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Abstract. Constructive conditions for existence of the unidirectional transport are

given for systems with state-dependent noise and for forced thermal ratchets. Using

them, domains of parameters corresponding to the unidirectional transport are indicated.

Some results of numerical experiments are presented.

1. Introduction

Stochastic ratchets are de�ned as systems which are able to produce a directed current

through the recti�cation of noise although on average no macroscopic force is acting. A

lot of recent research has been devoted to these systems (see, e.g., [1, 2, 3, 4, 5, 6, 7,

8, 9, 10] and references therein). Much interest in these simple nonequilibrium models

is stimulated by their potential relevance with respect to protein motors, transport in

noncentrosymmetric materials, and novel particle pumps and separation techniques.

Analytical and numerical studies of noise-induced directed transport mainly deal with

evaluating the mean velocity. Having values of the mean velocity only, it is impossible

to describe the noise-induced transport in detail. For example, it may occur so that the

mean velocity is small but the trajectories walk far in both positive and negative directions.

Large mean velocity may be in the case of the unidirectional transport, when there is prac-

tically no movement in one of the directions, or may be in the case when the trajectories

walk in both directions far. In the paper we are interested in the noise-induced unidi-

rectional transport. One of motivations for consideration of the unidirectional transport

may be possible biological applications of the Brownian ratchets to modeling molecular

motors [3, 5, 7, 10, 11, 12]. As is known (see, e.g., [7, 12]), molecular motors are micro-

scopic objects that unidirectionally move along one-dimensional periodic structures and

the problem of explaining this unidirectionality belongs to a larger class of such problems

involving rectifying processes at a small scale.

In section 2, we study detailed structure of the transport in systems with state-dependent

noise [1, 2] and get an analytical condition for the unidirectional transport. We consider

the probability q that the trajectory Xx(t); X(0) = x; reaches �rst the right (or left) end

of the interval (x � L; x + L); L is a period of the ratchet potential. This probability

is found analytically by solving the corresponding boundary value problem for a second-

order ordinary di�erential equation. The condition for the unidirectional transport in

positive direction consists in closeness of the probability q to 1:

In section 3, we consider forced thermal ratchets [3, 5, 6, 7, 8, 13, 14] (see (3.1) below).

Here, to propose a condition for the unidirectional transport in, e.g., positive direction,

we have to consider two probabilities: the probability Q<

0;x that the trajectory X0;x(t);
X(0) = x; escapes from (x � L; x + L) through the right end during the �rst half-

period [0; T=2) of the periodic forcing with a period T , and the probability P>

T=2;x
that

XT=2;x(t); X(T=2) = x; does not escape from (x�L; x+L) through the left end during the
second half-period [T=2; T ). For large T; we get a qualitative condition of unidirectionality
attracting results of section 2. But to obtain a general condition, we should evaluate the

probabilities Q<

0;x; P
>

T=2;x
by solving two boundary value problems for parabolic equations.
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The condition for the unidirectional transport in positive direction consists in closeness

of the product Q<

0;x � P
>

T=2;x
to 1: As a result, we propose an e�ective (numerical) tool

for indicating domains of parameters, where the noise-induced unidirectional transport

is realized. The technique is universal and can be applied to various systems with the

noise-induced transport. Some results of numerical experiments are presented.

2. Systems with state-dependent diffusion

It was shown in [1, 2] (see also [6, 14]) that state-dependent di�usion can induce transport

in a system which is at equilibrium in the presence of thermal noise only. Here we

are interested in detailed structure of the transport in such systems. We consider the

stochastic di�erential equation (SDE) in the sense of Ito:

(2.1) dX = f(X)dt+ �(X)dw(t);

where f(x) and �(x) are L-periodic functions and w(t) is a standard Wiener process.

