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Abstract

We discuss a 3D model that is capable for describing mechanical deformations

of steel through induction hardening processes. It consists of a reduced system of

Maxwell's equations, the heat transfer equation and a system of equations describing

the mechanical state of the steel workpiece.

In a �rst step the model is applied to simulation of an axisymmetrical induction

hardening device, which is a wide-spread industrial equipment. We present numerical

results obtained for a steel tube hardening.

1 Introduction

Induction heating plays an important role in the technological process of manufacturing

of steel. The induction hardening process of steel is a wide-spread technological operation

of modern industry. Figure 1 shows an inductor system of technological device including

copper inductor and hardened steel gear-wheel.

In the conducting regions of device under consideration (inductor, gear-wheel) the cou-

pled processes of the alteration of the electromagnetic, thermal and mechanical states

take place. Presence of the electromagnetic �elds causes thermal and mechanical phe-

nomena. Power losses by Ohm's law alter the temperature distribution and lead to the

heating of the workpiece (gear-wheel) and inductor. The temperature gradient alters the

mechanical state of the metal structure elements and causes elastic-plastic deformations.

In its turn, the non-stationary temperature �eld in�uences the electromagnetic processes

and electromagnetic �eld distribution because the conductivity and permeability depend

on temperature. Thermal and mechanical properties of metals depend on temperature,

too. The above-mentioned complicated e�ects determine the course and de�nitive results

of technological operations.

Computer simulation of coupled electromagnetic, thermal and mechanical processes tak-

ing place during induction heating is an important problem in applied mathematics and

engineering.

Numerical modelling and simulation allow to obtain informations for

- optimal shape design of induction coils

- hardening depth, hardness and phase transitions

- choice of technological conditions (frequency of input voltage, duration of heating

and cooling).
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Figure 1: Induction heating at Steremat Elektrowärme GmbH & Co. KG, Berlin

The goal of the paper is to attract attention to necessity of thermo-mechanical problems

solution for induction heating devices and to propose mathematical models, numerical

formulations and algorithms for such process simulations.

Mathematical models of electromagnetism, temperature distributions and mechanical

state of workpieces are presented in the second chapter.

In the �rst part of the third chapter, our mathematical model is applied to the important

case of axisymmetrical geometries of workpieces and inductors.

Numerical simulation results of induction hardening of a metal tube are presented in the

second part of the third chapter.

Finally, in the last chapter we conclude the paper with some remarks of further investi-

gations.
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2 Process modelling

This chapter presents a general mathematical model of the coupled process of interactions

of electromagnetic, temperature and mechanical e�ects in induction hardening devices (see

Figure 2).

MechanicsHeat transferElectromagnetics

Figure 2: Coupled processes in induction hardening devices

2.1 Modelling of induction heating

For modelling of the induction heating process we have to take into account two di�erent

areas (see Figure 3): conducting regions for the workcoil (
c1) and for the workpiece

(
c2) and nonconducting regions for air and for nonferromagnetic materials around the

workcoil to re�ect the excited magnetic �eld of the workcoil, shown as 
n in Figure 3. The

electromagnetic �eld in the workcoil and in the workpiece is characterized by appreciable

skin e�ect. The boundaries (�B;�H) of the surrounding nonconducting region is described
by perfectly conductive or perfectly permeable walls. Therefore, we consider a boundary

value problem for the quasistationary Maxwell's equations in a bounded domain:

rot ~Hc = ~Jc

rot ~Ec = �

@ ~Bc

@t

div ~Bc = 0 (1)

~Jc = � ~Ec

~Bc = �c ~Hc in 
c1;
c2;

and

rot ~Hn = ~0

div ~Bn = 0 (2)

~Bn = �n ~Hn in 
n;
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Figure 3: Sketch for modelling the induction heating process

with the boundary conditions

~Bn � ~nn = 0 on �B;
~Hn � ~nn = ~0 on �H ;
~Hc � ~nc = ~0 on �Hc; (3)

~Ec � ~nc = ~0 on �E1;�E2;Z
C12

~Ec � d~r = U on �E1;�E2;

the interface conditions on �nc

~Bc � ~nc + ~Bn � ~nn = 0;
~Hc � ~nc + ~Hn � ~nn = ~0 (4)

and suitable initial conditions for ~Bc(�; t0) and ~Bn(�; t0).

