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Abstract. The paper deals with global properties of pair diffusion models with non-smooth
data arising in semiconductor technology. The corresponding model equations are continuity
equations for mobile and immobile species coupled with a nonlinear Poisson equation. The con-
tinuity equations for the mobile species are nonlinear parabolic PDEs containing drift, diffusion
and reaction terms. The corresponding equations for the immobile species are ODEs involving
reaction terms only. Starting with energy estimates obtained by methods of convex analysis
we establish global upper and lower bounds for solutions of the initial boundary value problem.
We use Moser iteration for the diffusing species, the non-diffusing species are treated separately.
Finally, we study the asymptotic behaviour of solutions.

1 Introduction

The computer simulation of the manufacturing process of semiconductor devices has experienced
considerable progress over the last years. One of the main process steps is the redistribution
of dopants connected with or followed after the doping which determines the electrical device
characteristics of the final device structure. In order to simulate this process different models
have been applied. Nowadays so called pair diffusion models [2, 6, 14, 20] are prefered. Such
models involve interactions between different kinds of point defects.

Pair diffusion models. We consider species X;, i = 1,...,m, which exist in different charge
states Xk, k = 1,...,k; (for instance, X; stands for A, I, V, AI, AV in Fig. 1, and A stands for
arsenic, boron, or phosphorus). We denote by gix, uik, Uik, bix the charge number, the density,
a suitably chosen reference density and the chemical activity of the ik-th species, and assume
that gix = qig—1+ 1 for k =2,..., ki, Wix, > ¢ > 0, bjx, = /Ui In heterostructures which we
want to include in our considerations the reference densities depend on z, and they may jump
when crossing interfaces between different materials. The densities u;; may jump, too, but the
chemical activities b;, remain sufficiently smooth (more precisely, by, € H'(2) holds). Besides
of the species X; electrons e and holes h have to be taken into account. We assume that the
kinetics of these carriers is very fast. Then their densities are given by the statistical ansatz

n:ﬁe'/’, p:ﬁe*'/’, n,p >0,

and the chemical potential of the electrons 1 is sufficiently smooth and fulfills the nonlinear
Poisson equation

m k;
—V - (eVep) + me¥ —pe ¥ :f+zzqikuik (1.1)
=1 k=1

also in heterostructures, € denotes the dielectric permittivity, f represents a fixed background
doping. For all the other species we have continuity equations of the form

Bu,-k
ot

+V - jin+ RSP+ Ry =0, k=1,... ki, i=1,...,m, (1.2)

Jik = —Dir Tir, [Vbir, + gir bir V] (1.3)
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where Dy, ;%n and R;; denote the diffusivities as well as source terms generated by ionization
reactions and by other reactions, respectively.

We consider ionization reactions of the form
Xik :‘Xi,k+1+e, Xik+h\:‘Xi,k+1, k=1,...,k —1.
According to the mass action law the corresponding reaction rates are given by
Rl =kl [bie = bigrne?| , RE =K% [bae™ —bipa| , k=1, ki = 1,

with kinetic coefficients kl-lk, k?k > 0. Setting R}, = R?k =0 for £ =0, k; we obtain

(2
k;
;(]z:n == Rzlk - Rz{kfl + Rzzk - Rl?,kf]_ ) k' - 1, e ,ki ) Z R;(];n - 0 . (14)
k=1

Now let us consider the situation that all ionization reactions are very fast. In other words,
let kl-lk, kfk — o0o0. If we require that the reaction rates remain bounded then the relations
bik+1 =bike ¥, k=1,...,k — 1, must be fulfilled. This implies

el Vhy — eT1Vhy  k=1,... k. (1.5)

In order to eliminate the indefinite terms R;‘,)c“ occuring in the continuity equations (1.2) we
make use of the so called mass lumping. We introduce new quantities

ki k; k; k;
ui:zui’“ ji:zjik’ Ri:Z( ;(I)cn‘*‘Rik) :ZRik (1.6)
k=1 k=1 k=1 E—1

where the last relation holds because of (1.4). Then for the lumped densities the continuity

equations
ou;

ot
are derived. In these equations as well as in the Poisson equation (1.1) all terms containing u
must be rewritten using the new variables u; and .

First, because of (1.6),(1.5) we obtain

+V-5+R;=0,1=1,...,m, (1.7)

u; = pi() e?i1¥ by , pi(Y) = ZZ’:l ﬂike*qikw ,

DO o) T Dy = Skt DisTie Y

= PUDB Yy D) = PR s
i L = O . N 221:1 GixUige BrY

; qikUik = Qz(’/’) Uu; , Qz('(/)) = pi(z/;)

In heterostructures the functions p;, D;, Q; depend explicitly on z, since the reference densities
u;; depend on z. In this paper we use the additional assumption that

Hlk(ac) = Kii Ezl(x) with K;;p =const >0, k=1,...,k;.
Then the lumped charge numbers @; do not explicitly depend on z,

Z’,Z’;l qinKixe T+¥ p
i = — ; i < 0, 1.9
Qi) = P ITUTIE Qi) (19)
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and it follows that

P
pi(, ) = poi(x) e i) | poi(z) = T (z) S, Kir, > 0, Pi(y) = /0 Qi(y)dy. (1.10)

We define electrochemical activities a; and chemical activities b; of the lumped species by a; =
u;/pi(¢) and b; = u;/po;. Then b; is sufficiently smooth, too, and

Uj
is obtained. As often done we assume that for a dopant (say X;) there exists only one charge
state (then we set X;; = X;, ¢;1 = gi, and so on), and that its diffusivity vanishes.

