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Abstract

The goal of the project is to provide �exible analytical and numerical tools

for the optimal design of binary and multilevel gratings occurring in many

applications in micro�optics. The direct modeling of these di�ractive elements

has to rely on rigorous grating theory, which is based on Maxwell's equations.

We developed e�cient and accurate direct solvers using a variational approach

together with a generalized �nite element method which appears to be well

adapted to rather general di�ractive structures as well as complex materials.

The optimal design problem is solved by minimization algorithms based on

gradient descent and the exact calculation of gradients with respect to the

geometry parameters of the grating.

1 Introduction

Di�ractive optics is a modern technology in which optical devices are micromachined

with complicated structural features on the order of the length of light waves. Ex-

ploiting di�raction e�ects, these devices can perform functions unattainable with

conventional optics and have great advantages in terms of size and weight. The cur-

rent applications in micro�optics are far�reaching, including high�power laser beam

shaping and splitting, solar cell design, image processing and optical document secu-

rity. Therefore the optimal design of microoptical devices has received considerable

attention in the engineering community and has stimulated several mathematical

investigations.

One of the most common geometrical con�gurations for di�ractive optical structures

is a periodic pattern embedded into a thin��lm layer system, such as the multilevel

di�raction grating shown in Fig. 1. The pattern is usually created using tools

from semiconductor industry. In most applications the grating is illuminated by an

incoming time�harmonic plane electromagnetic wave whose length is comparable to

the period of the grating. In this situation geometrical optics approximations to the

underlying electromagnetic �eld equations are not accurate, hence, the mathematical

modeling has to rely on Maxwell's equations or related partial di�erential equations.

The electromagnetic theory of gratings has been studied extensively since Rayleigh's

time. In particular, during the last decade signi�cant progress has been made con-

cerning the direct di�raction problem, i.e. the calculation of the re�ection and

transmission coe�cients of the propagating wave components of the di�racted �eld.

Several approaches and numerical methods have been proposed for obtaining rigor-

ous solutions to the problem, including modal expansion, di�erential and integral
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Figure 1: Multilevel di�raction grating

methods, analytical continuation, and variational methods. The latter approach

turned out to be su�ciently �exible to overcome the di�culties associated with

non�smooth grating pro�les and the highly oscillatory nature of waves and inter-

faces. The variational method also leads to e�ective formulas for the gradient of cost

functionals arising in optimal design problems, so that gradient�based minimization

algorithms can be used to �nd gratings with speci�ed optical functions.

2 Mathematical Model

Consider a periodic di�raction grating formed by a periodic pattern of nonmagnetic

materials (of permeability �) with di�erent dielectric constants �; see Fig. 1. If

the coordinate system is chosen such that the grating structure is periodic in x1�

direction and invariant in x3�direction, then the di�raction problem is determined

by the function �(x1; x2) which is say d�periodic in x1. This function is assumed

to be piecewise constant and complex valued with 0 � arg � < �. The material

above and below the grating is assumed to be homogeneous with dielectric constants

� = �
+
> 0 and �

�, respectively. The grating is illuminated by an incoming plane

electromagnetic wave

Ei = p ei�x1�i�x2+i
x3e�i!t ; Hi = q ei�x1�i�x2+i
x3e�i!t

from the top with the angles of incidence �; � 2 (��=2; �=2). In our applications the
wavelength � = 2�c=!, c denoting the speed of light, is comparable to the period

d. For notational convenience we will change the length scale by a factor of 2�=d
so that the grating becomes 2��periodic: �(x1 + 2�; x2) = �(x1; x2). Note that this
is equivalent to multiplying the frequency ! by d=2�. Then the wave vector of the

incident �eld is expressed in terms of the angles of incidence as

k = (�;��; 
) = k
+(sin � cos �;� cos � cos �; sin�) with k

+ = !(��+)1=2 :
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Note that (Ei
;Hi) satisfy the time�harmonic Maxwell equations if the constant

amplitude vectors p, q ful�l the relations p � k = 0 and q = (!�)�1k�p. Thus the
incoming �eld is determined by two of their components, for example, p3 and q3.

The total �elds then also satisfy Maxwell's equations, together with transmission

conditions for their tangential components at the interfaces and a radiation condition

at in�nity.