Introduce the process �(t) = X(t) (mod L) on a circle of radius L=2�: The process �(t)
is continuous on the circle. Due to the periodicity of f and �; we can write (2.1) in the

form

(2.2) dX = f(�)dt+ �(�)dw(t):

Under a su�ciently wide assumptions (e.g., �(x) 6= 0; x 2 R); �(t) is an ergodic process

(see, e.g., [15]). Its invariant density p('); 0 � ' � L; is L-periodic and it satis�es the

stationary Fokker-Planck equation

1

2

@
2

@'2
(�2p)�

@

@'
(fp) = 0; p(0) = p(L);

Z
L

0

p(')d' = 1:

Solving this problem, we get

(2.3) p(') =
Cr(')

�2(')
[r(L)

Z
L

'

r
�1(#)d#+

Z
'

0

r
�1(#)d#];

where

r(') = exp(�(')); �(') = 2

'Z
0

f(�)

�2(�)
d�;

and C > 0 is found from the condition of normalization.

Let EX(0) <1: Due to the ergodicity of �(t); we have for the mean velocity �v of X(t) :

(2.4) �v := lim
t!1

EX(t)

t
= lim

t!1

EX(0)

t
+ lim

t!1

1

t

Z
t

0

Ef(�(s))ds

=

Z
L

0

f(')p(')d' =
LC

2
[e� � 1]; � := �(L) = 2

Z
L

0

f(�)

�2(�)
d�:

The sign of �v depends on the sign of e� � 1 only. Evidently, the necessary and su�cient

condition for zero mean velocity consists in the equality � = �(L) = 0 (cf. [1, 2, 14]).
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For instance, if � �const and the potential

F (x) = �

Z
f(x)dx

is an L-periodic function (e.g., a ratchet potential), we get the well-known fact of ther-

modynamics [16] that �v = 0: At the same time, for an L-periodic potential F (x); one
can �nd an L-periodic state-dependent �(x) such that � 6= 0; i.e., �v 6= 0; and therefore

there is a noise-induced transport [1, 2]. Our urgent aim is to �nd su�cient conditions

for unidirectional transport.

Let Xs;x(t) be the solution of (2.2) which starts from the point x at the moment s. If

s = 0, we write Xx(t) instead of X0;x(t): Consider an interval (x�mL; x+ nL); where m
and n are positive integers. The trajectory Xx(t) reaches one of the points x�mL; x+nL
for a �nite (random) time � with probability 1: Here � is the �rst exit time of Xx(t) from
the interval (x�mL; x + nL): Denote

pm;n := P (Xx(�) = x�mL); qm;n := P (Xx(� ) = x + nL):

Theorem 1. The following expressions can be established

(2.5) pm;n =
e
n�
� 1

e(m+n)�
� 1

; qm;n =
e
n�(em�

� 1)

e(m+n)�
� 1

:

In particular,

p := p1;1 =
1

1 + e�
; q := q1;1 =

1

1 + e��
:

Proof. Let � y, x � mL < y < x + nL; be the �rst exit time of trajectory Xy(t) from
the interval (x � mL; x + nL): Clearly � = �x. Let ' be a function de�ned on the set

consisting of two points: x�mL and x+nL: It is well known [17, 18, 19] that the function

u(y) := E'(Xy(� y))

satis�es the following boundary value problem

(2.6)
1

2
�
2(y)

d
2
u

dy2
+ f(y)

du

dy
= 0; x�mL < y < x + nL;

(2.7) u(x�mL) = '(x�mL); u(x+ nL) = '(x+ nL):

Clearly, u(y) depends on x as on a parameter, i.e., u(y) = u(y; x): If '(x � mL) =
1; '(x + nL) = 0; then u(y; x) = P (Xy(� y) = x�mL) and pm;n = u(x; x): The function
u(y; x) can easily be found from (2.6)-(2.7):

u(y; x) =

x+nLZ
x

exp(�2
�R
x

f(s)

�2(s)
ds)d� �

yZ
x

exp(�2
�R
x

f(s)

�2(s)
ds)d�

x+nLZ
x�mL

exp(�2
�R
x

f(s)

�2(s)
ds)d�

:
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Consequently,

(2.8) pm;n = u(x; x) =

x+nLZ
x

exp(�2
�R
x

f(s)