In the literature several �nite element formulations for the calculation of three dimensional

eddy current problems have been considered e.g. [1], [2]. We introduce a magnetic vector

potential ~A and a scalar potential � by

~B = rot ~A

~E = �

@ ~A

@t
� grad�
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and use the ~A;�� ~A formulation [1] to describe general geometrical situations. Now, we

rewrite equations (1), (2) and enforce the uniqueness of the vector potential by Coulomb

gauging [1] in the following way:

rot
l

�c
rot ~Ac � grad

1

�c
div ~Ac + �

@ ~Ac

@t
+ �grad� = ~0

div

0
@��@ ~Ac

@t
� �grad�

1
A = 0 in 
c1;
c2;

rot
1

�n
rot ~An � grad

1

�n
div ~An = ~0 in 
n

with initial values for ~Ac(�; t0) and ~An(�; t0). Rewriting boundary conditions (3) to

~nn � ~An = ~0 on �B;
1

�n
div ~An = 0 on �B;

(
1

�n
rot ~An)� ~nn = ~0 on �H ;

~An � ~nn = 0 on �H ;

(
1

�c
rot ~Ac)� ~nc = ~0 on �Hc;

~Ac � ~nc = 0 on �Hc;

~nc � (�
@ ~A

@t
+ �grad�) = 0 on �Hc;

~nc � ~Ac = ~0 on �E1;�E2;
1

�c
div ~Ac = 0 on �E1;�E2;

�j�E1 = U on �E1;�E2;

�j�E2 = 0 on �E1;�E2

and interface conditions (4) on �nc to

(rot ~Ac) � ~nc + (rot ~An) � ~nn = 0

(
1

�c
rot ~Ac)� ~nc + (

1

�n
rot ~An)� ~nn = ~0

~nc � (�
@ ~A

@t
+ �grad�) = 0

~nn �
1

�n
div ~An + ~nc �

1

�c
div ~Ac = 0
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one takes notice of additional conditions enforcing the Coulomb gauge on the vector

potential.

Owing to the Ohm's law, the eddy currents induced in the workpiece act as a heat source,

which can be described by

q(�) = �(�)
���~E���2: (5)

2.2 Modelling of temperature distributions in steel

Neglecting mechanical e�ects and using Fourier's law of heat conduction, we consider the

following heat transfer equation:

�(�)c(�)
@�

@t
� r �

�
�(�)r�

�
= q(�); in 
c2

� (0; T ): (6)

Here, 
c2
is the workpiece and �; c; � denote density, speci�c heat at constant pressure

and heat conductivity, respectively. The term q(�) describes the induction heat source

(5).

We consider a Newton-type boundary condition

��(�)
@�

@�
= (x; t)(�� ��) in @
c2

� (0; T );

where  denotes the heat exchange coe�cient. The initial condition is set to

�(�; 0) = �0 in 
c2
:

2.3 Modelling of elastic-plastic deformations

The elastic-plastic mechanical state of the workpiece is described by the following system

of equations [3] [4]

0 =
@�ij

@xi
+ Fi (7)

"ij = 0:5 (
@ui

@xj
+
@uj

@xi
) (8)

�ij = 2G("ij +
�

1 � 2�
�ije); (9)

where i = 1; 2; 3 and j = 1; 2; 3 are numbers of coordinate axes.
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System of equilibrium equations (7) describes correlations between mechanical stress ten-

sor

� =

0
B@

�11 �12 �13
�21 �22 �23
�31 �32 �33

1
CA (10)

and given forces components Fi.

Kinematic equations (8) represent correlations between strain tensor

" =

0
B@

"11 "12 "13
"21 "22 "23
"31 "32 "33

1
CA (11)

and mechanical displacement components ui.