In the following we mainly restrict ourselves to the case 
 = 0, i.e. the so�called

classical di�raction problem, where � = 0 so that the wave vector k lies in the

x1�x2 plane. In that case the resulting electromagnetic �eld can be split into the

cases of TE and TM polarization, where either the electric �eld or the magnetic

�eld is parallel to the x3�axis. In both cases Maxwell's equations can be reduced to

transmission problems for a scalar Helmholtz equation

�v + k
2
v = 0

in R2, where k =
p
!2�� is the refractive index and the function v stands for the

x3�component of the total electric or magnetic �eld, and is � quasi�periodic in x1:

v(x1+2�; x2) = exp(2��i)v(x1; x2). For TE polarization the solution and its normal

derivative @nv have to cross the interfaces continuously, whereas in TM polarization

�
�1
@nv has to be continuous. Moreover, the di�racted �eld can be expanded as an

in�nite sum of plane waves,

v =
X
n2Z

A
�

n exp(i(n+ �)x1 + i�
�

n jx2j) ; x2 !�1;

with the unknown Rayleigh amplitudes A�

n . Here we have used the notation

�
�

n =
q
(k�)2 � (n+ �)2; n 2 Z ;

where k� denotes the refractive index of the homogeneous medium below the grating

structure. Since ��n is real for at most a �nite number of indices n, we see that only

a �nite number of plane waves in the sum propagate into the far �eld, with the

remaining evanescent modes decaying exponentially as x2 ! �1. The number of

propagating modes and the direction of propagation for each mode is determined

by the frequency of the incident wave, the refractive index of the material, and the

period of the structure. The Rayleigh coe�cients A+
n (resp. A�

n ) corresponding to

these propagating modes are called the re�ection (resp. transmission) coe�cients.

From an engineering point of view, these coe�cients are the key feature of any

grating since they indicate the energy and phase shift of the propagating modes. In

particular, the ratio of the energy of a given propagating mode to the energy of the

incoming wave is called the e�ciency of the mode. The re�ected and transmitted

e�ciencies in the TE case are given by

e
TE;�
n = (��n =�)jA�

n j2

and in the TM case by

e
TM;+
n = (�+n =�)jA+

n j2 ; e
TM;�
n = (k+=k�)2(��n =�)jA�

n j2:
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The exact computation of these quantities is the main goal of the direct di�raction

problem. More details can be found in [8], [3], whereas the general case of the so�

called conical di�raction problem (
 6= 0) has been studied in [7]. In that case the

invariance of the di�ractive structure in x3�direction allows us to reduce Maxwell's

equations to a system of two�dimensional Helmholtz equations, which are coupled

via transmission conditions at the interfaces.

3 Optimal Design of Binary Gratings

A major part of the motivating applications in di�ractive optics is associated with

the inverse problems of optimal interface shape design or pro�le reconstruction from

scattered �elds. There have been a number of papers from the engineering com-

munity that are concerned with the optimal design of periodic gratings; see [10].

By far the greatest activity has been in optimization for ray�tracing and phase�

reconstruction techniques which are valid within the domain of Fourier optics. A

few of these papers are devoted to optimization problems using rigorous di�raction

theory. However, the optimization procedures are usually only based on the val-

ues of certain cost functionals, i.e., they require the solution of a large number of

direct problems and are therefore computationally expensive. Sometimes the ap-

proximation of gradients by simple di�erence quotients is used, which is, however,

very une�cient for a large number of parameters. More advanced methods to �nd

optimal solutions utilize, besides the values of cost functionals, also its gradients

or even properties of higher order di�erentials. The simplest example are descent�

type algorithms, which are computationally e�cient if explicit gradient formulas are

available.

Let us consider the model problem of designing a binary grating on top of a mul-

tilayer stack in such a way that the propagating modes have a speci�ed intensity

or phase pattern for a chosen range of wavelengths or incidence angles. Assume

that the period of the grating and the number of transition points and of thin��lm

layers are �xed (cf. Fig. 2). Typical minimization problems involving the di�raction

e�ciencies or Rayleigh coe�cients are the following.

To realize prescribed values cTE;�n ; c
TM;�
n of certain re�ection and transmission e�-

ciencies, the functionalP
(jeTE;+n � c

TE;+
n j2 + jeTM;+

n � c
TM;+
n j2)

+
P

(jeTE;�n � c
TE;�
n j2 + jeTM;�

n � c
TM;�
n j2)! min

(1)

can be used.

The optimal design of a grating providing a given phase shift ' between the nth

re�ected TE and TM mode can be performed using the functional

�eTE;+n � e
TM;+
n + jATE;+

n � exp(i')ATM;+
n j2 ! min : (2)
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Note that the e�ciencies are functions of the transition points, the thicknesses of

layers and the height of the grating, so that the minimum has to be taken over some

compact set in the (�nite dimensional) parameter space re�ecting, e.g., technological

constraints on the design of the grating and the thin��lm layers. Obviously many

other functionals are possible and have been investigated, especially if a correspond-

ing optimization over a range of wavelengths or incidence angles is required.