�2(s)
ds)d�

x+nLZ
x�mL

exp(�2
�R
x

f(s)

�2(s)
ds)d�

:

We have for k = 1; :::; m :

(2.9)

x�(k�1)LZ
x�kL

exp(�2

�Z
x

f(s)

�2(s)
ds)d� =

x+LZ
x

exp(�2

��kLZ
x

f(s)

�2(s)
ds)d� :

Further, due to the periodicity of the function
f(s)

�2(s)
; we get

2

��kLZ
x

f(s)

�2(s)
ds = 2

x�kLZ
x

f(s)

�2(s)
ds+ 2

��kLZ
x�kL

f(s)

�2(s)
ds = 2

�Z
x

f(s)

�2(s)
ds� k� :

Therefore, from (2.9), we obtain for k = 1; :::; m :

(2.10)

x�(k�1)LZ
x�kL

exp(�2

�Z
x

f(s)

�2(s)
ds)d� = e

k�

x+LZ
x

exp(�2

�Z
x

f(s)

�2(s)
ds)d� :

Analogously, we have for k = 1; :::; n :

(2.11)

x+kLZ
x+(k�1)L

exp(�2

�Z
x

f(s)

�2(s)
ds)d� = e

�(k�1)�

x+LZ
x

exp(�2

�Z
x

f(s)

�2(s)
ds)d� :

Substituting (2.10) and (2.11) in (2.8), we obtain the �rst formula of (2.5). The formula

for qm;n is a consequence of the equality qm;n = 1� pm;n: Theorem 1 is proved.

Remark 1. The formulas (2.5) remain true with the same � if we consider a SDE in the

sense of Stratonovich:

dX = f(X)dt+ �(X) � dw(t):

It is equivalent to the Ito equation

dX = f(X)dt+
1

2
�(X)

d�

dx
(X)dt+ �(X)dw(t):

We have

�str(') = 2

'Z
0

1

�2(�)
(f(�) +

1

2
�(�)

d�

dx
(�))d� = �ito(') + ln

�(')

�(0)
:
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Due to the periodicity of �('), we obtain �
str

= �
str
(L) = �

ito
(L) = �:

We mark that the probabilities pm;n and qm;n do not depend on x. Let � 0 = � be the

�rst exit time of Xx0
(t) from the interval (x0 � L; x0 + L) and x1 := Xx0

(� 0): Then,
x1 = x0�L with the probability p and x1 = x0+L with the probability q = 1� p: Let � 1
be the �rst exit time of Xx1

(t) from the interval (x1�L; x1 +L): Clearly, the conditional
probabilities P (Xx0

(� 0 + � 1) = Xx1
(� 1) = x1 � L j Xx0

(� 0) = x1) are equal to p and

q correspondingly. If we continue, we obtain the random sequences � 0; � 1; :::; � k; ::: and

x0 = 0; x1 = Xx0
(� 0); :::; xk = Xx0

(� 0 + :::+ � k�1); ::: .

The sequence � k. The sequence consists of independent identically distributed (i.i.d.)

random variables with distribution of � . We observe that all the basic probabilistic char-

acteristics of the random variable � can be found by solving deterministic di�erential

equations. For instance, the probability P (� < s; Xx(� ) = x � L) can be evaluated by

solving a mixed problem for a backward Kolmogorov equation and the characteristic func-

tion or Laplace transform for � can be evaluated by solving a boundary value problem

for an ordinary di�erential equation (see, e.g., [17]). It turns out that such important

characteristics as E� and D� can be found by quadratures. Namely E� = u(0); where
u(x) is a solution to the following boundary value problem [17, 18]

(2.12)
1

2
�
2(x)u00 + f(x)u0 = �1; u(�L) = u(L) = 0:

We get

u(x) = �G(x) + C1

xZ
0

exp(�2

�Z
0

f(s)

