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Abstract. A number of new layer methods solving the Neumann problem for semi-

linear parabolic equations is constructed by using probabilistic representations of their

solutions. The methods exploit the ideas of weak sense numerical integration of sto-

chastic di�erential equations in bounded domain. In spite of the probabilistic nature

these methods are nevertheless deterministic. Some convergence theorems are proved.

Numerical tests are presented.

1. Introduction

A probability approach to constructing layer methods for solving nonlinear partial di�er-

ential equations (nonlinear PDE) of parabolic type is proposed in [13, 14, 15]. The papers

[13, 14] are devoted to layer approximation methods for the Cauchy problem for semi-

linear parabolic equations and the paper [15] deals with the nonlinear Dirichlet problem.

The aim of this paper is to develop such methods for nonlinear problems with Neumann

boundary conditions.

Let G be a bounded domain in Rd, Q = [t0; T ) � G be a cylinder in Rd+1; � = Q n Q:
The set � is a part of the boundary of the cylinder Q consisting of the upper base and

the lateral surface. Consider the Neumann problem for the semilinear parabolic equation

(1.1)
@u

@t
+

1

2

dX
i;j=1

aij(t; x; u)
@2u

@xi@xj
+

dX
i=1

bi(t; x; u)
@u

@xi
+ g(t; x; u) = 0; (t; x) 2 Q;

with the initial condition

(1.2) u(T; x) = '(x)

and the boundary condition

(1.3)
@u

@�
=  (t; x; u); t 2 [t0; T ]; x 2 @G;

where � is the direction of the internal normal to the boundary @G at the point x 2 @G:
The form of equation (1.1) is relevant to a probabilistic approach, i.e., the equation is

considered under t < T , and the �initial� conditions are prescribed at t = T: Using the

well known probabilistic representation of the solution to (1.1)-(1.3) (see [5, 4]), we get

(1.4) u(t; x) = E('(Xt;x(T )) + Zt;x;0(T )):

In (1.4) Xt;x(s); Zt;x;z(s); t0 � t < T; s � t; x 2 G; is a solution of the Cauchy problem

to the Ito system of stochastic di�erential equations (SDE)

(1.5) dX = b(s;X; u(s;X))IG(X)ds+ �(s;X; u(s;X))IG(X)dw(s)+ �(X)I@G (X)d�(s);

X(t) = x;

dZ = g(s;X; u(s;X))IG(X)ds+  (s;X; u(s;X))I@G (X)d�(s); Z(t) = z;

where w(s) = (w1(s); :::; wd(s))> is a standard Wiener process, b(s; x; u) = (b1(s; x; u); :::;
bd(s; x; u))> is a column vector, the matrix � = �(s; x; u) is obtained from the equation

��> = a; � = f�ij(s; x; u)g; a = faij(s; x; u)g; i; j = 1; :::; d;
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�(s) is a local time of the process X on @G; and IA(x) is the indicator of a set A:

Introduce a time discretization, for de�niteness the equidistant one:

T = tN > tN�1 > � � � > t0; h :=
T � t0

N
:

The proposed here methods give an approximation �u(tk; x) of the solution u(tk; x); k =

N; :::; 0; x 2 G, i.e., step by step everywhere in the domain G: They exploit the ideas of

weak sense numerical integration of SDE in bounded domain [11, 12] (see also [9, 6, 16]).

As a result, we express �u(tk; x) recurrently in terms of �u(tk+1; x); k = N � 1; :::; 0; i.e., we
construct some layer methods which are discrete in the variable t only. In spite of their

probabilistic nature these methods are nevertheless deterministic.

In Section 2, a few layer methods for the nonlinear Neumann problem are constructed.

Using probabilistic type arguments, a convergence theorem is proved in Section 3. To

realize a layer method in practice, a discretization in the variable x with interpolation at

every step is needed to turn the method into an algorithm. Such numerical algorithms

are given in Section 4. A majority of ideas can be demonstrated at d = 1; and we restrict

ourselves to this case in Sections 2-4. The case d � 2 is discussed in Section 5. Numerical

tests are presented in the last section.

Traditional numerical analysis of nonlinear PDE is available, e.g., in [17, 18, 19, 22]. Other

probability approaches are considered in [7, 20]. The probability approach to boundary

value problems for linear parabolic equations is treated in [10, 11, 12, 2].

2. Construction of layer methods

The Neumann boundary value problem in the one-dimensional case has the form

(2.1)
@u

@t
+

1

2
�2(t; x; u)

@2u

@x2
+ b(t; x; u)

@u

@x
+ g(t; x; u) = 0; t0 � t < T; � < x < � ;

(2.2) u(T; x) = '(x); � � x � �;

(2.3)
@u

@x
(t; �) =  1(t; u(t; �));

@u

@x
(t; �) =  2(t; u(t; �)); t0 � t � T:

In this case Q is a partly open rectangle: Q = [t0; T )� (�; �); and � consists of the upper

base fTg � [�; �] and two vertical intervals: [t0; T )� f�g and [t0; T ) � f�g: We assume

that �(t; x; u) � �� > 0 for (t; x) 2 Q; �1 < u <1:

Let u = u(t; x) be a solution to the problem (2.1)-(2.3) which is supposed to exist, to be

unique, and to be su�ciently smooth. Theoretical results on this topic are available in

[8, 21] (see also references therein).

1. Let us suppose for a while that it is possible to extend the coe�cients of equation

(2.1) so that the new equation has a solution u(t; x) on [t0; T )�R which is an extension

of the solution to the boundary value problem (2.1)-(2.3). The function u(t; x) is nothing
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but a solution of a Cauchy problem for equation (2.1). To construct methods, we use the

representation

(2.4) u(tk; x) = E(u(tk+1; Xtk;x(tk+1)) + Ztk;x;0(tk+1));

where Xt;x(s); Zt;x;z(s); t0 � t < T; s � t; x 2 G; is a solution of the Cauchy problem to

the Ito system of SDE

dX = b(s;X; u(s;X))ds+ �(s;X; u(s;X))dw(s); X(t) = x;

(2.5) dZ = g(s;X; u(s;X))ds; Z(t) = z:

Applying the explicit weak Euler scheme with the simplest simulation of noise to system

(2.5), we get

(2.6) �Xtk;x(tk+1) = x + b(tk; x; u(tk; x))h+ �(tk; x; u(tk; x))
p
h� ;

(2.7) �Ztk;x;0(tk+1) = g(tk; x; u(tk; x))h ;

where � is distributed by the law: P (� = �1) = 1

2
.

