û3; s(u) = û4 � 3 (90)

which measure the deviation from equilibrium. Then, using the considerations

above, we can represent any moment vector u = (u0; : : : ; u4) in a one-to-one fashion

by specifying the �ve quantities n; v; �; q; s.

2.5 Structure of the exact solution

First, we consider the moments of the Fokker Planck solution for a jump from

nL = 1 to nR = 1=2 at times t = 0:25 (solid lines), t = 0:75 (dashed lines) and

t = 1:5 (dotted lines). The number density n and the average velocity v of the

Brownian particles are given in Fig. 1 and 2.

0.5

0.75

1

-3 0 3
x

t=0.25
t=0.75
t=1.5

0

0.1

0.2

-3 0 3
x

t=0.25
t=0.75
t=1.5

Figure 1: Number density n Figure 2: Average velocity v

The moments �, q and s are shown in Fig. 3, 4 and 5 respectively.

0.9

1

1.1

-3 0 3
x

t=0.25
t=0.75
t=1.5

-0.2

-0.1

0

0.1

-3 0 3
x

t=0.25
t=0.75
t=1.5

Figure 3: Moment � Figure 4: Moment q

Another representation of the solution is obtained in the (q; s)-diagram. We calculate

q(t; x) = q(u(t; x)) and s(t; x) = s(u(t; x)) for t = 0:75, and x 2 IR as speci�ed in

the previous section.
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-0.3

0

0.3

-3 0 3
x

t=0.25
t=0.75
t=1.5 -0.15

0

0.15

-0.1 0 0.1
q

s

t=0.75

Figure 5: Moment s Figure 6: Solution in (q; s) diagram

Since at x = �1, the solution is in equilibrium, the curve x 7! (q(t; x); s(t; x)) starts
and ends in the normalized equilibrium point (0; 0) (see Fig. 6). For increasing x,
starting at x = �1, the (q; s) curve goes down into the fourth quadrant fq < 0; s >
0g, then into the upper half plane fs > 0g where it crosses the line q = 0. After

coming back into the lower half plane, it crosses s = 0 again and approaches, for

x! +1, the equilibrium point within the �rst quadrant.

For a stronger jump from nL = 1 to nR = 0:01 also at t = 0:75, the corresponding
(q; s) diagram is shown in Fig. 7.

-0.5

0

0.5

1

1.5

-0.8 -0.4 0 0.4
q

s

Figure 7: Solution for strong density jump

Again, the curves are traversed counter-clock-wise but the maximal distance from

equilibrium has much increased.

Let us now turn to the case of small jumps nL = 1, nR = 1 � " where we are

particularly interested in the asymptotic behavior of the initial value problems for

small values " � 1: If we consider only contributions that are of linear order in ",

we obtain from relations (79) to (83) and the de�nition of q and s

q = "
3(�2 � 1)W eq(�) + O("2) ; (91)

s = "
4� (�2 � 3)W eq(�) + O("2) : (92)

In a numerical study, we compare the curve x 7! (q(t0; x); s(t0; x))=" based on the

exact normalized moments with their asymptotic representations for t0 = 0:01 and
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di�erent values of " = nR � nL, namely for " = 0:5, " = 0:25 , " = 0:05. In Fig.

8, the solid line represents the asymptotic curve which is approached by the exact

Fokker-Planck curves for larger " (in decreasing order: long dashes, short dashes,

dotted). For " � 0:01, the scaled curves basically fall on top of the asymptotic one.

-0.6

0

0.6

-0.4 -0.2 0 0.2
q

s

Figure 8: Scaled solutions for di�erent density jumps

Another important observation is that, for small times t > 0, the moments depend

essentially on x=t only. In fact, since  (t) = 1� exp(�t) = t + O(t2) we �nd from

(72), (74) and (50) that


(t) = 1 +O(t1); �(t; x) = x=t +O(t1): (93)

Now we may read o� from (79)-(84) that a variation in t will not a�ect the form of

the curve x 7! (q(t; x); s(t; x)), as long as t is small enough.