�2(s)
ds)d� + C2;

where

G(x) =

xZ
0

2
4 2

�2(�)

xZ
�

exp(2

�Z
�

f(s)

�2(s)
ds)d�

3
5 d�;

and the constants C1; C2 have to be found from (2.12). Thus

(2.13) E� = u(0) = C2 =
e
�
G(L) +G(�L)

1 + e�
:

The second moment E� 2 can also be expressed in quadratures: E� 2 = v(0); where v(x)
is a solution to the boundary value problem [17]

1

2
�
2(x)v00 + f(x)v0 = �2u(x); v(�L) = v(L) = 0:

We do not write the corresponding explicit expression for v(x) because of its bulky form.

Clearly, behavior of the sum � 0 + ::: + �N as N ! 1 is governed by the law of large

numbers and by the central limit theorem.

The sequence xk. It is not di�cult to see that xk+1 = xk+�k; where �k are i.i.d. random
variables. Any � is a Bernoulli random variable: it takes two values �L and L with the

probabilities P (� = �L) = p = 1=(1 + e
�); P (� = L) = q = 1=(1 + e

��): The sequence xk
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can be considered as a trajectory of a random walk. The theory of such a random walk is

well developed (see, e.g., [20]). In particular, the behavior of xN for large N is governed

by the central limit theorem. We note that if p is small and Np is not su�ciently large

(for example, Np < 10) then the Poisson law for xN is most preferable [20].

Unidirectional transport. Let � > 0: Then the transport is positive. If the probability

p is small, then the retrograde steps are infrequent and in such a case it is natural to con-

sider the transport as unidirectional one. An acceptable condition of the noise-induced

unidirectional transport to the right is closeness of the probability p to zero. The prob-

ability p is smaller, when � is larger. So, we have got the very simple characteristic � of

transport unidirectionality for the model (2.1). Analogously, for � < 0 the transport is

negative and an acceptable condition of the noise-induced unidirectional transport to the

left is closeness of the probability q to zero.

Note that there is no de�nite relation between the mean velocity �v (see formula (2.4))

and the characteristic � of unidirectionality because for large (small) � the constant C in

(2.4) can be small (large). The following relation between �; �v; and E� holds:

(2.14) �v =
L

E�
�

e
�
� 1

e� + 1
:

A heuristic proof of (2.14) is as follows. The mean number of jumps to the right in

the sequence x0; x1; :::; xN is equal to N=(1 + e
��); and to the left is equal to N=(1 + e

�):
Consequently, the mean advance (for the mean time NE� ) is equal to NL(e��1)=(1+e�):
From here formula (2.14) follows. The strong proof consists in direct checking formula

(2.14). It is possible due to the known expressions for E� and the constant C.

Remark 2. Consider the piece Xxk
(t); �k�1 � t � � k; of the trajectory X(t). Let

xk+1 = Xxk
(�k) = xk +L, i.e., the considered trajectory shifts to the right at the (k+1)-

th step. It is not to be supposed that the trajectory could not step back the distance L

or more during the time (�k�1; �k): Indeed, the trajectory may come up close to xk + L,

then turn back and come up to xk � L, and �nally reach xk + L. In such a situation, we

can assert only that the trajectory does not step back the distance 2L:

Example 1. To illustrate the results of this section, we take the coe�cients of (2.1) in

the form [1]:

(2.15) f(x) = f0 sin(2�x); �(x) =
�0p

1� � cos(2�x + �)

with f0; �0 > 0; 0 < � < 1: In this case � =
�f0

�
2
0

sin�: Note that if � = k� with integer

k; � is equal to 0 and there is no transport.

Figure 1 gives typical trajectories of the solution X(t) to (2.1) with the coe�cients of

(2.15). Figure 1 (left) corresponds to the regime of the unidirectional transport: there is

practically no movement to the left (p = 0:0095). If we increase the noise intensity, the
mean velocity of the transport increases but the transport becomes non-unidirectional

(see �gure 1 (right), the corresponding p = 0:475).
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Figure 1. Systems with state-dependent noise. Sample trajectories of the

solution to (2.1) with the coe�cients of (2.15) for f0 = 1, � = 0:9, � = �=2,
and �0 = 0:44 (left) and �0 = 3 (right).