Using (2.4) (we suppose the layer u(tk+1; x) to be known) , we get to within O(h
2) :

(2.8) u(tk; x) ' E(u(tk+1; �Xtk;x(tk+1)) + �Ztk;x;0(tk+1))

=
1

2
u(tk+1; x+ b(tk; x; u(tk; x))h� �(tk; x; u(tk; x))

p
h)

+
1

2
u(tk+1; x + b(tk; x; u(tk; x))h+ �(tk; x; u(tk; x))

p
h) + g(tk; x; u(tk; x))h:

Now we can obtain an implicit relation for an approximation of u(tk; x): Applying the

method of simple iteration to the implicit relation and taking u(tk+1; x) as a null iteration,
we get the following explicit one-step approximation v(tk; x) of u(tk; x) :

(2.9) v(tk; x) =
1

2
u(tk+1; x + hbk � h1=2�k) +

1

2
u(tk+1; x+ hbk + h1=2�k) + hgk ;

where bk; �k; gk are the coe�cients b; �; g calculated at the point (tk; x; u(tk+1; x)).

But in reality we know the layer u(tk+1; x) for � � x � � only. At the same time the

argument x+hbk�h1=2�k for x close to � is less than � and the argument x+hbk+h
1=2�k

for x close to � is more than �: Thus we need to extend the layer u(tk+1; x) in a constructive
manner.

To this end let us use the formula

(2.10) u(t; ���x) = u(t; � +�x)� 2
@u

@x
(t; �) ��x +O(�x3)

= u(t; �+�x)� 2 1(t; u(t; �)) ��x +O(�x3):

If �x = O(
p
h); the accuracy of formula (2.10) is O(h3=2). Therefore

u(tk+1; x+ hbk � h1=2�k) = u(tk+1; 2�� x� hbk + h1=2�k)

�2 1(tk+1; u(tk+1; �)) � (�� x� hbk + h1=2�k) +O(h3=2);
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i.e., in the case x + hbk � h1=2�k < � we get the explicit one-step approximation v(tk; x)

for u(tk; x) of accuracy O(h
3=2) :

v(tk; x) =
1

2
u(tk+1; 2�� x� hbk + h1=2�k)

� 1(tk+1; u(tk+1; �)) � (�� x� hbk + h1=2�k)

+
1

2
u(tk+1; x+ hbk + h1=2�k) + hgk:

The analogous formula can be written for the right end �. As a result, we obtain the

following method

(2.11) �u(tN ; x) = '(x); x 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; x + h�bk � h1=2��k) +

1

2
�u(tk+1; x+ h�bk + h1=2��k) + h�gk;

x+ h�bk � h1=2��k 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; 2�� x� h�bk + h1=2��k)�  1(tk+1; �u(tk+1; �)) � (�� x� h�bk + h1=2��k)

+
1

2
�u(tk+1; x+ h�bk + h1=2��k) + h�gk; x + h�bk � h1=2��k < �;

�u(tk; x) =
1

2
�u(tk+1; x+ h�bk � h1=2��k) +

1

2
�u(tk+1; 2� � x� h�bk � h1=2��k)

+ 2(tk+1; �u(tk+1; �)) � (x+ h�bk + h1=2��k � �) + h�gk;

x + h�bk + h1=2��k > �; k = N � 1; :::; 1; 0;

where �bk; ��k; �gk are the coe�cients b; �; g calculated at the point (tk; x; �u(tk+1; x)).

The method (2.11) is an explicit layer method for solving the Neumann problem (2.1)-

(2.3). Its one-step error near the boundary is O(h3=2) and for internal points is O(h2) (see
Lemma 3.1). Apparently, this method has order of convergence O(h) (see Remark 3.2).

2. Applying a slightly modi�ed weak scheme with one-step boundary order O(h3=2) from
[11, 12] to system (1.5), it is not di�cult to obtain

(2.12) Xtk;x(tk+1) ' �Xtk ;x(tk+1) = x + h~bk + h1=2~�k�k

Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z + h~gk; x + h~bk � h1=2~�k 2 [�; �];

�Xtk;x(tk+1) = x+ (�� x) +

q
h~�2k + (�� x)2

�Ztk;x;z(tk+1) = z + h~gk �  1(tk; u(tk; �)) � (�� x� h~bk +

q
h~�2k + (�� x)2);

x + h~bk � h1=2~�k < �;

�Xtk;x(tk+1) = x + (� � x)�
q
h~�2k + (� � x)2

�Ztk;x;z(tk+1) = z + h~gk �  2(tk; u(tk; �)) � (� � x� h~bk �
q
h~�2k + (� � x)2);

x+ h~bk + h1=2~�k > �:
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Here ~bk; ~�k; ~gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; x; u(tk; x)) and �N�1; �N�2; : : : ; �0 are i.i.d. random variables with the law P (� =

�1) = 1=2:

One can see that using approximation (2.12) and representation (2.4), we get an implicit

one-step approximation for u(tk; x). Applying the method of simple iteration to this

implicit approximation with u(tk+1; x) as a null iteration, we come to the explicit one-

step approximation v(tk; x) of u(tk; x):

(2.13) v(tk; x) =
1

2
u(tk+1; x+ hbk � h1=2�k) +

1

2
u(tk+1; x + hbk + h1=2�k) + hgk;

x+ hbk � h1=2�k 2 [�; �];

v(tk; x) = u(tk+1; �+

q
h�2k + (�� x)2)

� 1(tk+1; u(tk+1; �)) � (�� x� hbk +

q
h�2k + (�� x)2) + hgk;

x + hbk � h1=2�k < �;

v(tk; x) = u(tk+1; � �
q
h�2k + (� � x)2)

� 2(tk+1; u(tk+1; �)) � (� � x� hbk �
q
h�2k + (� � x)2) + hgk;

x + hbk + h1=2�k > �; k = N � 1; : : : ; 1; 0;

where bk; �k; gk are the coe�cients b; �; g calculated at the point (tk; x; u(tk+1; x)): Let
us observe that within the limits of considered accuracy it is very often possible to take

tk+1 instead of tk: That is why, one can take, for instance,  1(tk+1; u(tk+1; �)) instead of

 1(tk; u(tk+1; �)) in (2.13).

The corresponding explicit layer method for solving the Neumann problem (2.1)-(2.3) has

the form

(2.14) �u(tN ; x) = '(tN ; x); x 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; x+ h�bk � h1=2��k) +

1

2
�u(tk+1; x+ h�bk + h1=2��k) + h�gk;

x+ h�bk � h1=2��k 2 [�; �];

�u(tk; x) = �u(tk+1; � +

q
h��2

k + (�� x)2)

� 1(tk+1; �u(tk+1; �)) � (�� x� h�bk +

q
h��2k + (�� x)2) + h�gk;

x + h�bk � h1=2��k < �;

�u(tk; x) = �u(tk+1; � �
q
h��2k + (� � x)2)

� 2(tk+1; �u(tk+1; �)) � (� � x� h�bk �
q
h��2k + (� � x)2) + h�gk;

x+ h�bk + h1=2��k > �;

k = N � 1; :::; 1; 0;
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where �bk = �bk(x) = b(tk; x; �u(tk+1; x)); ��k = ��k(x) = �(tk; x; �u(tk+1; x)); �gk = �gk(x)
= g(tk; x; �u(tk+1; x)):

This layer method has the one-step error near the boundary estimated by O(h3=2) and for

internal points estimated by O(h2) (see Lemma 3.1). We prove that its order of conver-

gence is O(h) when boundary condition does not depend on the solution (see Theorem

3.1). Apparently, this is so in the general case as well (see Remark 3.1).