To �nd local minima of these cost functionals via gradient descent methods, we must

calculate the gradient of Rayleigh coe�cients. Explicit gradient formulas based on

the solution of the direct problem and its adjoint will be outlined in the next section.
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Figure 2: Problem geometry

4 Analysis

The direct di�raction problems admit variational formulations in a bounded periodic

cell, enforcing implicitely the transmission and radiation conditions. If we introduce

two arti�cial boundaries �� = fx2 = �bg lying above resp. below the grating

structure, denote by 
 the rectangle (0; 2�)� (�b; b) (cf. Fig. 2), and de�ne the 2�-
periodic function u = v exp(�i�x1), then the di�raction problem for TE polarization

can be transformed to a variational problem for u in the rectangle 
 (cf. [2], [3]):

BTE(u; ') :=
Z



r�u � r�'�
Z



k
2
u �'+

Z
�+

(T+

� u) �'+
Z
��

(T�� u) �'

= �
Z
�+

2i�p3 exp(�i�b) �' ; 8' 2 H
1
p (
) :

Here r� = r+ i(�; 0), and H
1
p (
) denotes the Sobolev space of functions which are

2�-periodic in x1. The non-local operators on the arti�cial boundaries are de�ned

by

(T�� u)(x1;�b) = �
X
n2Z

i �
�

n û
�

n exp(inx1) ;
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where û
�

n are the Fourier coe�cients of u on ��. Similarly, the TM di�raction

problem can be formulated as

BTM(u; ') :=
Z



1

k2
r�u � r�'�

Z



u �'+
1

(k+)2

Z
�+

(T+

� u) �'

+
1

(k�)2

Z
��

(T�� u) �' = � 1

(k+)2

Z
�+

2i�q3 exp(�i�b) �' ; 8' 2 H
1

p (
) :

The sesquilinear forms BTE and BTM are strongly elliptic, i.e., coercive modulo

compact operators on H
1
p(
). This leads to existence, uniqueness and regularity

results for the variational equations in all cases of physical interest; see [3]. In

particular, the TE and TM di�raction problems are uniquely solvable for all but

a sequence of countable frequencies !j , !j ! 1, and the solution is unique for

all frequencies if one of the materials is absorbing. While the solution to the TE

problem is always su�ciently smooth (u 2 H
2
p (
)), the TM solution may have

singularities at the corner points of the grating. More precisely, near corners one

has u = r
�
f + g, where r denotes the distance to the corner point, the exponent �

with 0 < Re � < 1 is determined by the refractive index of the grating material and

f; g are some smoother functions. In particular, if two materials with optical indices

k1 and k2, respectively, meet at some corner, then � is the solution with minimal

positive real part of the equation 
sin(��=2)

sin(��)

!2
=

 
k
2
1 + k

2
2

k
2
1 � k

2
2

!2
:

Hence, the partial derivatives of u are not square integrable on the grating pro�le,

in general.

A detailed solvability and regularity theory of the conical di�raction problem, which

is also based on a variational formulation, can be found in [7].

The variational approach leads to e�ective formulas for the gradient of cost function-

als arising in the optimal design of binary and multilevel gratings. As an example,

we present a formula for the partial derivatives of the Rayleigh coe�cients with

respect to the transition points tj of a binary pro�le (cf. Fig. 2) in the TM case:

DjA
�

n =
(�1)j�1

2�
exp(�i��n b)((k0)2 � (k+)2)

Z
�j

gr(u) � gr(w
�
) dx2 ;

where �j denotes the vertical segment at tj, u is the solution of the direct TM

problem, w
�
solves the adjoint problem

BTM(';w
�
) =

Z
��

' exp(�inx1)dx1 ; 8' ;

and

gr(u) =
1

k+k0

 
k0

k+
@x1;�uj+ ; @x2uj+

!
;
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where the plus sign denotes the one-sided limit as the interface is approached from

the region above. Similar formulas are valid for the derivatives with repect to the

height and the layer thicknesses. Note that the above gradient formula is only well�

de�ned if the TM solution has mild singularities at the corners of the grating pro�le;

see [5] for an approach in case of arbitrary singurities and more general non-smooth

material interfaces, which also extends to conical di�raction [6].