3. Forced thermal ratchets

We consider a periodically forced thermal ratchet of the form [3] (see also [5, 6, 7, 8, 13,

14]):

(3.1) dX = f(X)dt+ A�(t;T )dt+ �dw(t);

where F (x) = �

Z
f(x)dx is an L-periodic ratchet potential F (x) = F (x + L); x 2 R;

possessing no re�ection symmetry (there is no � such that F (x+ �) = F (�x+ �) for all
x 2 (0; L=2)); A; T; and � are some positive constants,

�(t;T ) =

�
1; 0 � t < T=2;

�1; T=2 � t < T;

and �(t;T ) is T -periodical.

As is known [3] (see also [5, 6, 7, 8, 13, 14]), forced thermal ratchets exhibit the noise-

induced transport. Here we study conditions when the transport is unidirectional.

A qualitative condition of unidirectionality. In connection with (3.1), consider two

SDEs

(3.2) dX
+ = f(X+)dt+ Adt+ �dw(t);

(3.3) dX
� = f(X�)dt� Adt + �dw(t):

Just as we get (2.4), it is possible to �nd expressions for the mean velocities (see, e.g.,

[14]): �v� = limt!1EX
�(t)=t: The asymmetry of the ratchet potential F (x) can result in

�v+ 6= ��v�: If the period T of �(t;T ) is su�ciently large, the mean velocity �v of X(t) can
be approximately evaluated by �v

:
= (�v+ + �v�)=2 (see [3] and also [5, 6, 7, 8, 13, 14]).

Consider the probabilities p+ and q+ (p� and q�) and the random time �+ (��) for the

process X+(t) (X�(t)) introduced analogously to p; q; and � of the previous section,

7



namely:

p
� := P (X�

x
(��) = x� L); q� := P (X�

x
(��) = x + L);

and �� are the �rst exit times of X�

x
(t) from the interval (x � L; x + L): Because �� :=

2

Z
L

0

f(x)� A

�2
dx = �

2AL

�2
; we get from Theorem 1: p+ = q

� and q+ = p
�. Let T be so

large that E�� << T=2: Evidently, in this case the transport cannot be unidirectional.

Indeed, the condition of closeness of q+ to 1 is necessary for unidirectionality of the

transport. So, for the �rst half period the transport is positively unidirectional and for the

second half period is negatively unidirectional and, consequently, it is not unidirectional

as a whole. Consider another case. If v+ > v
�, then E�+ < E�

� (see (2.14)). Now let

T be such that E�+ << T=2; E�� >> T=2; and as before q+ is close to 1: Clearly, then
one can expect the unidirectional transport in (3.1) in positive direction. Analogously,

if T is such that E�� << T=2; E�+ >> T=2; and p� is close to 1; one can expect the

unidirectional transport in negative direction. These qualitative su�cient conditions of

the unidirectional transport are fairly constructive because the magnitudes E�� can be

found by quadratures (see (2.13)).

Example 2. Consider model (3.1) with a simple ratchet potential [3, 8]

(3.4) F (x) =

8><
>:

h

l
x; 0 � x < l;

h

L� l
(L� x); l � x < L:

From (2.13) we get

(3.5) E�
+ =

�
2

2
�

L
2
h
2

(Al � h)2(A(L� l) + h)2

�

exp(�
2

�2
(A(L� l) + h)) + exp(�

2

�2
(Al � h))� exp(�

2AL

�2
)� 1

exp(�
2AL

�2
) + 1

+

�
l
2

Al � h
+

(L� l)2

A(L� l) + h

�
�

1� exp(�
2AL

�2
)

1 + exp(�
2AL

�2
)
:

The value E�� is obtained by substituting �A in (3.5) instead of A: Note that the

indeterminacy in (3.5) if Al = h (or in the corresponding formula for E�� if A(L� l) = h)

can be evaluated. For instance,

E�
+ =

l
2

�2
+
L
2
� l

2

AL
�

1� exp(�
2AL

�2
)

1 + exp(�
2AL

�2
)
if Al = h:

8
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Figure 2. Forced thermal ratchets. Sample trajectories of the solution to

(3.1) with the potential of (3.4) for L = 1; l = 0:75; h = 1=6; A = 0:2;
� = 0:2; and T = 60 (left) and T = 400 (right).