3. Applying a weak scheme with one-step boundary order O(h) from [11, 12] to system

(1.5), it is not di�cult to obtain

(2.15) Xtk;x(tk+1) ' �Xtk ;x(tk+1) = x + h~bk + h1=2~�k�k

Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z + h~gk; x + h~bk � h1=2~�k 2 [�; �];

�Xtk;x(tk+1) = x+ qh1=2; �Ztk;x;z(tk+1) = z �  1(tk; u(tk; �))qh
1=2; x + h~bk � h1=2~�k < �;

�Xtk;x(tk+1) = x� qh1=2; �Ztk;x;z(tk+1) = z +  2(tk; u(tk; �))qh
1=2; x + h~bk + h1=2~�k > �:

Here ~bk; ~�k; ~gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; x; u(tk; x)); �N�1; �N�2; : : : ; �0 are i.i.d. random variables with the law P (� = �1) =
1=2; and q is a positive number (see Remark 3.3, where a discussion on choosing q is

given). As before, we obtain the following explicit one-step approximation v(tk; x) of

u(tk; x) :

(2.16) v(tk; x) =
1

2
u(tk+1; x+ hbk � h1=2�k) +

1

2
u(tk+1; x + hbk + h1=2�k) + hgk;

x+ hbk � h1=2�k 2 [�; �];

v(tk; x) = u(tk+1; x+ qh1=2)�  1(tk+1; u(tk+1; �))qh
1=2; x + hbk � h1=2�k < �;

v(tk; x) = u(tk+1; x� qh1=2) +  2(tk+1; u(tk+1; �))qh
1=2; x + hbk + h1=2�k > �;

k = N � 1; :::; 1; 0:

The corresponding explicit layer method for solving the Neumann problem (2.1)-(2.3) has

the form

(2.17) �u(tN ; x) = '(tN ; x); x 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; x+ h�bk � h1=2��k) +

1

2
�u(tk+1; x+ h�bk + h1=2��k) + h�gk;

x+ h�bk � h1=2��k 2 [�; �];

�u(tk; x) = �u(tk+1; x+ qh1=2)�  1(tk+1; �u(tk+1; �))qh
1=2; x+ h�bk � h1=2��k < �;

�u(tk; x) = �u(tk+1; x� qh1=2) +  2(tk+1; �u(tk+1; �))qh
1=2; x+ h�bk + h1=2��k > �;

k = N � 1; :::; 1; 0;

where �bk = �bk(x) = b(tk; x; �u(tk+1; x)); ��k = ��k(x) = �(tk; x; �u(tk+1; x)); �gk = �gk(x)
= g(tk; x; �u(tk+1; x)):

This layer method is simpler but less accurate than (2.11) and (2.14). Its one-step error

near the boundary is O(h) and for internal points is O(h2) (see Lemma 3.3). We prove

6



that its order of convergence is O(h1=2) when boundary condition does not depend on the

solution (see Theorem 3.2). Apparently, this is so in the general case as well.

4. In [2] another weak scheme for SDE with re�ection is proposed and applied to solving

the linear Neumann problem. The authors state that the scheme has the weak order

of convergence O(h1=2): On the base of this scheme, the layer method for the nonlinear

problem can be constructed:

(2.18) �u(tN ; x) = '(tN ; x); x 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; x+ h�bk � h1=2��k) +

1

2
�u(tk+1; x+ h�bk + h1=2��k) + h�gk;

x+ h�bk � h1=2��k 2 [�; �];

�u(tk; x) =
1

2
�u(tk+1; �) +

1

2
�u(tk+1; x+ h�bk + h1=2��k)

�1

2
 1(tk+1; �u(tk+1; �))(�� x� h�bk + h1=2��k) + h�gk; x+ h�bk � h1=2��k < �;

�u(tk; x) =
1

2
�u(tk+1; x + h�bk � h1=2��k) +

1

2
�u(tk+1; �)

�1

2
 2(tk+1; �u(tk+1; �))(� � x� h�bk � h1=2��k) + h�gk; x + h�bk + h1=2��k > �;

k = N � 1; :::; 1; 0;

where �bk = �bk(x) = b(tk; x; �u(tk+1; x)); ��k = ��k(x) = �(tk; x; �u(tk+1; x)); �gk = �gk(x)
= g(tk; x; �u(tk+1; x)):

Apparently, this layer method has order of convergence O(h1=2):

Remark 2.1. Combining methods from [15] and from this section, we can solve mixed

boundary value problems, i.e., when we have the Dirichlet condition on a part of the

boundary @G and the Neumann condition on the rest of @G:

The methods (2.11), (2.14), (2.17), and (2.18) are deterministic though the probabilistic

approach is used for their construction.

3. Convergence theorems

We shall keep the following assumptions.

(i) There exists a unique solution u(t; x) of problem (2.1)-(2.3) such that

(3.1) �1 � uÆ < u� � u(t; x) � u� < u
Æ � 1; t0 � t � T; x 2 [�; �];

where uÆ; u�; u
�; u

Æ

are some constants, and there exist the uniformly bounded derivatives:

(3.2)

j @
i+ju

@ti@xj
j � K; i = 0; j = 1; 2; 3; 4; i = 1; j = 0; 1; 2; i = 2; j = 0; t0 � t � T; x 2 [�; �]:

7



(ii) The coe�cients b(t; x; u); �(t; x; u); g(t; x; u) are uniformly bounded and uniformly

satisfy the Lipschitz condition with respect to x and u:

(3.3) jbj � K; j�j � K; jgj � K;

jb(t; x2; u2)� b(t; x1; u1)j+ j�(t; x2; u2)� �(t; x1; u1)j+ jg(t; x2; u2)� g(t; x1; u1)j
� K (jx2 � x1j+ ju2 � u1j) ;

t0 � t � T; x 2 [�; �]; uÆ < u < u
Æ

:

Below we use the letters K and C without any index for various constants which do not

depend on h; k; x:

Let us evaluate the one-step error �(tk; x) of methods (2.11) and (2.14).