5 Numerical Methods

The direct and adjoint di�raction problems have the form: Find u 2 H
1
p (
) satisfy-

ing the equation

a(u; ') = (f; ') ; for all ' 2 H
1

p (
) ;

where a(u; ') is a strongly elliptic sesquilinear form, and (f; ') stands for a linear and
continuous functional on the function space H

1
p (
). The strong ellipticity implies

that �nite element approximations for all invertible problems under consideration

lead to a uniquely solvable linear system of equations if the meshsize is su�ciently

small. Moreover, the approximate solutions converge to the corresponding exact

solution in the norm of the function space with optimal order.

Due to the rectangular geometry of binary gratings it is quite natural to choose

piecewise bilinear functions as �nite elements on a uniform rectangular partition of


 = (0; 2�)� (�b; b). This leads to a linear system with a block�tridiagonal matrix.

The nonlocal boundary terms in the sesquilinear forms imply that the �rst and the

last block of the main diagonal are fully occupied matrices, whereas the remaining

blocks are sparse.

The computation of the nonlocal terms in the sesquilinear forms can be performed

very e�ciently with an accuracy comparable with the computer precision. Since the

traces of the �nite element functions on �� are piecewise linear periodic functions

with uniformly distributed break points, it is possible to use recurrence relations for

the Fourier coe�cients of spline functions and convergence acceleration methods.

If e.g. the arti�cial boundary �+ is divided into m subintervals of equal length and

the basis of hat functions f'jg is used, then the formZ
�+

(T+

� 'p)'q dx1 ; p ; q = 0; :::;m� 1

corresponds to an m�m circulant matrix with the eigenvalues

�0 = �2i� � ; �p = �4i�
�sin(�p=m)

�

�4 1X
r=�1

�
+
rm+p

m(r + p=m)4
:

Thus one only has to expand

�
+
rm+p

m
=

s�k+
m

�2 � � �
m

+ r +
p

m

�2
7



with respect to powers of jr + p=mj and to use fast computation of the generalized

Zeta function.

Usual FE approximations of the Helmholtz equation involve besides the approxi-

mation error also the so�called pollution error which increases together with the

wavenumbers and enlarging domains. Roughly speaking, the pollution error is

caused by the well�known fact that the discretization of the Helmholtz equation

with the wave number k results in an approximate solution possessing a di�erent

wave number kh. In one�dimensional problems, for example, the usual piecewise

linear FE solution of the equation u
00 + k

2
u = 0 on a uniform grid has the discrete

wave number

kh =
1

h
arccos

2(3� (kh)2)

6 + (kh)2
= k � k

3
h
2

24
+O(k5h4) :

It turns out that this �phase lag� leads to suboptimal error estimates.

In the one�dimensional case it is possible to construct a generalized FEM without

pollution by modifying the evaluation of the sesquilinear form. However, in higher

dimensions it is not possible to eliminate the pollution in the FE error by any

modi�cation of the evaluation of the sesquilinear form. Therefore, we extended an

approach by Babu²ka et al [1] to design a so�called GFEM with minimal �phase lag�

for piecewise uniform rectangular partitions; see [4] for the details.

The method was used to evaluate the re�ection and transmission e�ciencies of

binary gratings on multilayer systems of di�erent geometries and materials and it

turned out to be robust and reliable in both the TE and TM case. Compared

with the usual FEM the obtained results were accurate already for rather poor

discretizations. In Fig. 3 we compare the numerical values of some re�ection and

transmission e�ciencies versus the square root n of total number of grid points

computed with the usual FEM and the GFEM on quadratic meshes for a binary

grating with one groove per period situated on a layer. In each case the GFEM

results di�er already for n = 40 only by 2% from the corresponding values for

n = 200, whereas the FEM results converge rather slowly to these values.

The sparse structure of the matrix can be used to apply e�cient direct or iteration

methods for solving linear systems. We used a block version of the so�called sweep

method, which utilizes the block�tridiagonal structure of the matrix and additionally

the circulant properties of the dense blocks. Since the matrices of the discretized

variational problems are nonsymmetric, we also applied preconditioned GMRES-

type and BiCGstab methods as iterative solvers. The corresponding equations with

averaged wave numbers k are good candidates for preconditioners, which can be

inverted very e�ciently using FFT.

In the case that the grating is situated on top of a multilayer stack (cf. Fig. 2),

one can reduce the integration domain 
 used in the FE solution by taking into

account that the solution is smooth within the layers. We introduce a new arti�cial

boundary, e�� say, into the �rst layer and new nonlocal boundary operators which

model the layer system below e�� together with the radiation condition for x2 < �b.

8
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Figure 3: Comparison of e�ciencies computed with FEM and GFEM

Combining the GFEM in the reduced domain with Rayleigh series expansions in the

layer system then leads to a considerable reduction of the computational complexity;

see [4] for a detailed presentation.