3 Some properties of the Maximum Entropy system

As we have seen in section 1.4.1, the essential feature which distinguishes the Max-

imum Entropy system for u = (u0; : : : ; uM�1) from other moment systems is the

closure relation uM = F (u). It is obtained by taking the ordinary velocity moment

F (u) =

Z +1

�1

cMW�(u; c) dc (94)

of the Maximum Entropy distribution W�(u; c) which solves the constrained opti-

mization problem already introduced in (17)

maxfH(W ) :W 2 WM ; �
(M)(W ) = ug: (95)

In particular, F is only de�ned for those u 2 UM � IRM for which (95) has a unique

solution. In the following, we are going to investigate this set UM which makes up

the domain of de�nition of the Maximum Entropy system.
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3.1 Solving the Maximum Entropy problem

In section 1.4.1 we have derived the solution of (95) in the form

W�(c) = W eq(c) exp

 
M�1X
A=0

�Ac
A � 1

!
(96)

where � is determined from

uA =

1Z
�1

cAW�dc; A 2 f0; 1; :::;M � 1g (97)

Although these considerations have only been formal, a more detailed investigation

shows that the result is nevertheless correct. More precisely, whenever (97) is solv-

able for �, then (96) is the unique solution of the Maximum Entropy problem and

vice versa (see [9, 11]).

Before we use this result, let us remark that in all our considerations u should be

the moment vector of someW 2 WM (otherwise, the maximum in (95) is taken over

the empty set). Note that WM is a convex cone (because of the condition W � 0)
so that the same holds for KM = �

(M)(WM), which is an open subset of IRM , see

[11]. Another important observation is that W� is contained inWM only for � from

a certain subset �M � IRM .

In the case M = 1, we �nd in particular �1 = R and K1 = (0;1). Since any u0 > 0
can be written as c-integral of

W�(c) = W eq(c) exp(�0 � 1); �0 = 1 + logu0 (98)

we conclude that (95) is solvable for any u 2 K1. Similarly, for M = 2 we �nd

�2 = R
2 , K2 = f(u0; u1)T : u0 > 0; u1 2 Rg and any u 2 K2 can be written as

moment vector of

W�(c) =W eq(c) exp(�0 + �1c� 1); �1 = u1=u0; �0 = 1 + log u0 � �21=2: (99)

The next case, M = 3 is characterized by �3 = f� 2 R
3 : �2 < 1=2g and

K3 = f(u0 = n; u1 = nv; u2 = n(� + v2) : n > 0; v 2 IR; � > 0g: (100)

Any element of K3 can be obtained as moment vector of the Maxwellian

W (c) =
n

p
2��

exp

�
�
(c� �)2

2�

�
(101)

which can obviously be written as W� with a suitable � 2 �3. For M > 3, integra-
bility of W� leads to conditions like �M < 0 if M is odd and �M = 0, �M�1 < 0 if

M is even. Identifying �M � IRM with �M �f0g � R
M+1 , we �nd that �M = �M�1

if M > 3 is even and �M = f� 2 R
M : �M�1 < 0g [ �M�2 for M > 3 being odd.
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Lemma 1 Let M 2 N and u 2 IRM . Then, the Maximum Entropy problem (95) is

uniquely solvable if and only if u 2 UM which is given by UM = �
(M)(�M).

Proof: The cases M � 3 have already been treated above. ForM > 3, the proof
can be found in [11], section 7. Note that in this reference, the considerations are

based on the entropy H�(W ) = �
1R
�1

W logWdc. However, in the case M > 3, the

results can be used because (95) is equivalent to the Maximum Entropy problem

based on H�. Indeed, we have

H(W ) = �

1Z
�1

W logWdc+

1Z
�1

W logW eqdc = H�(W )�
1

2
(log(2�)u0+ u2); (102)

where u0 and u2 are prescribed in the case M � 3.

The result of Lemma 1 implies that for even M > 3, the set of admissible moments

are essentially those of the case M � 1 since �M = �M�1. In particular, UM is a

hyper-plane in KM so that a generic moment vector u 2 KM will not be contained

in UM . Let us therefore concentrate on the case M = 2N + 1 with N > 1.