Constitutive equations (9) are correlations between mechanical stresses �ij and strains

"ij, where �ij is the Kronecker's delta function, � is Poisson's number, e represents the

main diagonal of matrix (11) and G describes the dislocation modulus by

G =
E

2(1 + �)
; (12)

where E is the modulus of elasticity.

In order to simulate mechanical state of workpieces during induction heating we take into

account elastic, plastic and thermal deformations. Therefore, we present strain tensor "ij
as a sum of elastic "e

ij
, plastic "

p

ij
and thermal "�

ij
strain components:

"ij = "e
ij
+ "

p

ij
+ "�

ij
: (13)

We can write the following expressions for di�erent components of the strain tensor (13).

The �rst component is elastic strains

"e
ij

=
1

E
[(1 + �) �ij � �ij � s]; (14)

where s describes the main diagonal of tensor �, see (10). It is the another form of the

constitutive equations (9).

The second component of (10) is thermal strains [3] [4]

"�
ij
= ����ij; (15)

where � is the coe�cient of linear temperature expansion and �� is the di�erence of

temperature.
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Figure 4: Elastic-plastic diagram of the steel

The last component in (13) denotes the plastic strains [5]. We can use the incremental

theory of plasticity taking into account correlations between increments of plastic strains

�"p
ij
and increments of mechanical stresses ��ij:

�"
p

ij
=

�
3

2�i

�2 � 1

Ek

�

1

E

�
SijSkm��km +

�
3

2�i

��
1

Ek

�

1

E

�
(�i � ��)�ij��mm; (16)

where �i denotes the intensity of stresses in the form of

�i =
1

3

q
(�11 � �22)2 + (�22 � �33)2 + (�11 � �33)2 + 6(�2

12
+ �2

23
+ �2

13
); (17)

�� is the yield point (refer to Figure 4), Ek is the tangential modulus from the strain

diagram, Sij denotes the stress deviator by

Sij = �ij �
1

3
�ij�ij: (18)

In order to use the above-mentioned incremental theory of plasticity we present the plastic

strain tensor "
p

ij
and stress tensor �ij in the following form:

"
p

ij
= "

p

ij
+�"

p

ij
; (19)

�ij = �ij +��ij; (20)

where "
p

ij
and �ij are the known plastic strain and stress tensors values obtained from

previous time step.
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3 Simulation of axisymmetrical induction heating de-

vice

3.1 Axisymmetrical formulation

We consider axisymmetrical positioning of the impulse inductive device depicted schemat-

ically in Figure 5. The equation of the impulse electromagnetic �eld in the case of ax-

isymmetrical problems can be written as follows [6], [9]:

�(�)
@A

@t
=

@

@r

 
1

�(H; �)

1

r

@(rA)

@r

!
+

@

@z

 
1

�(H; �)

@A

@z

!
+ Jo; (21)

where A is the magnetic vector potential, �(�) is the temperature-dependent conductiv-

ity of the material, � is the temperature, �(H; �) is the permeability depending on the

magnetic �eld strength H and on the temperature �, and Jo is the given source current

density.

The thermal �eld is described by the Fourier's equation [6], [9]

�c(�)
@�

@t
=

1

r

@

@r

 
r�(�)

@�

@r

!
+

@

@z

 
�(�)

@�

@z

!
+ q(�); (22)

inductor

O z

r

Γ

workpiece

Figure 5: Sketch of an axisymmetrical induction device
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where c(�) is the temperature-dependent speci�c heat of the material, � is the mass

density, �(�) is the temperature-dependent thermal conductivity, and q is the electric

power density.

The static axisymmetrical elastic-plastic mechanical state of metal regions (coil, work-

piece) can be calculated solving the following system of equations [4], [6]:

@�rr

@r
+
@�rz

@z
�

�rr � ���

r
+ Fr = 0;

@�rz

@r
+
@�zz

@z
+
�rz

z
+ Fz = 0; (23)

"rr =
@ur

@r
; "zz =

@uz

@z
; "�� =

ur

r
;

rz =
@ur

@z
+
@uz

@r
;

where �rr, �zz , ���, �rz are the radial, axial, azimuthal and tangential mechanical stresses,

respectively, "rr, "zz, "��, rz are the radial, axial, azimuthal and tangential mechanical

strains, respectively, ur; uz are the radial and axial mechanical displacements, and Fr; Fz

are the given radial and axial forces.