Let us take l =
3

4
L; h =

10

9
Al =

5

6
AL;

2AL

�2
>> 1. Then

E�
+ :
=

7200�2

169A2
(exp(

AL

6�2
)� 1)�

87L

13A
;

E�
�
:
=

7200�2

17 689A2
(exp(

7AL

6s2
)� 1)�

33L

133A
:

If, for example,
2AL

�2
= 10; L = 1; A = 0:2 (and, consequently, � = 0:2), then E�+ � 22

and E�
�

� 137: Figure 2 gives sample trajectories of the solution X(t) of (3.1) with

the potential F (x) from (3.4) and with the parameters described above. Figure 2 (left)

corresponds to T=2 = 30 that is less than E�
� and greater than E�

+
: In this case the

retrograde steps are infrequent and we can consider the transport as unidirectional. When

we take T such that E�� << T=2 (see �gure 2 (right)), the retrograde steps become quite
frequent. Let us note that guiding by the qualitative conditions it is quite di�cult to in-

dicate parameters corresponding to the unidirectional transport, in particular, due to a

large variance of ��. Besides, these conditions do not give us a measure of unidirection-

ality. To get more exhaustive answers, we involve into consideration other characteristics

for detailed description of the noise-induced transport.

A general condition of unidirectionality. Our aim is to give an appropriate char-

acteristic of the unidirectional transport in forced thermal ratchets and to propose a

universal (numerical) tool for indicating domains of parameters, where the unidirectional

transport is realized. Here we use the technique proposed in [21] for �nding domains of

parameters where noise-induced regular oscillations are observed.

Denote the solution of (3.1) starting at the moment s from the point x as Xs;x(t); t � s:

Introduce the probabilities:

9



the probability P>

0;x (the probability P>

T=2;x
) that the trajectory X0;x(t) (the trajectory

XT=2;x(t)) shifts in negative direction not more than on L during the �rst half-period (the

second half-period) of the periodic forcing

P
>

0;x := P (X0;x(t) > x� L; 0 � t � T=2);

P
>

T=2;x := P (XT=2;x(t) > x� L; T=2 � t � T );

the probability P<

0;x (the probability P<

T=2;x
) that the trajectory X0;x(t) (the trajectory

XT=2;x(t)) shifts in positive direction not more than on L during the �rst half-period (the

second half-period) of the periodic forcing

P
<

0;x := P (X0;x(t) < x+ L; 0 � t � T=2);

P
<

T=2;x := P (XT=2;x(t) < x + L; T=2 � t � T ):

Denote

Q
>

0;x := 1� P
>

0;x; Q
>

T=2;x := 1� P
>

T=2;x;

Q
<

0;x := 1� P
<

0;x; Q
<

T=2;x := 1� P
<

T=2;x :

It is clear that, for example, Q<

T=2;x
is the probability for XT=2;x(t) to reach the level x+L

at least one time during the second half-period.

It is not di�cult to see that for A > 0

(3.6) Q
>

T=2;x > Q
>

0;x and Q<

0;x > Q
<

T=2;x :

Therefore, if both P>

T=2;x
is close to one (i.e., Q>

T=2;x
is close to zero) and Q<

0;x is close to

one for all x 2 [0; L], then during each period of the periodic forcing the trajectory X(t)
moves in positive direction and does not move in negative direction with a probability

close to 1: Analogously, if both P<

0;x is close to one (i.e., Q<

0;x is close to zero) and Q
>

T=2;x

is close to one, then we have the unidirectional transport to the left with a probability

close to 1:

So, closeness of one of the following products

�+ = �+
x
(A; T; �) := P

>

T=2;x �Q
<

0;x; �
� = ��

x
(A; T; �) := P

<

0;x �Q
>

T=2;x

to 1 for all x is a su�cient condition for the unidirectional transport.