Theorem 2 Let M = 2N + 1 for some N > 1 and assume that u 2 KM . Then,

the constrained optimization problem (95) has no solution if u 2 EM with

EM = fu 2 IRM : u = �
(M)(W�

�) + �eM ; � > 0; �� 2 �M�2g ; (103)

where eM is the M-th unit vector. In other words, UM = KMnEM .

Proof: We will show only one part of the statement which implies EM � U c
M . For

the full argument, we again refer to [11].

Our proof uses strict convexity of the function Z : �M 7! IR de�ned by

Z(�) =

1Z
�1

W�dc�
M�1X
A=0

�AuA (104)

which follows from the positive de�niteness of the matrix of second derivatives

@2Z(�)

@�A@�B
=

1Z
�1

cAcBW�dc: (105)

Indeed, taking any vector 0 6= a 2 IRM , we �nd

M�1X
A;B=0

@2Z(�)

@�A@�B
aAaB =

1Z
�1

 
M�1X
A=0

aAc
A

!2

W�dc > 0 (106)
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since W� is strictly positive and the square of a non-zero polynomial is positive up

to at most �nitely many points.

Let now u = �
(M)(W�

�) + �eM be contained in EM . In a contradiction argument,

we assume that there exists �� 2 �M with u = �
(M)(W��). Since

rZ(�) = �
(M)(W�)� u; (107)

the gradient vanishes at � = �� which therefore is the unique minimum of the strictly

convex function Z. If we consider Z on the line segment from �
� to ��, i.e.

g(s) : = Z(�� + s(��� �
�); s 2 [0; 1] (108)

we immediately conclude that g is also strictly convex and has a minimum at s = 1.
In particular, g0(0) < 0 which implies

0 > g0(0) = (��� �
�) � rZ(��): (109)

According to (107), the gradient is the di�erence between u� = �
(M)(f��) and u so

that

0 > g0(0) = (��M�1 � ��M�1)(u
�

M�1 � �uM�1) = ��(��M�1 � ��M�1): (110)

Since � > 0 and ��M�1 = 0, we conclude ��M�1 > 0 in contradiction to the assumption
�� 2 �M .

We remark that the proof of Theorem 2 relies on the fact that W� is not integrable

for �M�1 > 0. In cases where the underlying velocity space is bounded, however,

this argument does not apply and one can show that the Maximum Entropy problem

is always solvable in this case. Also, for other entropy functionals, the Maximum

Entropy distributionW� has a di�erent form and thus other integrability conditions

apply.

3.2 The domain of de�nition of the Maximum Entropy sys-

tem

Since we are particularly interested in the case of Maximum Entropy Systems with

more than three moments, we restrict ourselves to the caseM = 2N+1 with N > 1.
According to Theorem 2, we see that the domain of de�nition UM of the system is

given by UM = KMnEM . While KM has a simple geometry (an open, convex cone),

the set EM is much more complicated. Recalling that

EM = fu 2 IRM : u = �
(M)(W�

�) + �eM ; � > 0; �� 2 �M�2g: (111)

we conclude that EM is an (M � 1)�dimensional manifold in IRM which is obtained

by attaching half-lines to every point of the (M�2)�dimensional manifold consisting

of �(M)(�M�2). Using the following proposition, we �nd that UM is not convex.
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Proposition 3 Let C � IRM be open, convex, and non-empty. Let further ; 6= A �
IRM with int(A) = ; and A \ C 6= ;. Then, CnA is not convex.

Proof: The proof is elementary and uses the fact that in a neighborhood of

x 2 A\C one can �nd points from the set CnA such that x is in their convex hull.

A second important observation is that the equilibrium states ueq = �
(M)(e
W eq)

are always located on the boundary of UM . This follows immediately from the

de�nition of EM because 
e1 2 �M�2. Since the production terms PA on the right

hand side of the moment system (14) have the tendency to bring the system closer

to equilibrium, the solution will naturally be close to the boundary of the domain

of de�nition of the system. In fact, for the most simple setup, the initial value u0

will consist of piecewise constant equilibrium states so that u0(R) � @UM . In this

very natural situation, little can be said about solvability of the system. Even for

smooth solutions, the usual existence result for symmetric hyperbolic problems does

not apply since it is based on the assumption that the range of the initial value

u
0(R) is contained in a compact set of the interior of the domain of de�nition [14].