=a; = b; el G = —D;i(-,¥) poi [Vbi + b; Qi()) V] (1.11)

Next, the reaction terms R; in (1.7), (1.6) will be rewritten. We start with reactions describing
the formation and disintegration of dopant-defect pairs. Let i, j, [ be fixed and consider reactions

Xit+Xjp+tanet+oph=Xp +Bue+Bph, ¢ +qix—ant+ap=qr—LBn+t0Fp

for varying k, k' and v = (an, &p,Bn,Bp) € Z%. In the model described in Fig. 1 X; stands
for A, and X;z, X;» stand for different charge states of I, Al or V, AV. The corresponding rate
formulas are

Rkk”y = kkk”y [bibjk ea"’pe—ap’/’ — by eﬁ"’/’e_ﬁp’p] , kkkby >0.
Using (1.5), (1.8) and (1.11) we easily obtain

R:= Y Riwy=k() [aia;—a], k@)=Y ki e~ (Tantap ety
k,k'y k,k'y

The contributions of these reactions to the corresponding continuity equations in (1.2) and (1.7)
are

Ri=R, Rjx =Y Rixr, Riw =~ Riy,
kyy

Ky
| o | - | . | - | . | _
b T
#[ | ™ ‘
‘ v\_ \ - Species:
T 0 * |
host atom
ASEIrAV AV==A+Y on lattice site
A ® | dopant atom
| | | | | | |
7‘7 Tiii")? 7(‘ 7‘7 on lattice site
s AN
h - $ - - I host atom
# 7‘, L 7‘7 i 7‘7 on interstice
o . b \ O | vacancy
A==V +Al Al==A+1
Al @ dopant—
interstitial pair
AV dopant—
vacancy pair

Figure 1: Species and reactions in a variant of pair diffusion models [2, 6].
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Ri=R, Rj=)» Rjg=R, Ri=) Ry =-R.
k k!

Thus we find that all these reactions are reduced to the only reaction X; + X; = X; for the
lumped species which is of mass action type, again. Reactions describing the generation and
recombination of different kinds of defects can be treated analogously. Let ¢, 7, [ and §; € Z
be fixed and consider reactions

Xjk+ X tane+aph = B8X;+Bre+Bph, qjx+qr —on+op=0iq—Bn+0Bp

for varying k, k' and v = (an, @, Bn, Bp) € Z4. In the model of Fig. 1 X; stands for A, and
Xk, Xixr stand for charge states of I, V (8; = 0), of I, AV or V, Al (8; = 1), or of AL, AV (5; = 2).
The rate formulas are

Rkk"y — kkk"y |:bjkblk:’ eanTPe—ap%b _ b?l eﬂn"/)e_ﬂp@b} , kkk”y > 0.
Now we have

R:= ) Ruwy = k(%) [“j ai —aiﬂi} L kW) = Y ke ottty
k,k’,’y kykly'y

The contributions of these reactions to the corresponding continuity equations in (1.7) are
Ri=-BiR, Ri=R, Ri=R.

Again, for the lumped species the mass action type reaction X; +X; = 3; X; is obtained. Finally,
let us discuss a simple example that shows how boundary reactions can be included in the model.
Let j be fixed, and assume that ko = 0 for some k;-) and that on some part I'; of the boundary
I we have the reaction

X o stands for uncharged I or V, for instance. The rate is R = k' [bjko — 1], k' > 0. Then the
J J

boundary condition

0 onT, k # ko,
J

V'jjk: 0 ODF\Fl, k:kjk?’
R onT'y, k = kjko
J

must be added to the continuity equations (1.2). We set k' =0 on I'\ I'y, and from (1.5), (1.8)
and (1.11) we derive the boundary condition

v-jj=k'laj—1] onT

for the continuity equations (1.7) which corresponds to a reaction of the form X; = 0.

Initial boundary value problem. Motivated by the preceding discussion we investigate in this
paper a rather general electro-reaction-diffusion system for m species X;. Unknown functions
are the densities u; and the potential 9, related functions are the chemical activities b; = u;/poi,
the electrochemical activities a; = b;e! "(‘/’), and the electrochemical potentials ¢; = In a; (defined
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for a; > 0). The initial boundary value problem which we are interested in reads as follows:

auz . 9 )
e +V -5+ Z (i —Bi)Ryg = 0 on (0,00) x Q,
(a,8)ER®
Vg — Z (ai—ﬁi)Rgﬂ = 0 on(0,00)xI',i=1,...,[;
3 (a,B8)€RT
(;ii Z (ai—ﬁi)Rgﬁ = 0 on(0,00)xQ,i=10+1,...,m;
(a,8)€RO s (1.12)
—V - (eVY) +e(¥) = > Qi(¥)u; = f on (0,00) x 1,
=1
v-(eVy) = 0 on (0,00) xT';
w;(0) = U; onQ,i=1,...,m. )