Lemma 3.1. Under assumptions (i) and (ii); the one-step error �(tk; x) of methods

(2.11) and (2.14) is estimated as

(3.4) j�(tk; x)j = jv(tk; x)� u(tk; x)j � Ch2; x + hbk � h1=2�k 2 [�; �];

(3.5) j�(tk; x)j = jv(tk; x)�u(tk; x)j � Ch3=2; x+hbk�h1=2�k < � or x+hbk+h
1=2�k > �;

where v(tk; x) is the corresponding one-step approximation, C does not depend on h; k; x:

Proof. If both the points x+ hbk � h1=2�k belong to [�; �]; we have

(3.6) v(tk; x) =
1

2
u(tk+1; x+ hbk � h1=2�k) +

1

2
u(tk+1; x+ hbk + h1=2�k) + hgk:

Expanding the terms of (3.6) at the point (tk; x) and taking into account that u(t; x) is
the solution of problem (2.1)-(2.3), we get (3.4) (see also [13, 14], where similar assertions

are proved in detail).

Let us consider the case when the point x + hbk � h1=2�k < �: The relation (3.5) for

method (2.11) follows from Section 2.1. Let us prove this relation for method (2.14). Due

to (2.13),

(3.7) v(tk; x) = u(tk+1; x +�X�
)�  1(tk+1; u(tk+1; �)) � (�X� � hbk) + hgk;

where

�X� := �� x +

q
h�2k + (�� x)2 :

It is clear that

(3.8) j�� xj � Ch1=2; j�X�j � Ch1=2:

Taking into account that  1(tk+1; u(tk+1; �)) = u0x(tk+1; �) (see (2.3)), then expanding

the functions u(tk+1; x + �X�) and u0x(tk+1; x + (� � x)) at the point (tk; x); and using

assumptions (i); (ii) and inequalities (3.8), we get

(3.9) v(tk; x) = u+
@u

@t
h+

@u

@x
�X�

+
1

2

@2u

@x2
(�X�

)
2

�@u
@x

(�X� � hbk)�
@2u

@x2
(�� x)�X� + gkh +O(h3=2)
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= u+ h(
@u

@t
+ bk

@u

@x
+ gk) +

1

2

@2u

@x2
�X�(�X� � 2(�� x)) +O(h3=2);

where the function u and its derivatives are calculated at the point (tk; x).

The expression �X�(�X� � 2(�� x)) is equal to h�2k:

Due to assumptions (i) and (ii); we obtain

bk = b(tk; x; u(tk+1; x)) = ~bk +O(h); �2k = ~�2k +O(h); gk = ~gk +O(h);

where ~bk; ~�k; ~gk are calculated at the point (tk; x; u(tk; x)):

Then we get from (3.9):

(3.10) v(tk; x) = u+ h(
@u

@t
+ b

@u

@x
+
�2

2

@2u

@x2
+ g) +O(h3=2):

Since u(t; x) is the solution of problem (2.1)-(2.3), the relation (3.10) implies

v(tk; x) = u(tk; x) +O(h3=2):

The case x + hbk + h1=2�k > � can be considered analogously. Lemma 3.1 is proved.

A discussion concerning convergence of method (2.11) see in Remark 3.2. The theorem

on global convergence for method (2.14) is given in the speci�c case of the Neumann

problem (2.1)-(2.3), when the functions  1(t; u) and  2(t; u) do not depend on u (see a

discussion concerning the general case in Remark 3.1). To prove the theorem, we need

some auxiliary constructions.

In connection with the layer method (2.14), we introduce the random sequence Xi; Zi :

(3.11) Xk = x; Zk = 0;

Xi+1 = Xi + h�bi + h1=2��i�i; Zi+1 = Zi + h�gi;

Xi + h�bi � h1=2��i 2 [�; �];

Xi+1 = Xi +�X�
i ; Zi+1 = Zi + h�gi �  1(ti+1) � (�X�

i � h�bi);

�X�
i := (��Xi) +

q
h��2

i + (��Xi)
2;

Xi + h�bi � h1=2��i < �;

Xi+1 = Xi +�X�
i ; Zi+1 = Zi + h�gi �  2(ti+1) � (�X�

i � h�bi);

�X�
i := (� �Xi)�

q
h��2i + (� �Xi)

2;

Xi + h�bi + h1=2��i > �;

i = k; : : : ; N � 1; k � 0:

Here �i are i.i.d. random variables with the law P (� = �1) =
1

2
and �bi = �bi(Xi) =

b(ti; Xi; �u(ti+1; Xi)); ��i = ��i(Xi) = �(ti; Xi; �u(ti+1; Xi)); �gi = �gi(Xi) = g(ti; Xi; �u(ti+1; Xi)):
Let us note that the function �u(ti; x); i = 0; : : : ; N; x 2 [�; �]; is uniquely de�ned by (2.14).

Evidently, the sequence (ti; Xi) is a Markov chain.
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Introduce the boundary layer @� 2 Q : for all the points (tk; x) 2 Q n @� both the

points x + h�bk(x) � h1=2��k(x) belong to [�; �] and for the points (tk; x) 2 @� either

x+ h�bk(x)� h1=2��k(x) =2 [�; �] or x + h�bk(x) + h1=2��k(x) =2 [�; �]:

Lemma 3.2. Under assumptions (i) and (ii); the mean of the number of steps {(tk; x);
which the Markov chain (ti; Xi); i = k; : : : ; N; k � 0; Xk = x; spends in the layer @�; is
estimated as

E{(tk; x) �
Cp
h
;

where C does not depend on h; k; x:

The proof of Lemma 3.2 di�ers only little from the proof of the corresponding lemma on

the mean number of steps in the case of the linear Neumann problem given in [12] and is

therefore omitted.

Theorem 3.1. Let the Neumann problem for equation (2.1) with condition (2.2) have

the following boundary conditions

(3.12)
@u

@x
(t; �) =  1(t);

@u

@x
(t; �) =  2(t); t0 � t � T:

Under assumptions (i) and (ii); the method (2.14) has the �rst order of convergence with

respect to h, i.e.,

j�u(tk; x)� u(tk; x)j � Kh;

where K does not depend on h; k; x:

Proof. Here we exploit ideas of proving convergence theorems for probabilistic methods

solving linear boundary value problems [10, 11, 12].