In conclusion, we can say that, although being symmetric hyperbolic, the Maximum

Entropy systems for M > 3 lack two desirable properties: �rst, the domain of

de�nition is not convex and second, the equilibrium points (i.e. the solutions of

PA(u) = 0, A = 0; : : : ;M � 1) are not located in the interior of UM .

3.3 The special case of �ve moments

To illustrate the results of the previous sections, we choose the case M = 5. In

this particular situation, it is possible to visualize the geometry of the domain of

de�nition U5 by considering the intersection with the a�ne plane

P = fu 2 R
5 : u = (1; 0; 1; q; 3 + s)T ; q; s 2 Rg (112)

In [10] it is shown that the intersection P \K5 is given by

K̂5 = f(1; 0; 1; q; 3 + s)T : q 2 R; s > q2 � 2g: (113)

The point (q; s) = (0; 0) is the only equilibrium point in K̂5. Intersecting the four�

dimensional manifold E5 of inadmissible moments with the plane P , we �nd the half

line P \ E5 = Ê5 = f(1; 0; 1; 0; 3 + s)T : s > 0g which emanates at the equilibrium

point. In Fig. 9 which shows Û5 = K̂5nÊ5 = U5 \ P , it is clearly visible that U5 is

not convex because of the inner boundary Ê5.
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Figure 9: Cut through domain of de�nition of the Maximum Entropy system

It is important to note that the set Û5 contains all essential features of U5. Mathe-

matically, this property manifests itself in a bijection between U5 and the product

of the simple cone K3 and Û5. Indeed, as we have seen in section 2, any u 2 U5 is

uniquely characterized by its �rst three moments (u0; u1; u2) and the normalized mo-

ments û 2 Û5. Suppressing the information about the �rst three moments u0; u1; u2,

we can thus visualize a general moment vector by the two quantities q(u) = û3
and s(u) = û4 � 3 in the (q; s)-plane P . Since the normalization maps the set of

inadmissible vectors E5 bijectively onto the half�line Ê5, we can easily decide based

on q(u) and s(u) whether u 2 U5. More precisely, if q(u) = 0 and s(u) > 0, the
vector u is not in U5.

Conversely, it is enough to know the �ux function for the moments û(q; s) =
(1; 0; 1; q; 3 + s)T 2 Û5 because any vector u 2 U5 can be composed of some û(q; s)
and (u0; u1; u2) 2 K3 and the relation between F (u) and F (û(q; s)) is known ex-

plicitly

F (u) = n
�
�
5

2F (û) + 5�2(s+ 3)v + 10�
3

2 qv2 + 10�v3 + v5
�
: (114)

Let us apply this observation to the investigation of the �ux function u5(u) = F (u)
of the Maximum Entropy system at the inner boundary Ê5.

Proposition 4 Let û(q; s) = (1; 0; 1; q; 3 + s)T 2 Û5. We then have the estimate

qF (û(q; s)) � 2s.

The proof of this important proposition is found in [10]. Investigating F (û(q; s))
for some �xed s > 0 and jqj ! 0, we see that F is singular at Ê5 and with

jF (û(q; jqj1��))j � 2jqj��; � > 0 (115)

it even follows that the �ux is singular in the equilibrium point û(0; 0).

3.4 A Formal Linearization of the Maximum Entropy system

Since the evaluation of the �ux function F in the Maximum Entropy system is

complicated it is natural to think of a linearization especially since solutions are
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typically close to an equilibrium state. As we have seen, however, a linearization in

equilibrium points is an �analytical crime� for two reasons: �rstly, equilibrium points

are located on the boundary of the domain of de�nition and secondly, the �ux is

singular at these points. The reason why this approach is nevertheless pursued is

also twofold: since the �ux function is not explicitly given, the singularity is not

directly visible and, as we will see in the following, the Taylor expansion is formally

possible, despite the singular behavior.