The kinetic relations are assumed to be given by

Rgﬂ(xablr")an)’l/)) = k(?ﬂ(m7bla"')bM)"tb)|:Ha?i _Hafl} y L € Q7 (a)/B) € RQ)
1 1
Rgﬂ(m7b1)"')bly¢) = kgﬂ(m7b1)"')bly¢)|:Ha?i - Hazﬂl} y TE F7 (a7ﬂ) € RF
where R® C ZT x 27, RY C {(a,8) € ZT x Z": a; = B; =0, i = [ +1,...,m}, and the vector
(o, 8) = (a1, -, Qm,yB1,- .., 0m) represents the stoichiometric coefficients of a mass action type
reaction of the form
X1+t amXm = 01 X1 + -+ B Xm

Comments. Basic assumptions on the data of this problem are formulated in the next section.
Here let us only emphasize that we require Q}(¢) < 0 and P/(¢) = Q;(¢), cf. (1.9), (1.10). These
properties guarantee that the relation between the electrochemical potentials {; and densities u;
has a potential in the sense of convex analysis, namely the free energy. Moreover, the special
structure of the kinetic relations and natural assumptions on the kinetic coefficients imply that
the free energy is a Lyapunov function for the evolution system (1.12). In [16] we established
these results for a simplified version of (1.12) (for a homogeneous material and kinetic coefficients
not depending on b). It is easy to see that the proofs given there carry over to the more general
setting considered here. Therefore these results are summarized in Section 3 without detailed
proofs. The main topic of this paper consists in deriving global estimates for solutions of (1.12).
Assuming, that the source terms of the volume reactions and boundary reactions are of at most
second and first order, respectively, global upper bounds are obtained in Section 4. Next, under
the assumption that the initial densities fulfill the estimate U; > ¢y > 0 a.e. on ) we prove
in Section 5 that u;(t) > ¢ > 0 a.e. on Q for all ¢ > 0. Finally, in Section 6 additional results
concerning the asymptotic behaviour of solutions are given.

The existence of a solution of (1.12) for heterogeneous materials will be shown in a forthcoming
paper. For homogeneous materials an existence and uniqueness result can be found in [18].
There [ = m is supposed, and all kinetic coefficients depend only on 1. If each species has a
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constant charge number (Q;(¥) = ¢, Pi(¢) = q;¢) then one gets a model of the form (1.1) —
(1.3). Such model equations were studied in [8, 9, 10, 11] under the assumption that [ = m but
for heterostructures. A pair diffusion model for uncharged species (then the Poisson equation is
dropped) and for homogeneous materials is investigated in [15]. There [ < m is allowed.

Notation. Let us collect some notation used in the paper. The notation of function spaces
corresponds to that in [17]. By ZT, R, Lﬂ we denote the cones of non-negative elements. For
the scalar product in R™ we use a centered dot. If u € R™ then u > 0 (u > 0) means u; > 0Vi
(u; > 0Vi); \/u denotes the vector {,/u;}i—1,. m, and analogously Inu, e* are to be understood.
For u, v € R™ we set uv = {uiv;}i=1,...m, ¥/v = {u;i/vi}i=1,..m- If u € RT and a € Z' then
u® means the product [[/*; u;". In our estimates positive constants, which depend at most on
the data of our problem, are denoted by c. Analogously, d: Ry — R, stands for continuous,
monotonously increasing functions with lim,_, d(y) = oco.

2 Formulation of the problem

We summarize the basic assumptions (I) which our considerations are based on.

i) Q C R? is a bounded Lipschitzian domain, U € L2(Q,R™), f € L?(Q);

ii) e€L>®(),e>c>0,
e: 2 Xx R — R satisfies the Carathéodory conditions,
le(z,9)| < ce” faa. z€Q, VY ER, ¢>0,
e(z,9) —e(z,9) > eo(z) (Y —¥) faa z €Q, Vi, € R with ¢ > ¢,
eo € LY(Q), lleoflzr >0,
e(z,-) is locally Lipschitz continuous uniformly with respect to z;
i) Qi € C'(R), [Qi(¥)| <c, Qi(v) <0,
pz(xa’(p) ZPOz(x) e—Pi(TP) , T € Q) 1/) € R; Poi € Lf(Q))
(
essinfucopoi(z) > €0 > 0, Pi(t) :/ Qily)dy, bER, i=1,....m;
0
iv) RECzmxzZm, R Cc {(a,8) EZT X ZT: ; =B; =0, i=1+1,...,m},
for ¥ = Q, T and (a,8) € R” we define R%;: ¥ x R x R — R by

RZ4(z,b,9) := kJs(z,b,9)(a® —aP), a;i = b i=1,...,my,
reX, beR!, ¢ eR, wheremg=m, mpr=1,

kfﬁ: ¥ x R x R — Ry satisfies the Carathéodory conditions,
kg(z,b,9) <cgfaa zeX, VocR®, V¢ € [-R,R], R>0,
kfﬁ(x,b,zp) > bgﬁ,R(x) faa. z€X, VbeR!™, V¢ € [-R,R], R>0,

bhs.r € L), 1163 gllLi(s) > 0;
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v) fori=1,...,1: D;y: @ x R x R — R, satisfies the Carathéodory conditions,
Di(z,b,4) >c>0faa z€Q, Vbc R, V¢ € R,
Di(z,b,¢) <cg faa. z€Q, VbeR?, Vi € [-R,R], R>0;

vi) fori=10+1,...,m: there is a reaction of the form

!
Rg()ﬂ<>(x’b’¢):k2a>ﬁ() z,b,9) {H G —a?], €N, beERY, pER
j=1

with essinfgcq bg(i)ﬂ(-),R(l‘) >0.