Let Xi; Zi; i = k; : : : ; N; Xk = x; Zk = 0; be the sequence de�ned by (3.11). It is clear

that

�u(tk; x) = E [�u(tN ; XN) + ZN ] = E ['(tN ; XN) + ZN ] = E [u(tN ; XN) + ZN ] :

Introduce the notation R(tk; x) := �u(tk; x)� u(tk; x). Then we have

(3.13) R(tk; x) = E [u(tN ; XN) + ZN ]� u(tk; x)

=

N�1X
i=k

E [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi]

=

N�1X
i=k

EIQn@�(ti; Xi) [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi]

+

N�1X
i=k

EI@�(ti; Xi) [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi] :

10



Denote the �rst sum in the right-hand side of (3.13) by R(1)(tk; x) and the second one by

R(2)(tk; x): We have

(3.14) R(1)(tk; x) =

N�1X
i=k

EIQn@�(ti; Xi) [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi]

=

N�1X
i=k

E
�
IQn@�(ti; Xi)E [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi�Xi; Zi]

�
:

According to (3.11), we obtain for (ti; Xi) 2 Q n @� :

(3.15) Ai := E [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi�Xi; Zi]

=
1

2
u(ti+1; Xi + h�bi � h1=2��i) +

1

2
u(ti+1; Xi + h�bi + h1=2��i) + h�gi:

Expanding the functions u(ti+1; Xi + h�bi � h1=2��i) at the point (ti; Xi); we get

(3.16) u(ti+1; Xi + h�bi � h1=2��i) = u(ti; Xi) +
@u

@t
h+ (h�bi � h1=2��i)

@u

@x

+
��2i
2

@2u

@x2
h� �bi��i

@2u

@x2
h3=2 � ��i

@2u

@t@x
h3=2 � ��3i

6

@3u

@x3
h3=2 +O(h2);

where the derivatives are calculated at the point (ti; Xi):

Here we have to suggest for a while that the value u(ti+1; x) + R(ti+1; x) for x 2 [�; �]
remains in the interval (uÆ; u

Æ

) for a su�ciently small h (see conditions (ii)). Clearly,

R(tN ; x) = 0; and below we prove recurrently that R(ti; x) is su�ciently small under a

su�ciently small h: Thereupon, thanks to (3.1), this suggestion will be justi�ed for such

h:

Then due to assumptions (i) and (ii), we obtain

(3.17) �bi(x) = b(ti; x; �u(ti+1; x)) = b(ti; x; u(ti; x)) + �b(ti+1; x) +O(h)

:= bi(x) + �bi(x) +O(h);

where

j�bi(x)j � KjR(ti+1; x)j; jO(h)j � Kh;

and analogously

(3.18) ��2i (x) = �2i (x) + ��2i (x) +O(h); �gi(x) = gi(x) + �gi(x) +O(h);

j��2i (x)j; j�gi(x)j � KjR(ti+1; x)j:

Substituting (3.16) in (3.15) and taking into account (3.17)-(3.18), we come to the relation

Ai = h

�
@u

@t
+ bi

@u

@x
+
�2i
2

@2u

@x2
+ gi

�
+ ri +O(h2);

where

jrij � KhjR(ti+1; Xi)j; jO(h2)j � Ch2;
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the derivatives are calculated at the point (ti; Xi); and bi; �i; gi are calculated at (ti; Xi;
u(ti; Xi)). Taking into account that u(t; x) is the solution of problem (2.1)-(2.3), this

relation implies

Ai = ri +O(h2):

Therefore

(3.19) R(1)(tk; x) =

N�1X
i=k

EIQn@�(ti; Xi)
�
ri +O(h2)

�
:

Now consider R(2)(tk; x). Let (ti; Xi) 2 @� be such that Xi is close to �. Then according

to (3.11), we obtain

(3.20) Bi := E [u(ti+1; Xi+1)� u(ti; Xi) + Zi+1 � Zi�Xi; Zi]

= u(ti+1; Xi +�X�
i )� u(ti; Xi)�  1(ti+1)(�X

�
i � h�bi) + h�gi

= u(ti+1; Xi +�X�
i )� u(ti; Xi)�

@u

@x
(ti+1; �) � (�X�

i � h�bi) + h�gi:

Clearly

(3.21) jXi � �j � C
p
h; j�X�

i j � C
p
h:

Expanding the terms of (3.20) at the point (ti; Xi) and taking into account assumptions

(i)-(ii), relations (3.17)-(3.18), and (3.21), we obtain (cf. (3.9)-(3.10)):

Bi = h(
@u

@t
+ bi

@u

@x
+
�2i
2

@2u

@x2
+ gi) + �ri +O(h3=2);

where

j�rij � KhjR(ti+1; Xi)j;
the derivatives are calculated at the point (ti; Xi); and bi; �i; gi are calculated at (ti; Xi;
u(ti; Xi)). Since u(t; x) is the solution of problem (2.1)-(2.3), this relation implies

Bi = �ri +O(h3=2):

An analogous relation can be obtained for (ti; Xi) 2 @� withXi being close to �: Therefore

(3.22) R(2)
(tk; x) =

N�1X
i=k

EI@�(ti; Xi)
�
�ri +O(h3=2)

�
:

Substituting (3.19) and (3.22) in (3.13), we get

(3.23) R(tk; x) =

N�1X
i=k

EIQn@�(ti; Xi)
�
ri +O(h2)

�
+

N�1X
i=k

EI@�(ti; Xi)
�
�ri +O(h3=2)

�
:

Let Rk := maxx2[�;�] jR(tk; x)j: Due to Lemma 3.2, we obtain from (3.23)

(3.24) Rk � Kh

N�1X
i=k

Ri+1 + Ch:
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Introduce "k := Kh
PN�1

i=k Ri+1 + Ch; k = N � 1; :::; 0: From (3.24) Rk � "k and conse-

quently "k = KhRk+1 + "k+1 � (1 +Kh)"k+1; k = N � 2; :::; 0: Then (since "N�1 = Ch)

Rk � "k � CeK(T�t0) � h; k = N; :::; 0:

Theorem 3.1 is proved.

Remark 3.1. Apparently, the conclusion of Theorem 3.1 is true under the boundary

conditions (2.3). We do not succeed in proving such a general theorem but we can prove

it in the case of the linear boundary conditions

(3.25)
@u

@x
(t; �) = '1(t)u(t; �) +  1(t);

@u

@x
(t; �) = '2(t)u(t; �) +  2(t); t0 � t � T;

(the corresponding proof is more complicated in comparison with case (3.12) and is not

given here). Besides numerical experiments con�rm just mentioned conjecture (see Section

6).

Remark 3.2. As for convergence of method (2.11) in the case of boundary condition

(3.12), we note �rst that it is not di�cult to estimate its global error as O(
p
h) following

deterministic type arguments similar to ones used in [13] (see [14, 15] as well). At the

same time, it is natural to expect that probabilistic type arguments used in Theorem 3.1

will lead to the �rst order of convergence in h. However, we do not succeed in getting

such a proof because the assertion of Lemma 3.2 is, most probably, not true in this case,

and we need some additional auxiliary constructions. Let us also indicate that numerical

experiments of Section 6 demonstrate O(h) convergence of (2.11).