In order to derive the �linearized� system, we have to expand u5(u) = F (u) which is

the only non-linear term in the equation. Since the equilibrium distributions are of

the form W�
eq = nW eq with n > 0 (i.e. �eq = (1 + logn)e1), the moments at which

we want to expand are of the form u
eq = n�(M)(W eq). To avoid expansion in the

singular point ueq itself, we �rst slightly perturb the state to ueq" 2 int(UM). Then,
we can use that the mapping u 7! � = �(u) is in�nitely smooth and invertible

on int(UM) (see [11]). A linearization of F (u) =
1R
�1

cMW�(u)dc is obtained by

linearizing W�(u) around u
eq
" . Afterwards, we go to the limit ueq" ! u

eq in such a

way that all terms in the expansion remain bounded. In the case of �ve moments,

the way in which ueq has to be approached can be visualized in the (q; s) plane. By
choosing the s-component always negative, for example, the vector ûeq" never enters

the region where Proposition 4 predicts a singular behavior.

We thus have

W "
lin(u; c) =W�

eq
"
+

M�1X
A;B=0

@W�
eq
"

@�A

@�A

@uB

����
u
eq
"

(uB � u
eq
"B): (116)

Using that @W�

@�A
= cAW� and the fact that

�
@�A
@uB

�
AB

is the inverse of the matrix

�
@uA

@�B

�
AB

with
@uA

@�B
=

1Z
�1

cAcBW�dc; (117)

we get

W "
lin(u; c) =

0
@1 +

M�1X
A;B=0

cA

 
@u

@�

����
�
eq
"

!
�1

AB

(uB � u
eq
"B)

1
AW�

eq
"
: (118)

Letting now " tend to zero, we obtain

Wlin(u; c) =

 
1 +

M�1X
A;B=0

cASAB(uB � u
eq
B )

!
nW eq (119)

where (SAB) is the inverse of the positive de�nite matrix
1R

�1

cAcBnW eqdc which can
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be calculated explicitly. Finally, we obtain the linearized �ux function

F lin(u) =

1Z
�1

cMWlin(u; c)dc =

= n

0
@ 1Z
�1

cMW eq dc+
M�1X
A;B=0

aAB(uB � u
eq
B )

1Z
�1

cM+AW eq dc

1
A :

In the particular case of �ve moments, the matrix (SAB) is given by

(SAB) =
1

n

0
BBBB@

15
8

0 �5
4

0 1
8

0 5
2

0 �1
2

0
�5

4
0 2 0 �1

4

0 �1
2

0 1
6

0
1
8

0 �1
4

0 1
24

1
CCCCA (120)

so that the linearized �ux function is

F lin(u) = �15u1 + 10u3: (121)

Note that this expression is identical to (34) obtained in the Hermite/Grad ap-

proach. The same observation is, in fact, true for the case of general M .

4 Comparison of moment approximations

In order to compare the �ve moment Maximum Entropy approach and Grad's

method with the exact solution of the Fokker Planck equation, we use the Rie-

mann problem discussed in section 2. We remark that for small jumps in the initial

density, the distance of the solution from global equilibrium can be controlled. In the

framework of the moment methods, this implies that even with only �ve moments,

one should get satisfactory approximations if the jump is su�ciently small.

Unfortunately, the natural idea to solve all problems for the same initial values in

order to compare the results, does not work. The reason is that the initial moment

vectors

u
0(x) =

(
nLu

eq x � 0

nRu
eq x > 0

u
eq = (1; 0; 1; 0; 3) (122)

are located exactly on the boundary @U5 of the domain of de�nition of theMaximum

Entropy System. Thus, for the Maximum Entropy System, it is not clear whether

there exists a solution at all. Practical problems in numerical approximations are

related to the singularity of the �ux in equilibrium points. Since the transport of

information can be in�nitely fast, the use of explicit schemes is ruled out because
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the CFL condition enforces arbitrarily small time steps. An implicit method, on the

other hand, requires the solution of non-linear equations involving the singular �ux

function, where solvability is again a problem.