A further assumption (II) ensuring the existence of a unique steady state is formulated in
Section 3. An additional assumption (III) which we need for the proof of global upper bounds
for the densities is introduced in Section 4. Adding the assumption (IV) in Section 5 we establish
global lower bounds for the densities. All assumptions are formulated in such a way that pair
diffusion models as discussed in Section 1 can be treated.

Remark 2.1 The form of the reaction terms Rfﬁ, (o, B) € RYURE, involves that

(a* —a’) (@ —B)-lna >0 Va € int R}> (2.1)
what is important for obtaining energy estimates. Moreover, for i = 1,..., my we have
(aa—a)( —5) _[al i~ 1H }ai if a; > 5;,
7 (2.2)
(a® —aP) (s — B;) < [ﬁz abi !t Ha?’} ai ifo; <B; VYaeR}™
i

what we need for deriving lower estimates for the densities.

We use the function spaces
Y :=L}Q,R"), X ={beY:bc H'(Q), i=1,...,1}

and define the operators B: Y — Y, A: [X x HY(Q)]N[LL(Q,R™)x L=(Q)] — X*, E: H*(2) x
Y — (H'(Q))* by

(Bb,b),, /mebbdx bev,

(A(b, ), X—/ZD 5,0 poi (Vb + biQi() VY] - V

m

/ 3 RE(,b1, b, ) Y (i — B) bide 5 (2.3)

(a,8)€R? i=1
l

/ S REs(obebuw) Yo(ai - )il BEX,

(a,8)ERT i=1

(E(,u), P) i ;:/Q{sw VY + [e ZUZQ ~f]¥}de, e H(®).
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The precise formulation of the electro-reaction-diffusion system (1.12) reads as follows:

)

W(8) + ABb(), $(t) =0, E@(t),u(t)) =0, u(t)=Bb(t) faa. t>0,

6 HI]E)C(R‘F’X*) ) b E L1200(R‘|"X) m Li)ooc(R‘F’Li}.—o(Q) Rm)) )

¥ € L, (Ry, HY(Q)) N Lis,(Ry, Lo(Q)) - )

Remark 2.2 Let (u, b, %) be a solution of (P). Then u, b, ¥ have the following regularity proper-
ties. Because of u € H} (R;,X*) and b € L (R, X) we have b € C(R;,Y) (cf. [12, Theorem

loc
2.70]). Thus u € C(R;,Y), too. Moreover u,b € Cy+(Ry, L®(Q,R™)) and ¢ € C(Ry, H}(Q)).
These properties imply that for all ¢ € Ry

E((t),u(t)) = 0 in (H'(Q))*, u(t) = pob(t) in L®(Q,R™), u(t) >0 ae. on Q.  (2.4)

3 Global estimates for the free energy and their consequences

In this section results as in [16] are shortly presented. Additionally, further estimates are derived
which we need in the next sections to get global estimates for the densities. With regard to
methods and results of convex analysis we refer to [1, 3].

3.1 The nonlinear Poisson equation

Lemma 3.1 We assume (I). For any u € Y} = L2 (2, R™) there ezists a unique solution v of
E(¢,u) = 0. Moreover, there are an exponent q > 2, a positive constant ¢ and a monotonously
increasing function d: Ry — Ry such that

1 = Pllm <clu—7ally Yu,ueYr, E(p,u)=E@p,u) =0,

m
lllee < {1+ fulnuilp +d(glm)} VueYe, B@,u) =0,
=1
lellwse < e {1+ Y luillpaaren +dlm)} Ve Yy, B@w,u)=0.
i=1
Proof. Up to the last inequality all assertions follow from [16, Lemma 1]. The last inequality is a

consequence of Groger’s regularity result [13, Theorem 1] and of Trudinger’s imbedding theorem
(8.4). O

3.2 The energy functional

We define two functionals ﬁl, ﬁz : Y, = Rby

. . v m
Fatw) = [ {51908+ [ et ) el du+ S uA) ~ Q) fdo, we Yy ()
=1
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where 1 € H'(Q) N L>(R) is the unique solution of the Poisson equation E(1,u) = 0,

Fy(u) :/Qi{ui[lnu—i_—l] +p0i}dx, ueY,. (3.2)

and set F' = F| + }":_2, ﬁ(u) can be interpreted as free energy of the state u. Let u,u € Y4, and
correspondingly v, v € H*(Q) with E(¢,u) = E(¢,u) = 0. We obtain

~ € _ »
A~ A = [ {590 -9+ [le60) el dy
m _ m ¥
£ R@ -+ Y [ Q) - avfas O
=1 =1

>(P(¥),u—w)y +cl¢ =9l = (P(¥),u —a)y.