It turns out that method (2.17) in the case (3.12) (and in the case (3.25) as well) is

convergent with order O(h1=2): As above, this fact is apparently true for the general

case of boundary conditions. Let us formulate the corresponding results (we note that

in connection with method (2.17) one can introduce a Markov chain (ti; Xi) for which

Lemma 3.2 takes place).

Lemma 3.3. Under assumptions (i) and (ii); the one-step error �(tk; x) of method (2.17)

is estimated as

j�(tk; x)j = jv(tk; x)� u(tk; x)j � Ch2; x + hbk � h1=2�k 2 [�; �];

j�(tk; x)j = jv(tk; x)� u(tk; x)j � Ch; x + hbk � h1=2�k < � or x + hbk + h1=2�k > �;

where v(tk; x) is de�ned by (2.16), C does not depend on h; k; x:

Theorem 3.2. Under assumptions (i) and (ii); the method (2.17) for the Neumann

problem (2.1)-(2.3), (3.12) is of order O(h1=2), i.e.,

(3.26) j�u(tk; x)� u(tk; x)j � Kh1=2;

where K does not depend on h; k; x:
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Proofs of Lemma 3.3 and Theorem 3.2 are very similar to that of Lemma 3.1 and Theorem

3.1, and we do not give them here.

Remark 3.3. The layer method (2.17) has the parameter q; which, in principle, may be

any positive number. Naturally, the value of q a�ects the method accuracy: K of (3.26)

depends on q. By an extended analysis of the one-step boundary error and of the mean

number of steps of the corresponding Markov chain in the boundary layer @�, we get

K � C1 �
�
1

q
max
(t;x)2Q

j@u
@t
j+ q

2
max
(t;x)2Q

j@
2u

@x2
j
�
+ C2;

where Ci; i = 1; 2; do not depend on h; k; x; and q:

Evidently, both large and small values of q are not appropriate. If we know estimates

of derivatives of the solution for a considered problem, it is not di�cult to indicate an

appropriate q: But generally the choice of q requires special consideration.

Let b(t; x; u) � 0 and g(t; x; u) � 0: In this case the one-step boundary error �(tk; x) of
method (2.17) near � is evaluated as

�(tk; x) =
1

2

@2u

@x2
(tk; x) �

�
q2h+ 2(x� �)qh1=2 � h�2k

�
+O(h3=2); x� h1=2�k < �;

and analogously near �: Taking qh1=2 = � � x +
p
h�2k + (�� x)2; we obtain �(tk; x) =

O(h3=2): Substitution of such q (depending on k and x) in (2.17) gives us a method with

convergence order O(h); which coincides with the method (2.14). Such an analysis also

suggests that it is preferable to take q � �:

4. Numerical algorithms

To have become numerical algorithms, the layer methods of Section 2 need a discretization

in the variable x: Consider the equidistant space discretization with space step hx (recall
that the notation for time step is h): xj = � + jhx; j = 0; 1; 2; :::;M; hx = (� � �)=M:

Using, for example, linear interpolation, we construct the following algorithm on the base

of method (2.14) (we denote it as �u(tk; x) again, since this does not cause any confusion):

(4.1) �u(tN ; x) = '(tN ; x); x 2 [�; �];

�u(tk; xj) =
1

2
�u(tk+1; xj + h�bk;j � h1=2��k;j) +

1

2
�u(tk+1; xj + h�bk;j + h1=2��k;j) + h�gk;j;

xj + h�bk;j � h1=2��k;j 2 [�; �];

�u(tk; xj) = �u(tk+1; � +

q
h��2

k;j + (�� xj)2)

� 1(tk+1; �u(tk+1; �)) � (�� xj � h�bk;j +
q
h��2k;j + (�� xj)2) + h�gk;j;

xj + h�bk;j � h1=2��k;j < �;

�u(tk; xj) = �u(tk+1; � �
q
h��2k;j + (� � xj)2)
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� 2(tk+1; �u(tk+1; �)) � (� � xj � h�bk;j �
q
h��2k;j + (� � xj)2) + h�gk;j;

xj + h�bk;j + h1=2��k;j > �; j = 1; 2; :::;M � 1 ;

(4.2) �u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1); xj < x < xj+1;

j = 0; 1; 2; :::;M � 1 ; k = N � 1; :::; 1; 0;

where �bk;j; ��k;j; �gk;j are the coe�cients b; �; g calculated at the point (tk; xj; �u(tk+1; xj)):

Theorem 4.1. Consider problem (2.1)-(2.3), (3.12): If the value of hx is taken equal to

{h, { is a positive constant, then under assumptions (i) and (ii) the algorithm (4.1)-

(4.2) has the �rst order of convergence, i.e., the approximation �u(tk; x) from formulas

(4.1)-(4.2) satis�es the relation

j�u(tk; x)� u(tk; x)j � Kh;

where K does not depend on x; h; k.

Proof. In connection with the algorithm (4.1)-(4.2), we introduce the random sequence

Xi; Zi; i = k; :::; N: We put Xk = xj; Zk = 0 and then

(4.3) X�
i+1 := Xi + h�bi � h1=2��i; i = k; :::; N � 1;

for i = k; : : : ; N � 2 :

if X�
i+1 2 [�; �]; then P (Xi+1 = xl) =

1

2

xl+1 �X�
i+1

hx
; P (Xi+1 = xl+1) =

1

2

X�
i+1 � xl

hx
;

P (Xi+1 = xm) =
1

2

xm+1 �X+
i+1

hx
; P (Xi+1 = xm+1) =

1

2

X+
i+1 � xm

hx
; Zi+1 = Zi + h�gi;

where xl; xl+1; xm; xm+1 are such that xl � X�
i+1 < xl+1; xm < X+

i+1 � xm+1;

if X�
i+1 < �; then

P (Xi+1 = xm) =
xm+1 � (Xi +�X�

i )

hx
; P (Xi+1 = xm+1) =

(Xi +�X�
i )� xm

hx
;

Zi+1 = Zi + h�gi �  1(ti+1) � (�X�
i � h�bi);

where �X�
i = (��Xi) +

q
h��2i + (��Xi)

2 and xm; xm+1 are such that

xm < Xi +�X�
i � xm+1;

if X+
i+1 > �; then

P (Xi+1 = xl) =
xl+1 � (Xi +�X�

i )

hx
; P (Xi+1 = xl+1) =

(Xi +�X�
i )� xl

hx
;

Zi+1 = Zi + h�gi �  2(ti+1) � (�X�
i � h�bi);

where �X�
i = (� �Xi)�

q
h��2i + (� �Xi)

2 and xl; xl+1 are such that

xl � Xi +�X�
i < xl+1;
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for i = N � 1 :

if X�
N 2 [�; �]; then P (XN = X�

N ) = P (XN = X+
N) =

1

2
; ZN = ZN�1 + h�gN�1;

if X�
N < �; then

XN = XN�1 +�X�
N�1; ZN = ZN�1 + h�gN�1 �  1(tN) � (�X�

N�1 � h�bN�1);

where �X�
N�1 = (��XN�1) +

q
h��2N�1 + (��XN�1)