In view of these di�culties, which already indicate a severe drawback of the Max-

imum Entropy system, we resort to some indirect argument: given the solution of

the Fokker Planck equation for some Riemann initial value with small jump,

we assume that the solutions of the Hermite/Grad equations and the Maximum

Entropy system exist and are close to the Fokker Planck solution. This is the

basic idea of all moment methods. Hence, if we plug the Fokker Planck so-

lution into the moment systems, we expect a reasonably small residue. Since, by

construction, the �rst four equations in both systems are satis�ed exactly by the

Fokker Planck solution u, a residue appears only in the last equation and has

the form @x(F
lin(u) � u5) for the Hermite/Grad system and @x(F (u) � u5) for

the Maximum Entropy system. Since u and u5 are explicitly given in (79) to (84),

the residues can easily be calculated. In addition, we also compare the distribution

functions following from the three approaches.

4.1 The residues

In section 2, we have seen that for small density jumps nL = 1, nR = 1�" in the ini-

tial density and small times t > 0, the curve x 7! (q"(t; x); s"(t; x))=" built from the

Fokker Planck solution u" is essentially independent of t and ". Consequently,

the same holds for the quotient s"=q" which, in view of Proposition 4, yields an

estimate for the non-linear �ux function F in the Maximum Entropy system. In Fig.

10, a plot is given which shows the lower bound for jF (u"(t; x))j. The actual values
of F (u"(t; x)) together with F

lin(u"(t; x)) and u";5(t; x) are presented in Fig. 11. In

all our calculations we have chosen " = 0:01 and t = 0:01, but as noted above, this

particular choice does not in�uence the behavior decisively.
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Figure 10: Lower bound for jF (u"(t; x))j Figure 11: Comparison of �uxes

We �nd that, in those intervals where s" < 0, the Grad �ux F lin(u") (dotted

line) practically coincides with the Maximum Entropy �ux F (u") (dashed line with
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symbols). In view of the fact that the Grad �ux can be obtained by linearizing the

Maximum Entropy �ux in the region s < 0, this is not surprising. As soon as s"
becomes positive, however, the Maximum Entropy �ux diverges in contrast to the

Fokker Planck expression u";5 (solid line). Note that the Grad approximation

stays reasonably close to u";5. We remark that the calculation of F (u"(t; x)) becomes

increasingly hard the more u"(t; x) approaches the boundary E5 of the domain of

de�nition. In Fig. 12, the dashed line shows the representation of u"(t; x)) for

t = 0:01, " = 0:01 and x 2 IR in the (q; s) diagram. The points where we have

calculated the �ux F (u") are indicated by symbols.
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Figure 12: The �ux F has been calculated at points with symbols

For the densely located points with symbols in the upper half plane, the calculations

had to be carried out with up to 26 digits of accuracy (using MAPLE). Apart from

the high accuracy requirements which rule out the use of standard programming

languages for the �ux evaluation, the calculations are extremely time consuming.

For the evaluations at the points in the upper half plane, several days of computing

time on a 500 MHz PC were required. Since any solution algorithm for theMaximum

Entropy system requires �ux evaluations, these observations indicate the expected

di�culties in solving the Maximum Entropy system directly.

A comparison of the residues @x(F
lin(u") � (u")5) (dashed line with symbols) and

@x(F (u")� (u")5) (dotted line) are given in Fig. 13.
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Figure 13: The residues
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While the residue in Grad's approach is still reasonable, the Maximum Entropy

residue is much too large. This is observed by the very strong increase in the

residue because of the large slopes of F (u") in Fig. 11. Thus, the initial assumption

of closeness between Maximum Entropy and Fokker Planck solution is obviously

not satis�ed.

We compare the kinetic distribution functions, at the point x = �0:017 where the

residues just start to di�er strongly. In Fig. 14, we have depicted the distribu-

tion functions divided by the equilibrium density W eq (without division, no major

discrepancy is visible because of the exponential damping).
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Figure 14: Comparison of scaled distribution functions

The Fokker Planck solution is again given by the solid line, the Hermite/Grad

distribution (30) is given by the dotted line and the Maximum Entropy distribution

(21) is represented by a dashed line. Note that the Hermite/Grad distribution is

not always positive and, for negative c, the Maximum Entropy distribution decays

much faster than the Maxwellian. Also, for small jcj, the approximate distribution

functions are very close to each other. To investigate the behavior at large positive

c, we consider the logarithm of the distribution functions (see Fig. 15).
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Figure 15: Comparison of logarithm of distribution functions