From this relation it follows that F} is convex and continuous on the convex set Y. We extend F
to Y by setting F (u) = +oo for u € Y\ Y. Then the extended functional Fy : Y — R is proper,
convex, lower semi-continuous, and sub-differentiable in each point u € Yy, P(¢) € 0F;i(u).
Because of properties of its integrand the functional F is convex and continuous (see [10]) on
Y,. Again the extended functional Fy : Y — R, Fy(u) = oo foru € Y \ Y, is proper, convex
and lower semi-continuous. For u,w € Y, with w > § > 0 we obtain

F / ln— u; — U; +/ Z Iny — Inw;)dy ¢ dz
2 Z DPoi ) u; ( ) } (34)

> (Inu/po,u — )y + |Vu = Val|} > (Ina/po,u —w)y .

Thus, F» is sub-differentiable in points u € Y, with u > § > 0, and In u/po € Bﬁz(u). Finally,
we extend both functionals to the space X* by

Fp=(Ff|x)" : X* >R, k=1,2.

Lemma 3.2 The functional F = Fi+F, : X* — R is proper, convez and lower semi-continuous.
For w € Y, it can be evaluated according to (3.1), (3.2). The restriction F|y, is continuous. If
vueYy, u/pp € X, u>d>0 then

gzlnp—o—i-P(zp) lnp(¢) € 0F (u)

where ) is the solution of E(,u) = 0.

Proof. We denote the imbedding of X into Y by I, and correspondingly I*: Y — X*. Then the
definition of F} means

Fp=(Ffol)*: X* 5> R, Fy(u)=sup {(u,w)X—ﬁ,:‘(Iw)}, veX* k=1,2.
weX

1. f u € Y then Fy(I*u) = sup,cx {(u, [w)y — ﬁ,:(Iw)} < Fy(u), k=1,2.
2. Let u € Y, v € X and Iv € OF,(u). Then we have

uszlel?( {(u, Iw)y — ﬁ,:(fw)} > (u, Iv)y — F¥(Iv) = Fi(u)
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such that in this case it follows Fy(I*u) = Fi(u), k = 1,2. Moreover, u € Bﬁ,’: (Iv), or in other
words, B _
Fp(Iw) — Fy,(Iv) > (u, [(w —v))y = ([Mu,w —v)x Ywe X.

Therefore we obtain I*u € 9(F} o I)(v) and v € 0F(I*u), k = 1,2.

3. If u € Y, then P(¢)) € OF;(u) and ¢ € H'(Q). Since P is Lipschitzian we have P(¢) € X
and from step 2 it follows that

Fi(I*v) = Fi(u), P() € 8F (I*u).

4. Let u € Yy, u/pp € X and § € R, § > 0. Then In(u + dpo)/po € X and In(u + dpo)/po €
OF>(u + épg) hold. This results in

u + dpg

Fy(I*(u + 6po)) = Fo(u + 6py), In o

€ 0F>(I*(u+ dpy)) -

5. Let u € Y, be given. Then there exists a sequence u,, € Y, such that u,/py € X, uy > uinY.
Moreover, let § > 0 then v, := In (u, + dpg)/po € X. By step 4 we find that F5(I*(un +dpp)) =
Fs(up + dpo) and v, € OF5(I*(uy, + dpg)). Thus we can estimate

Fy(un + 0po) < Fa(I"*u) — (I, u — (un + 6po))y -
Let v :=In(u + dpo)/po. Using the estimate |v, — v| < cs|u, — u| we conclude that

|({vn, u — (un + 0po))y + ({v,dpo)y| S/ {eslu —un|® + |es + |v||ju — un|} dz — 0 for n — 0.
Q

Because of the lower semi-continuity of Fy we derive

u + dpg
bo

Fy(u + 6py) < Fy(I*u) +/ dpo-In dz.
Q

Taking now the limit & — 0 we obtain together with step 1 that Fy(I*u) = Fo(u). O

3.3 Invariants and steady states

We introduce the stoichiometric subspace S belonging to all reactions,

S =span{a—G: (o, ) e RYURT} C R™.
By integrating the continuity equations over (0,t) x §2 one easily verifies the following invariance
property.
Lemma 3.3 We assume (I). If (u,b,) is a solution of (P) then / {u(t) = U} dz € S for all
teRy. ¢

We ask for steady states belonging to the evolution problem (P) which satisfy such an invariance
property, too. Therefore we have to solve the following problem.

A(b,) =0, E(¢Y,u)=0, u=DBb, /{u—U}deS,
¢ (S)
ueY, beXNLP(Q,R™), eH(Q)NLN).
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We define the set A C R™ by
A = {aER:_” : a®=aP Y(o, 8) e RPURT, /{u—U}deS,
Q
where u = ap(¢) and 9 is the solution of E(¢,u) = 0} .

If (u,b,) is a solution of (S) then a = u/p(¢p) € A. Vice versa, let a € A, let u,v be chosen as
in the definition of A and set b = ae~"®) then (u,b,1) is a solution of (S).

As in [16], for our further investigations we additionally suppose that

/U-de>0 V(eSt,(>0,(#0, ANORT =0. (IT)
Q

Theorem 3.1 Let the assumptions (1) and (II) be fulfilled. Then there exists a unique solution
(u*,b*,9*) of (S). This solution has the following properties:

a* =u"/p(¥*) eR™, a* >0, (*=Ina* €S+, u* >¢>0ae on .

For the proof we refer to [16, Theorem 2].