2;

if X+
N > �; then

XN = XN�1 +�X
�
N�1; ZN = ZN�1 + h�gN�1 �  2(tN) � (�X�

N�1 � h�bN�1);

where �X�
N�1 = (� �XN�1)�

q
h��2N�1 + (� �XN�1)

2:

Here �bi = �bi(Xi) = b(ti; Xi; �u(ti+1; Xi)); ��i = ��i(Xi) = �(ti; Xi; �u(ti+1; Xi)); and �gi =

�gi(Xi) = g(ti; Xi; �u(ti+1; Xi)):

It is clear that

�u(tk; xj) = E [�u(tN ; XN) + ZN ] = E ['(tN ; XN) + ZN ] = E [u(tN ; XN) + ZN ] :

Introduce the notation

R(tk; x) := �u(tk; x)� u(tk; x); Rk := max
x2[�;�]

jR(tk; x)j:

Using arguments similar to those which lead us to (3.23) and taking into account that the

error of linear interpolation is O(h2x); we get

(4.4) R(tk; xj) =

N�1X
i=k

EIQn@�(ti; Xi)
�
ri +O(h2) +O(h2x)

�

+

N�1X
i=k

EI@�(ti; Xi)
�
�ri +O(h3=2) +O(h2x)

�
;

where

jrij; j�rij � KhjR(ti+1; Xi)j:

A lemma similar to Lemma 3.2 can be proved for the Markov chain (ti; Xi) de�ned by

(4.3). Then, we obtain from (4.4) for hx = {h:

(4.5) jR(tk; xj)j � Kh

N�1X
i=k

Ri+1 + Ch:

We have

(4.6) u(tk; x) =
xj+1 � x

hx
u(tk; xj) +

x� xj

hx
u(tk; xj+1) +O(h2x); xj � x � xj+1:

From (4.6) and (4.2):

R(tk; x) =
xj+1 � x

{h
R(tk; xj) +

x� xj

{h
R(tk; xj+1) +O(h2);
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whence due to (4.5)

jR(tk; x)j � Kh

N�1X
i=k

Ri+1 + Ch:

Consequently we get (3.24). Theorem 4.1 is proved.

Remark 4.1. It is natural to attract cubic interpolation instead of linear one for con-

structing numerical algorithms. Exploitation of cubic interpolation allows us to take the

space step hx = {

p
h (in contrast to hx = {h for the linear interpolation) and, thus,

to reduce the volume of computations. Unfortunately, we do not succeed in proving a

convergence theorem in the case of cubic interpolation. The way of proving Theorem 4.1

gives us some restriction on the type of interpolation procedure which we can use for

constructing numerical algorithms. The restriction is such that the sum of the absolute

values of the coe�cients staying at �u(tk; �) in the interpolation procedure must be not

greater than 1: Linear interpolation and B-splines of order O(h2x) satisfy this restriction.

But cubic interpolation of order O(h4x) does not satisfy it. In Section 6 we test algorithms

based on cubic interpolation. The tests give fairly good results. See also some theoretical

explanations and numerical tests in [13, 14, 15].

On the base of linear interpolation and layer method (2.17), we get the following algorithm:

(4.7) �u(tN ; x) = '(tN ; x); x 2 [�; �];

�u(tk; xj) =
1

2
�u(tk+1; xj + h�bk;j � h1=2��k;j) +

1

2
�u(tk+1; xj + h�bk;j + h1=2��k;j) + h�gk;j;

xj + h�bk;j � h1=2��k;j 2 [�; �];

�u(tk; xj) = �u(tk+1; xj + q
p
h)�  1(tk+1; �u(tk+1; �)) � qh1=2;

xj + h�bk;j � h1=2��k;j < �;

�u(tk; xj) = �u(tk+1; xj � q
p
h) +  2(tk+1; �u(tk+1; �)) � qh1=2;

xj + h�bk;j + h1=2��k;j > �; j = 1; 2; :::;M � 1 ;

(4.8) �u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1); xj < x < xj+1;

j = 0; 1; 2; :::;M � 1 ; k = N � 1; :::; 1; 0;

where �bk;j; ��k;j; �gk;j are the coe�cients b; �; g calculated at the point (tk; xj; �u(tk+1; xj)).

Theorem 4.2. Consider problem (2.1)-(2.3), (3.12): If the value of hx is taken equal to

{h3=4, { is a positive constant, then under assumptions (i) and (ii) the algorithm (4.7)-

(4.8) has order of convergence O(
p
h), i.e., the approximation �u(tk; x) from formulas

(4.7)-(4.8) satis�es the relation

j�u(tk; x)� u(tk; x)j � K
p
h;

where K does not depend on x; h; k.
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This theorem is proved by the same arguments as Theorem 4.1.

Analogously, one can write down algorithms based on linear interpolation and on layer

methods (2.11) and (2.18).

5. Extension to the multi-dimensional Neumann problem

Here we restrict ourselves to extension of the layer method (2.17). But let us note that a

generalization of the other layer methods of Section 2 to the multi-dimensional case can

be done as well. Though it is not di�cult to generalize the layer methods given above for

an arbitrary d; we should mention that layer methods are feasible if the dimension d of

the domain G is not more than 3: Here we consider the problem (1.1)-(1.3) with d = 2.

Remind that � is a 2� 2-matrix satisfying the relation ��> = a:

Introduce the notation iXk+1 := (iX
1
k+1; iX

2
k+1);

iX
1
k+1 = x1 +�b1kh + ��11k

p
h � i�1 + ��12k

p
h � i�2;

iX
2
k+1 = x2 +�b2kh + ��21k

p
h � i�1 + ��22k

p
h � i�2;

i = 1; 2; 3; 4; x = (x1; x2) 2 G � R2;

where 1� = (�1;�1); 2� = (�1; 1); 3� = � 1�; 4� = � 2� and �bk = (�b1k;
�b2k); ��k = f��jlk g are

the coe�cients b(t; x; u); �(t; x; u) calculated at the point (tk; x; �u(tk+1; x)):

If the point x = (x1; x2) 2 G is su�ciently far from the boundary @G (more precisely, if

the points iXk+1; i = 1; 2; 3; 4; belong to G); the layer method has the form (cf. [13, 15]):

(5.1) �u(tk; x
1; x2) =

4X
i=1

1

4
�u(tk+1; iX

1
k+1; iX

2
k+1) + �gk � h;

where �gk is the coe�cient g(t; x; u) calculated at the point (tk; x; �u(tk+1; x)):