After having solved the linear system corresponding to the GFE discretization of

the variational equations, the di�raction e�ciencies are determined from the Fourier

coe�cients of the solution on the arti�cial boundaries. A stable recursive algorithm

is used for the computation of the transmission e�ciencies and the solutions on the

layer interfaces, which appear in the gradient formulas.

6 Some Optimization Results

The GFEM and the gradient formulas were integrated into a computer program to

�nd the optimal design of binary gratings with desired phase or intensity pattern

for a given range of incidence angles or wavelengths. The optimal design problems

were treated as nonlinear optimization problems with linear constraints, and we

implemented a projected gradient algorithm and an interior point method for their

numerical solution. Several numerical examples including polarisation gratings, high

re�ection mirrors and beam splitters successfully demonstrated the e�ciency of the

algorithm.

As a �rst example, we provide the optimization results for some beam splitters.

The illuminating unpolarized wave with � = 0:633�m is normally incident from

a dielectric medium with optical index � = 1.5315. Recall that the optical index

of a material with permittivity � is de�ned by � = (�=�0)1=2, where �0 denotes

the permittivity of the vacuum. Choosing the period d = 1:266�m, three di�raction

orders propagate with angles 0Æ and �30Æ. Such beam splitters with large di�raction

9



angles are useful in, e.g., optical clock signal distribution. The goal is

a) to maximize the e�ciencies of the orders �1

b) to obtain maximal and equal e�ciencies of all three orders

by optimizing the height H and the �ll factor f of the grating with one groove per

period. Using the cost functional (1), the following results have been obtained (cf.

Fig. 4):

a) H = 0:734�m, f = 0:72, b) H = 0:43�m, f = 0:58.

Further applications in laser design are discussed in [9].

� = 1:5315 � = 1:0

��
HH �

�
�
�
�
�
�
��3

Q
Q
Q
Q
Q
Q
Q
QQs
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43:5 %
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��
HH �

�
�
�
�
�
�
��3

Q
Q
Q
Q
Q
Q
Q
QQs

-
28:5 %

29:3 %

29:3 %

Figure 4: Optimal design of an 1�to�2 and an 1�to�3 beam splitter

The next example concerns the design of a zero�order copper grating (� = 12:7 +
51:1i) as circular polarizer for a CO2 laser with � = 10:6�m such that in the range of

incident angles � 2 (29Æ; 31Æ) the e�ciencies of the re�ected TE and TM polarized

wave are maximal and the phase di�erence between them is close to �=2. Here

one has to minimize the functional (2) extended over the range of incident angles,

which possesses many local minima. One of the reasonable geometries is d = 3:0�m,

H = 1:65�m, and the �ll factor is 0.24. Table 1 contains the computed values.

7 Conclusion

We focused on optimal design problems for binary and multilevel gratings, using

exact formulas for the gradients of cost functionals and a fast and reliable method

for the numerical solution of direct problems. The method is based on a variational

formulation and combines a �nite element method in the grating structure with

Rayleigh series expansions in the layer system below the grating. The approach is

not restricted to rectangular pro�les, but allows the numerical treatment of rather

general di�raction structures, together with a rigorous convergence analysis.

10



Table 1: Zero order e�ciencies and phase di�erence for circular polarizer

� TE TM phase

29.0 97.50 95.72 90.72

29.2 97.50 95.72 90.58

29.4 97.51 95.72 90.45

29.6 97.51 95.72 90.32

29.8 97.52 95.72 90.18

30.0 97.52 95.72 90.04

30.2 97.53 95.72 89.91

30.4 97.53 95.72 89.77

30.6 97.54 95.72 89.63

30.8 97.54 95.72 89.49

31.0 97.55 95.72 89.35

We proposed a generalized �nite element method (GFEM) with minimal pollution,

which provides highly accurate numerical results in the computation of di�raction

e�ciencies. So far the extension of this method to more general (e.g., polygonal)

grating pro�les remains an open problem.

To solve optimal design problems for binary gratings by gradient descent, explicit

formulas for the gradients with respect to the parameters of the grating pro�le and

the thicknesses of layers have been developed. These formulas involve the solutions

of direct and adjoint di�raction problems and reduce considerably the computational

costs compared to simple di�erence approximations of the gradients.

We expect that this approach is also applicable to the inverse problem of pro�le

reconstruction from far �eld data. Another challenging direction of future research

is the e�cient solution of direct and inverse problems for non�periodic and three�

dimensional di�ractive structures.
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