3.4 Energy estimates

We define the set
Mp = {u € LT(Q,R™) : vVa € X where a = u/p(¢) and E(¢,u) = 0}

and some dissipation functional D : Mp — R by

/{Zw bR VIVVEL + Y 2k (b, 9) V" — Va2 ) dz
(a.B)ER? (3.5)

/ Z 2k bl;-"’bl;¢)|\/aa_\/aﬂ|2dr’ u € Mp

(a,8)eRT

where b = u/py and 1 € H(2)NL>®(Q) is the unique solution of the Poisson equation E(¢,u) =
0. Applying now the properties of the energy functional F' stated in Lemma 3.2 and the chain
rule given in Lemma 8.2 the following theorem can be proved as in [16].

Theorem 3.2 Let the assumption (I) be fulfilled. Then along any solution (u,b,v) of (P) the
relation u(t) € Mp f.a.a. t € Ry holds, and

t2 / D dt<F(( ))SF(U), 0<t <ty

Especially this means that the free energy F(u) remains bounded from above by its initial value
F(U) and decreases monotonously. Moreover, there exists a constant ¢ depending only on the
data such that

> lluilnwi| e, pia) < ¢ lullie@, pi@rmy) <¢;  [Ibllze@, 2 @rm) <,
i=1
|llpoo o mr (@) < €50 NUllne®e,zo@) s 1¥llLe @y, Loy < c

for any solution of (P).
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Remark 3.1 The last two estimates of Theorem 3.2 together with assumptions (I), iii)—vi)
ensure that along solutions of (P)

1 <pi(z,Y(t,z)) <co faa. (Lr)eR. xX, ¥=Q, T, i=1,...,m,

kfﬂ(x,bl(t,x), ey bmg (6,2),9(t, ) < e faa. (he) ERy x X, (o) ER®, B=0,T,

Di(z,b(t,z),¥(t,x)) < co fa.a. (t,z) eRy xQ,i=1,...,1,

D;(z,b(t,z),¥(t,z)) poi(z) > e>0faa. (t,z)eR. xQ,i=1,...,1,

2kg .,y (@, b, z),¥(t,x)) 202 > €50 faa. (o) eR, xQ, j=1+1,...,m,
with positive constants ci, co, €, € depending only on the data.

Theorem 3.3 Let the assumptions (1) and (II) be fulfilled. Then along any solution (u,b,v) of
(P) the free energy F(u) decays exponentially to its equilibrium value F(u*),

0 < F(u(t)) — F(u*) < e X (F(U) = F(u*)) Vt>0

where A depends only on the data.

For the proof see [16, Corollary 3]. From the preceding energy estimates we derive some further
conclusions.

Theorem 3.4 We assume (I) and (II). Then there ezists a constant ¢ > 0 depending only on
the data such that for any solution (u,b,) of (P)

* * * 2
lu(t) = u*llL@rmy, [16() = 0"l @rm), [9(t) =9l Sce2t VEeRy  (3.6)
with X from Theorem 3.3. Moreover,
“bi_bﬂ|L2(R+,L2)§c; i1=1,...,1, (3.7)

1% = ¥ 2wy 1) < e,

16s = b llrryz) S e, i=1,...,m, [|bi = bf||Lir, 2y <S¢, i=1,...,1.

Proof. From Theorem 3.2, (3.5) we have ||9|[p®, 1), allze®, c1@rm)), |D@)1@r) <

C’
[Va/a* = 1|peo®r, c2@rm)) < ¢ (VVai/aille®,,2) < ¢, @ = 1,...,1. From (3.3), (3.4),
Lemma 3.3, and since ¢* € St (cf. Theorem 3.1) we obtain that

F(u(t)) = F(u*) 2 cll9(t) = "5 + cllVult) - Vully

i (3.9)
> cllop(t) — %* |5 + cllVa(t) — Va*|} VieR,.
Thus Theorem 3.3 ensures that
* * " PN
1%(t) — ¥ (|1, 1V u(t) = Vu|lr2@rmy, 1Va(t)/a* — 1|p2q@prm) < ce 2t VR, (3.10)

% =" Loz s [WVa/a* = 1|2, L2@rm) < c-

Since ||u; — uf|r < |Vui — /ulllz2 ]V + /ul||z2, from Theorem 3.2, Theorem 3.3 and (3.9)
the remaining estimates of (3.6) are derived. The first two estimates in (3.8) result from (3.10),
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(3.6). Now let 4 =1,...,l. With the above results and (3.10) we have ||\/ai/aj — 1|[2(&, a1) <
¢, and interpolation between L?(R;,H"') and L*®(R;,L?) yields ||\/ai/a}f — Ulzewy,zey < c
Because of the estimate

b — 7] < c(lai/af — 1+ [¢ — %)) < e(lv/aifaf — 12+ |\/aifa] — 1|+ [y —¢*)  (3.11)
we obtain that
1bi — bf’|i2(R+,L2)
< {IVaifa; = Use, zo + IVailaf = W, iy + 16 = 6" Ba,m | < e

The last estimate in (3.8) follows from (3.11), (8.1), (3.10) and

/R 6 = bl ey ds < e /R {IVaila] = 113 +1v/aifaf =115 + ¢ = ¥*m pds <. O
+ +

4 Global upper bounds for the densities

In this section we derive global upper bounds for the densities u; and chemical activities b;. For
this purpose we additionally suppose the following properties of the reaction system:

k:HllaXm{(aa —d”) (B —ax)} < C(Za?Jrl) ;> iy Bi=0
=

i=l+1 i=l+1
Va € R™, Y(a,B) € RY, s (100)

l

max {(a® — a®)(By — o)} < c(

max aj+1) VaERT,V(a,ﬁ)ERF.