If the point x = (x1; x2) 2 G is close or belongs to the boundary @G; then some of the

points iXk+1 = (iX
1
k+1; iX

2
k+1); i = 1; 2; 3; 4; may be outside of the domain G: In this case

let us consider the projection �x of the point x on @G. Let � = (�1; �2) be the unit vector
of the internal normal at the point �x. Clearly, if x 6= �x; � = (x� �x)=jx� �xj. Then we put

(5.2) �u(tk; x
1; x2) = �u(tk+1; x + qh1=2�)�  (tk+1; �x; �u(tk+1; �x)) � qh1=2:

Thus, we obtain the method (5.1)-(5.2): the rule (5.1) is to be for points x = (x1; x2) 2 G
such that all the corresponding points iX = (iX

1; iX
2); i = 1; 2; 3; 4; belong to G, and

the rule (5.2) is to be otherwise. The error of the one-step approximation corresponding

to (5.1) is of order O(h2) and that corresponding to (5.2) is of order O(h): If the function
 does not depend on u; we can prove that the layer method (5.1)-(5.2) has the global

error estimated by O(
p
h): These assertions can be checked directly without attracting

some new ideas in comparison with that from Section 3. In spite of the probabilistic

nature the method (5.1)-(5.2) is deterministic.
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To construct the corresponding numerical algorithms, we attract linear interpolation as

in the previous section. If the domain G is a rectangle � with corners (x10; x
2
0); (x

1
0; x

2
M2

);

(x1M1
; x20); (x

1
M1
; x2M2

); we introduce the equidistant space discretization:

�M1;M2
:= f(x1j ; x2l ) : x1j = x10 + jhx1 ; x

2
l = x20 + lhx2 ; j = 0; : : : ;M1; l = 0; : : : ;M2g;

hx1 =
x1M1

� x10
M1

; hx2 =
x2M2

� x20
M2

:

The values of �u(tk; x
1
j ; x

2
l ) at the nodes of �M1;M2

are found in accordance with (5.1)-(5.2).

Let x1j < x1 < x1j+1; x
2
l < x2 < x2l+1: Then the value of �u(tk; x

1; x2) is evaluated as

(5.3) �u(tk; x
1; x2) =

x1j+1 � x1

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j ; x

2
l )+

x1j+1 � x1

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j ; x

2
l+1)

+
x1 � x1j

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j+1; x

2
l ) +

x1 � x1j

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j+1; x

2
l+1):

If the function  does not depend on u; we can prove that taking hxi = {
ih3=4; i = 1; 2;

{
1;{2 > 0; the error of this algorithm is estimated as O(h1=2) .

The case of an arbitrary domain G requires special consideration. For instance, for a

su�ciently wide class of domains G; it is possible to �nd one-to-one mapping of G onto

a domain G0 with a rectangular grid (see, e.g., [3] and references therein). Then we can

use the above given algorithm in G0 and map the results onto G:

6. Numerical tests

In the previous sections, we deal with semilinear parabolic equations with negative direc-

tion of time t : the equations are considered under t < T and the �initial� conditions are

given at t = T: Of course, the proposed methods are adaptable to semilinear parabolic

equations with positive direction of time, and this adaptation is particularly easy in the

autonomous case. In our numerical tests we use algorithms with positive direction of time

for such equations.

Consider the Neumann problem for the one-dimensional Burgers equation:

(6.1)
@u

@t
=
�2

2

@2u

@x2
� u

@u

@x
; t > 0; x 2 (�4; 4);

(6.2) u(0; x) = � �2 sinhx

cosh x + A
; x 2 [�4; 4];

(6.3)
@u

@x
(t;�4) = u(t;�4)( 1

�2
u(t;�4)� 1)� �2 exp(�4)

cosh 4 + A exp(��2t=2)
;

@u

@x
(t; 4) = u(t; 4)(

1

�2
u(t; 4)� 1)� �2 exp 4

cosh 4 + A exp(��2t=2) ; t > 0:

Here A is a positive constant.
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Table 1. Dependence of the errors errc(t) (top position) and errl(t) (bot-
tom position) in h under t = 2, � = 1:5, and A = 2.

h
algorithm

(4.1)-(4.2)

algorithm

(4.1), (6.4)

algorithm

(2.11), (6.4)

algorithm

(4.7), (6.4)

algorithm

(2.18), (6.4)

0:16
5:216 � 10�1

8:509 � 10�2

7:434 � 10�1

1:177 � 10�1

5:967 � 10�2

1:380 � 10�2

> 1

3:328 � 10�1

7:333 � 10�1

1:098 � 10�1

0:01
3:170 � 10�2

5:748 � 10�3

1:888 � 10�2

3:737 � 10�3

3:867 � 10�3

1:224 � 10�3

3:722 � 10�1

6:161 � 10�2

1:346 � 10�1

2:192 � 10�2

0:0016
4:479 � 10�3

8:149 � 10�4

3:835 � 10�3

7:444 � 10�4

7:124 � 10�4

2:127 � 10�4

1:653 � 10�1

2:750 � 10�2

4:909 � 10�2

8:172 � 10�3

0:0001
2:387 � 10�4

4:479 � 10�5

2:711 � 10�4

5:213 � 10�5

4:639 � 10�5

1:357 � 10�5

4:378 � 10�2

7:307 � 10�3

1:168 � 10�2

1:968 � 10�3

The exact solution to this problem has the form [1]

u(t; x) = � �2 sinh x

cosh x + A exp(��2t=2)
:

In the tests we use cubic interpolation (see Remark 4.1)

�u(tk; x) =

3X
i=0

�j;i(x)�u(tk; xj+i); xj < x < xj+3;

(6.4) �j;i(x) =

3Y
m=0;m6=i

x� xj+m

xj+i � xj+m
:

Here we test the following �ve algorithms: (i) the algorithm (4.1)-(4.2), (ii) the algorithm

based on layer method (2.14) and cubic interpolation (6.4), (iii) the algorithm based

on layer method (2.11) and cubic interpolation (6.4), (iv) the algorithm based on layer

method (2.17) and cubic interpolation (6.4), and (v) the algorithm based on layer method

(2.18) and cubic interpolation (6.4). We take the space step hx = h for linear interpolation

and hx =
p
h for cubic interpolation. The parameter q of algorithm (4.7), (6.4) is taken

being equal to 1:

Table 1 gives numerical results obtained by these algorithms. The errors of the approxi-

mate solutions �u are presented in the discrete Chebyshov norm (top position in the table)

and in l1-norm (bottom position):

errc(t) = max
xi

j�u(t; xi)� u(t; xi)j;

errl(t) =
X
i

j�u(t; xi)� u(t; xi)j � hx :

In the experiments, the algorithm (4.7), (6.4) and the algorithm (2.18), (6.4) converge as

O(h1=2), the other algorithms converge as O(h):
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