The detailed �nite element formulations for equations (21), (22) and system (23) have

been presented in [6], [9]. The feature of impulse electromagnetic, transient thermal and

static mechanical processes does not allow the use of the usual method, which consists in

dividing the duration of process into a series of time steps, and in the simultaneous [7] or

successive [8] solution of the electromagnetic and thermo-mechanical problems for every

time step. The point is that such a time-stepping algorithm requires huge computational

expenses, especially in the case of multi-impulse processes. Therefore, in order to carry out

a fast and accurate simulation of the mentioned processes the following indirect coupling

algorithm is proposed:

� We divide the �rst pulse into a series of small time steps �t1 and solve the electro-

magnetic problem (21) for all steps in succession. As a result we obtain the space

distribution of the magnetic vector potential A, current density J = Jo � �
@A

@t
and

the electric power density q(r; z; t) =
J2

�
at every time step.

� The obtained values of the heat sources q(r; z; t) are averaged in time for the �rst

pulse:

Q(r; z) =
1

T1

Z
T1

0

q(r; z; t) dt; (24)

where T1 is the duration of the pulse or the sum duration of the pulse and the pause

between two successive impulses.
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� We divide the duration of the process into a series of large time steps �t2 � �t1
and solve the thermo-mechanical problems (22), (23) with constant in time space

distribution of the heat sources (24). Like that, we extend the calculated heat

sources to a number of the next impulses or to the whole duration of the process.

� We use the obtained temperature distribution in order to calculate new values of

temperature-dependent electric, thermal and mechanical material properties.

� Using obtained material properties we repeat the electromagnetic �eld simulation,

calculate and average the electric power density, and so on. New problems solution

with new material properties is carried out after the sum duration of a number of the

next pulses and pauses. The increase of the number of solutions raises the accuracy

of the computation and, of course, computational expenses.

Solving the transient eddy current problem (21) for soft ferromagnetic materials we use

the internal iterative process proposed by the �rst author [10]. The use of very large

time steps �t2 for thermo-mechanical problem allows to reduce essentially computational

expenses and to obtain reliable and accurate numerical results.

3.2 Numerical results

We solved an axisymmetrical problem of practical interest concerning magneto-thermo-

mechanical behaviour of heated steel [6].

The goal of investigation is to determine and recommend technological and exploitational

conditions of inductive heating from thermal and mechanical points of view (maximal

temperatures, mechanical stresses and displacements etc.).

Figure 5 shows the positioning of the inductive equipment including copper inductor,

heated steel tube and air regions. The amplitude of the current equals 111.6 kA, frequency

is 8 kHz, capacitor generator depicted in Figure 6 generates 1000 impulses per second,

duration of heating is 9 s, material constants have been presented in [6].

workpiece

Uo

C

R L
inductor

Figure 6: Principle sketch of an impulse induction technological device
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Equation (21) has been solved by using the following boundary conditions (see Fig. 5):

� on the axis of symmetry (z=0) :
@A

@z
= 0;

� the axis of anti-symmetry (r=0) : A = 0;

� on the distant bound � : the boundary condition of the third kind using the known

analytical solution for magnetic �eld of the solenoid [9].

The thermal �eld has been simulated by using boundary conditions of the third kind

[9] corresponding to air quenching (the heat transfer coe�cient � = 50 Wm�2K�1, the

air temperature is 20o C). Besides, we have taken into account the thermal radiation in

accordance with Stefan-Boltzmann's law [9] (emissivity " = 0:8).

The static mechanical problem (23) has been solved by kinematic boundary condition

uz = 0 on the axis of symmetry (z=0).

The results have been obtained using multiple solution of the problems (at the initial

temperature 20oC and when duration of heating equals 0.9 s, 2 s, 5 s, 7 s, and 9 s). Time

steps �t1 (see above) for electromagnetic problem (21) have been determined by means

of dividing every peak of the pulsed current (see Figure 7) on 40 equal time intervals.