1 /

J

We start with two preliminary estimates to achieve estimates for the L°°(R, , L?)-norms and
L*®°(Ry, L*)-norms of the chemical activities. The final result then will be obtained by Moser
iteration. Here we distinguish between diffusing and non-diffusing species. In our estimates we
use the constants €, €, € which are defined in assumption (I), iii) and Remark 3.1.

Lemma 4.1 Let the assumptions (1) — (I1I) be fulfilled. Then there is a constant ¢ > 0 depending
only on the data such that

;)2 <e VEER,, i=1,...,m,

for any solution (u,b,) of (P)

Proof. 1. With the exponent g from Lemma 3.1 we obtain from Lemma 3.1, Lemma 3.2 that
m m
[0 i < e {1+ 3 Ol ein } < e {1+ 3 10O laem} fan teRy. (1)
j=1 Jj=1

2. We use the test function 2e’b for (P) (more precisely, for the evolution equation in (P)).
Taking into account the assumptions (I), vi) concerning the presence of reactions with quadratic
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sink terms for the non-diffusing species, and (III) concerning the order of the source terms we
can estimate

l

/ > REs(,b,9) (B—a)- bdm</ Z czb3+b§bj+b,-b§+b§+1)—zbgf}dx
(

a,B)eRY j=l+1 =1
g m
3 3
<o Il temt 30 lbsita.
=1 j=l+1
The last estimate follows from Young’s inequality.

3. Using the test function 2et b, the estimate from step 2, (8.1), (8.3) and Young’s inequality we
obtain for ¢t € R,

> (eoet 1:(t)I122 — cl|Ui122)

=1

t l
< /0 e’ { DA 2ellbilld + cClballzr b lwoallbsllmr + 1B:l3s + 166l 72y + 1)}
=1

+ 3 @bl +elbsl3} } ds

j=i+1
t [ m o~
s ~ €
< [Ce {301 elbulln + bl ol bl + il + D} = > 5118} do

0 i=1 j=i+1

where r = 2q/(q — 2). With (4.1), (8.3), and Theorem 3.2 we estimate
2/r 2/r 2(r—1 €

&0ill e 14w IBilzzs < cllbal [1+Z 16 2 B2 < Sl +clbl2 3 s+

j=1

From both estimates we conclude that

oo ZHb rle_/ {——Zubnm— > il

=141
> Z||buLz+ b3 +c} ds+c
g € ¢ 2 — € 3
<[ {5l - 3 Sl
i=1 j=I+1

ey (ZHbi — b2 + 1) Ibsl2. + 1} ds+e VEER,.
i=1

Jj=1

Because of (8.3) and Young’s inequality

_ € .
ellbillZ2 < clbill 1Bl 1 < §||biH%p +ellbill3, i=1,...,1,

1/2 3/2 € .
ellillze < ellbill %1017 < Slbillgs +cllbillr, i=1+1,...,m,
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and since ||b|| < (r,,L1(q,rm)) < ¢ (see Theorem 3.2) we continue our estimate by

tzub e <cet e [e PSS b Il ds V€ R

7j=11:i=1

Since by Theorem 3.4, (3.7) the function h := Zé:l ||b; — b}[|; belongs to L'(R;.) we can apply
a special form of Gronwall’s lemma (see [22, p. 14, 15]) to obtain

t
tz Hb “Lz < ce +/0 e*h(s) eHhHLl(R+) ds < ce ||h“L1(R+)eHhHL1(R+) < cet Vt € R,. O

Corollary 4.1 We assume (I) - (III). Let q be defined as in Lemma 3.1. Then there is a
constant ¢, > 0 depending only on the data such that

||¢“L°° (R+,W17q) S cq

for any solution (u,b, ) of (P).

Proof. Since 2q/(2 + q) < 2 the desired estimate results from (4.1) and Lemma 4.1. [

We define
K= cgr + 1 where r =2¢/(q¢ — 2), ¢ from Lemma 3.1. (4.2)

Lemma 4.2 We assume (I) — (IIT). Then there is a constant c;« > 1 depending only on the
data such that

16i(t)]lps <cpa VEERy, i=1,...,m,
for any solution (u,b, ) of (P).