While the Hermite/Grad distribution now practically coincides with the exact

distribution function, whenever the logarithm can be calculated, we �nd that the

Maximum Entropy distribution develops a second peak around c � 3400 which is
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not at all present in the Fokker Planck solution. The importance of this peak

on the moments can be estimated by calculating moment integrals of the Maximum

Entropy distribution over the interval [1700;1). We �nd the following normalized

moments

moment total second peak

û0 1.000000 1:02 � 10�18

û1 0.000000 3:48 � 10�15

û2 1.000000 1:18 � 10�11

û3 0.017698 4:01 � 10�8

û4 3.000144 1:36 � 10�4

û5 0.478405 4:61 � 10�1

Obviously, there is very little mass related to the fast traveling particles and consid-

erable contributions are found for the fourth and higher moments only. Note that

the increase in the contribution from ûi to ûi+1 is approximately a factor 3400 which
is explained by the fact that the peak is located at c � 3400. A more detailed inves-

tigation shows that similar peaks show up whenever s > 0 and s=jqj is su�ciently

large. Obviously, the Maximum Entropy distribution function can only satisfy mo-

ment constraints with small q and large s (i.e. large ratio s=jqj) by introducing a

peak at high velocities which contributes considerably more to the fourth moment

s than to the third moment q. However, the contribution of the peak to the �fth

moment is again considerably larger which eventually results in the singularity of

the �ux.

5 Conclusions

We have shown that problems with the Maximum Entropy approach for the Fokker

Planck equation arise if moments of order four and higher are used. The reason

is that for such Maximum Entropy systems, the �ux function is singular at equilib-

rium states. Since the singular behavior is lost in the linearization process, our �rst

conclusion is that the linearized system is a bad approximation of the non-linear

system in equilibrium states. However, it turns out that the linearized equations

which happen to be equal to the Hermite/Grad system, are in much better co-

incidence with the Fokker Planck equation in the sense that residues of exact

solutions are much smaller than for the non-linear system. This observation leads

to the second conclusion that the Hermite/Grad approach yields a better mo-

ment approximation than the Maximum Entropy approach. Combining the two

conclusions, we have disproved the statement that the Hermite/Grad approach

is just a linearization of the more powerful Maximum Entropy approach. In fact,

the Hermite/Grad approach should be viewed as an independent method which

is even favorable.
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We also want to stress the fact that the form of the collision operator never entered

explicitly in our investigations of the Maximum Entropy systems. This is due to the

fact that the hyperbolic part in this system is completely determined by the form

of the entropy functional and the moment functions 1; c; c2; c3; : : : . Hence, similar

considerations apply to other kinetic equations like the Boltzmann equation of gas

dynamics.

Our �nal comment concerns our restriction to a one-dimensional velocity space which

has mainly been assumed for reasons of simplicity and clarity. If we consider the

practically more important case of 14 moments in three space dimensions, we �nd

similar problems: in this case, the set of inadmissible vectors E
(3)
14 forms a manifold

of dimension 11 in the 14 dimensional, open, convex cone K
(3)
14 of moments of non-

negative distribution functions. Again, the equilibrium points are located on the

boundary of E
(3)
14 . The bigger gap in dimension compared to the one-dimensional

case is explained by the fact that a vanishing highest �-component (corresponding

to jcj4) also forces the three previous components �10; �11; �12 to be zero (corre-

sponding to cijcj2) to ensure integrability. The two extra constraints compared to

the �ve-moment case in 1D where �4 = 0 only enforces �3 = 0, account for the

lower dimension of the set of inadmissible moment vectors. Due to the bigger gap

in dimension, it is less likely, that a generic moment vector is close to the singular

boundary. This might be one of the reasons why the 14 moment system could be

used for numerical simulations in [12]. Another reason might be that numerical

simulations require approximate integration of the appearing integrals. If, for ex-

ample, Gauss-like integration rules are used, the contributions and problems due

to the high velocities peaks in the Maximum Entropy distribution function are au-

tomatically suppressed. This, on the other hand, implies that numerical solutions

obtained with such integration rules rather approximate the linearized system where

the singular behavior is also suppressed.
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