For de�niteness, below we are interested in the transport in positive direction, i.e., when

�+ is close to 1.

The further analysis essentially rests on the possibility to evaluate the probability P>

T=2;x

(and Q<

0;x) in a constructive way. To this end, we introduce the function

u(s; y) = ux�L(s; y) := P (X�

s;y
(t) > x� L; s � t � T=2);

0 � s � T=2; y � x� L;

where X�

s;x
(t) is a solution to (3.3). Since the distribution of XT=2;x(t); T=2 � t � T;

coincides with the distribution of X�

0;x(t); 0 � t � T=2; one can see that

P
>

T=2;x = ux�L(0; x):
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The function ~u(s; y) := P (X�

s;y
(t) > x� L) obeys the corresponding Cauchy problem for

the backward Kolmogorov equation (3.7). It is well known [17, 18, 19] that the function

u(s; y) satis�es the boundary value problem in half-band for the same equation:

(3.7)
@u

@s
+
�
2

2

@
2
u

@y2
+ (f(y)� A)

@u

@y
= 0; 0 � s < T=2; y > x� L;

(3.8) u(T=2; y) = 1; y > x� L; u(s; x� L) = 0; 0 � s � T=2:

The solution to the problem (3.7)-(3.8) has the following probabilistic representation:

(3.9) u(s; y) = ux�L(s; y) = E'(� s;y(x� L); X�

s;y
(� s;y(x� L)));

where (� s;y(x � L); X�

s;y
(� s;y(x � L))) is the �rst exit point of the space-time di�usion

(t; X�

s;y
(t)); t > s; from the domain [0; T=2)� (x� L;+1) and

'(s; y) =

�
1; s = T=2; y > x� L;

0; 0 � s � T=2; y = x� L:

The probability Q<

0;x can be evaluated analogously. We obtain that P<

0;x = 1 � Q
<

0;x is

equal to

P
<

0;x = vx+L(0; x);

where v(s; y) = vx+L(s; y) is a solution to the boundary value problem

(3.10)
@v

@s
+
�
2

2

@
2
v

@y2
+ (f(y) + A)

@v

@y
= 0; 0 � s < T=2; y < x+ L;

(3.11) v(T=2; y) = 1; y < x+ L; v(s; x+ L) = 0; 0 � s � T=2:

The solution of this problem has the following probabilistic representation:

(3.12) v(s; y) = vx+L(s; y) = E (� s;y(x+ L); X+
s;y
(� s;y(x+ L)));

where (� s;y(x + L); X+
s;y
(� s;y(x + L))) is the �rst exit point of the space-time di�usion

(t; X+
s;y
(t)); t > s; from the domain [0; T=2)� (�1; x+ L) and

 (s; y) =

�
1; s = T=2; y < x + L;

0; 0 � s � T=2; y = x+ L:

As a result we have got the following theorem.

Theorem 2. A su�cient condition for the positive unidirectional transport in model (3.1)

consists in closeness of the product �+ = u(0; x) � (1 � v(0; x)) to 1 for all 0 � x < L.

Here u(0; x); v(0; x) are values of the functions u(s; y); v(s; y) at (s; y) = (0; x), where
the functions are solutions of the boundary value problems (3.7)-(3.8) and (3.10)-(3.11).

The individual values u(0; x) and v(0; x) can be found as probabilistic representations

(3.9) and (3.12) for �xed (s; y) = (0; x). An analogous assertion is true for the negative

unidirectional transport.

Remark 3. Analogously, we can state boundary value problems for evaluating the prob-

abilities P (XT=2;x(t) > x � L
�

; T=2 � t � T ) and P (X0;x(t) < x + L
+
; 0 � t � T=2)

11



with L
� = mL; L

+ = nL; m; n are positive integers. These probabilities can be used

for a detailed description of the transport much as the probabilities P>

T=2;x
and P<

0;x are

employed above.