Time steps �t2 � �t1 for the thermo-mechanical problem (2), (3) have been determined

by means of dividing every time intervals between two successive solutions on 20 equal

intervals.

As result Figure 8 shows the space distribution of the magnetic vector potential. Temper-

ature distribution and deformated state of the workpiece (duration of heating is 9s) are

presented in Figure 9 on page 14 and the state of stress of heated tube is shown in Figure

10. The surface of the workpiece is heated to 1100oC. There are compressing mechanical

stresses on the external surface and stretching stresses on the internal one.

t

i

Figure 7: Pulsed current in the inductor
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Figure 8: Positioning of induction device and distribution of the magnetic vector potential

at t = 37:5�s

The obtained results testify about the correct choice of the inductive heating technolog-

ical conditions. The surface temperature and the velocity of the heating correspond to

the conditions required for the steel under consideration. Besides, we can see the small

level of mechanical stresses and displacements (the maximum values of radial and axial

displacements equal 0.5 mm, approximately).

4 Conclusion

We have proposed a general three dimensional mathematical model, numerical formu-

lation and algorithm for simulation of coupled magneto-thermo-mechanical processes in

induction heating devices.

Such simulations allow to obtain precise information about thermo-mechanical state of

heated workpiece and to determine important technological conditions of induction heat-

ing (frequency of input voltage, duration of heating and cooling, etc.).
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Figure 9: Temperature distribution and deformated state of the workpiece

Figure 10: State of stress of the workpiece

As a numerical example we have used an axisymmetrical impulse induction heating de-

vice for steel tubes hardening. Axisymmetrical formulation for coupled magneto-thermo-

mechanical simulation has been presented. Obtained numerical results testify about a

correct choice of technological conditions of induction heating.

On our opinion the main direction of future investigations is numerical realization of

proposed general three dimensional models and algorithms in order to simulate industrial

induction devices with complicated geometry of workpieces and inductor coils.

14



References

[1] O. Biro and K.Preis, On the use of the magnetic vector potentialin the �nite element

analysis of 3D eddy currents, IEEE Trans. Magn. vol. MAG-25(1989) 7, pp. 3145�

3159.

[2] O. Biro, K.Preis and K. R. Richter, Various FEM formulations for the caculations

of transient 3D eddy currents in nonlinear media, IEEE Trans. Magn. vol. MAG-

31(1995) 5, pp. 1307�1312.

[3] H.G. Hahn, Elastizitätstheorie, Stuttgart: B.G. Teubner, 1985.

[4] S. Timoshenko and J.N. Goodier, Theory of Elasticity, New York: Mc-Graw Hill,

1951.

[5] J. Zgraja and M.G. Pantelyat, Inductive heating of large steel disks: coupled elec-

tromagnetic, thermal and mechanical simulation, International Journal of Applied

Electromagnetics and Mechanics, vol. 10, pp.303-313, 1999.

[6] M. G. Pantelyat, Coupled electromagnetic, thermal and elastic-plastic simulation of

multi-impulse inductive heating, Int. J. Appl. Electromagnetics and Mechanics, vol.

9, pp. 11-24, 1998.

[7] M. Féliachi and G. Develey, Magneto-thermal behavior �nite element alalysis for

ferromagnetic materials in induction heating devices, IEEE Trans. Magn., vol. 27,

Pt. II, pp. 5235-5237, Nov. 1991.

[8] Ph. Massé, B. Morel, and Th. Bréville, A �nite element prediction correction scheme

for magneto-thermal coupled problem during Curie transition, IEEE Trans. Magn.,

vol. 21, Sept. 1985.

[9] P. P. Gontarowsky and M. G. Pantelyat, Application of the �nite element method to

coupled eddy current, thermal and mechanical problems, Proc. 6th Int. IGTE Sym-

posium on Numerical Field Calculation in Electrical Engineering, Graz, pp. 300-308,

1994.

[10] M. G. Pantelyat, Numerical analysis of impulse electromagnetic �elds in soft fer-

romagnetic materials, Int. J. Appl. Electromagnetics and Mechanics, vol. 10, pp.

185-192, 1999.

15