It is possible to prove that ux�L(0; x;A; T; �) is decreasing with respect to A; T; and �;

and vx�L(0; x;A; T; �) is increasing with respect to A; T; and �: Then the product �+ has

a maximum in T for �xed A and �: Analogously, the product �+ has a maximum in �

for �xed A and T: The remarkable feature of the phenomenon considered here, is that for

some ratchet potentials F (x) the product �+ is close to 1 for a su�ciently wide range of

parameters A; T; �: In particular, this is con�rmed in our tests (see Fig. 3). We take

the amplitude A of the periodic forcing less than A� so that there is no transport in the

system (3.1) for A < A
� and � = 0:

Remark 4. If the probability P
>

T=2;x
is close to 1; there is practically no transport in

negative direction, and if, in addition, E�+ << T=2; then the transport is positively

unidirectional. So, closeness of the probability P>

T=2;x
to 1 and E�+ << T=2 give us the

other condition for the unidirectional transport in positive direction. This condition is

less general than the one of Theorem 2 but it is essentially easier to evaluate E�+ than

Q
<

0;x: Note in passing that in this case the mean shift �� of X(t) during the single period

T of the periodic forcing is approximately estimated as ��
:
= �v+T=2:

Numerical results. In a general case to �nd domains of parameters corresponding to

the unidirectional transport, one should solve the problems (3.7)-(3.8) and (3.10)-(3.11)

numerically. We perform some numerical experiments. We take the following ratchet

potential F (x)

(3.13) F (x) = �

L

2�
(sin

2�x

L
+

1

4
sin

4�x

L
); L > 0;

that is used for some tests, e.g., in [13, 14].

Figure 3 gives level curves of the product �+
: In accordance with our tests the probabilities

P
>

T=2;x
and Q<

0;x depend only weakly on x, and for de�niteness we take x in the presented

tests such that the potential F (x) has a local minimum at this point. One can see that

the domain of parameters corresponding to the noise-induced unidirectional transport is

su�ciently large. Let us mark that there is no unidirectional transport for both su�ciently

large and small noise intensities. Figure 4 demonstrates typical trajectories of the solution

X(t) to (3.1) with the potential of (3.13). Figure 4 (left) corresponds to the regime of

the unidirectional transport. One can see that during the �rst half-period of the periodic

forcing the trajectory moves to the right on a distance of 5� 10 periods of the potential

F (x): At the same time, during the second-half period of the periodic forcing the trajectory
increment is practically equal to zero. If we increase the noise intensity, the mean shift
�� during the single period of the periodic forcing increases but the transport becomes

non-unidirectional (see Fig. 4 (right)).

Let us note that the approach proposed above is universal. For instance, it can easily be

carried over to the model with sinusoidal forcing.
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Figure 3. Forced thermal ratchets. Level curves of the product �+ in the

plane (T; �) for A = 0:6 and the potential F (x) of (3.13) with L = 1.
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Figure 4. Forced thermal ratchets. Sample trajectories of the solution to

(3.1) with the potential F (x) of (3.13) for L = 1, A = 0:6, T = 400, and
� = 0:15 (left) and � = 0:4 (right).

In our tests we use both �nite-di�erence schemes and probability methods for solving

the problems (3.7)-(3.8) and (3.10)-(3.11). Let us observe that we need in the individual

values ux�L(0; x) and vx+L(0; x) only and in such a case the probabilistic approach with the
Monte Carlo technique is most relevant. In one-dimensional case probabilistic algorithms

require computational e�ort comparable with �nite-di�erence schemes. But the Monte

Carlo approach will be more e�ective for multi-dimensional models. To simulate sample

trajectories, we use mean-square numerical methods for SDEs. Some details on numerical

analysis of stochastic models are available, e.g., in [22, 21, 23].
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