Proof. We use the test function 4e? (b3,...,63,) for (P). Arguing similar as in step 2 of the proof
of Lemma 4.1 we find that
l

/ S g9, bdw</z {37 {07 + 183 + (62 + 1)0} + 67} €62 } da

(a,B)€R? i= 1 j=l+1 =1

<CZIIb IZs +C—— Z 1b;11Zs -

] =Il+1

Therefore, with ¢ from Lemma 3.1, » = 2q/(q — 2), we obtain for all t € R,

m t m
> (ot Il —eltilte) < [ e { 3 (=22t + ullhe)
i=1 j=l+1

l

£37 (— 262 + (1Tl IV G 2o 181 + Il + [alary + 1)) Y ds.
=1
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Next we apply the inequalities (8.1), (8.3) and the estimate [|b;]|7s < 2€]|b;||3; + c. Moreover we
use Corollary 4.1, (4.2), Young’s inequality, and Lemma 4.1 to get

1/r 2—-1/r
ce §j||b 4 < / §j { = ellB2 I + el llwa 1671410772
3/2 1/2 3/2
10 625 + BI85/ +1) } ds + e

t l
gc/esZ{nub?u%l+||b§||il+y|b$y|il+1}ds+cgcet VtER,. O
0 =

Theorem 4.1 Let the assumptions (I) — (III) be fulfilled. Then there ezists a constant ¢ > 0
depending only on the data such that
0i(t) |z <c, |ui(t)|lpe <ec VEER,, i=1,...,m, (4.3)
||bi“L°°(R+,L°°(F)) <c, 1= ]-)"')la

for any solution (u,b, ) of (P).

Proof. The proof is based on Moser iteration and will be done in two steps. At first we establish
global bounds for the diffusing species. Then, using these bounds we show the global bounds

for the non-diffusing species. Let K := max {1, [|b1(0)||z,- -, [|[bm(0)||L=} and z; := (b; — K)™,
t=1,...,m
1. Bounds for the diffusing species. For p > 8 we use pet (20 *,.. . ,szl, 0,...,0) as test function

for (P) and set w; := 2 /2. At first let us remark that

m l m
SRGTERTD 3 CRNELIES 3 SURRIFSES SICURS SEaE R
=1

(a,8)ERD =1 i=1 j=1 j=I+1
Lemma 4.2 ensures that ||bj||g (g, 14) < cze, 5 =I+1,...,m. Thus we can estimate by Holder’s
inequality

1 1 1
/Q 212 dr < [zl a2 < Eallwi PO

Therefore we obtain for all t € Ry
l t I
et 3o lwi(ols < [ et 3o { ~ 2elunls
i=1 0 =1
v YVw: _ (p+1)/p (p—1)/p 112 114
—i—cp(“ Y| e | Vws || 2 (Jwil| - + 1) + “wz“Lz(p+1)/p + CL4“wz||L4(p Byp T ||wz||L2(F) + ) S.

Next we apply for r, p := 2(p + 1)/p, and p := 4(p — 1) /p, respectively, Gagliardo—Nirenberg’s
inequality (8.3). The constants cz; can be estimated by means of max{c21,cg/4,1, 1}1/2 and
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max{cr/21,C4,1, 1}2/7 | respectively,

l
e’ Y flwi(t)| 72
=1

t l
<[ > { = llll + ™ (117 + Dol +

(p+2) (3p—4)/2 1/2 3/2 1/2
+cp(uwzu” VP lwill g+ Eallwill G2 sl Jewill 32 il 2+ 1) } ds

2, 2 2p/(p+4)
/ Z "(lwillEs + 1) + il O 4 predallus 7P 4 pt il + 1} ds

[
2
< P (k+ ) et Y (sup lz(s) 0P P +1)  VieR,.

i=1 seRy
Thus we get the iteration formula

l
2p/(p—2)
S IEOI, + 1< PP enr(s + ) (Zsup Jzi(s) 07 +1) ViER,, p>8

i= 1SER

where the constant ¢y > 1 depends only on the data, k, r and cz4+ are defined in (4.2) and
Lemma 4.2. Now we set p=2*¥, k£ € N, k > 3. From the recursion formula

e o]

e < (2%enm (k4 ca)72)*% = Z sup [|2i(s)[| % +1, o= ] ] 2% 1
=1 s€Ry Jj=1 B

follows. Passing to the limit ¥ — co we obtain

Co
Z“Zz ||Lm<\/(24rCM (k+cS,) [Zsuszz ||L4+1]) VtER, .

zls

Applying Lemma 4.2 and (8.2) the desired estimates for b;, u;, ¢ = 1,...,1, are verified.

2. Bounds for the non-diffusing species. We use the test function pe’ (0, ...,0, z{:ll, . ,zf,fl),

p > 2. From assumptions (I), vi) and (III), from the estimates b; > z; > 0, j =1+ 1,...,m,
and the L*°(R, L*°)-estimates for b;, s = 1,...,[, we find that a.e. in Ry x Q

m
-1
> BHGby) Y (Bi-a)d

(a,8)€ERD Jj=l+1

m m o)/

2 L1 ¢ p+1 p+1 ¢
<szb+b g€ 4 <sz e AT S m-
i=1 j=I+1 j=l+1 j=l+1 j=l+1

The last estimate follows from Young’s inequality. Therefore we obtain

- p+1/ S+1)/2
ve Zuzj(tum_p/ / oz deds SRl (m D VEER, .

j=Il+1
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This yields
lz;(®)llzr < (P19 (m — 1) VET/e)) /P \JEfe<ec VtER,,Vp>2, j=1+1,...,m.
Passing to the limit p — oo we get

2i ()|l < VE[E VEER,, j=1+1,...,m,
which leads to the desired L*°-estimate for b;, uj, 5 =1{+1,...,m. O

5 Global lower bounds for the densities

In this section we assume that for solutions of (P) global upper bounds for the chemical activities
are known (see Section 4),

1bill Lo (R L) S €, =1,...,m, (I17)
and that the initial densities are strictly positive,
Ui>c>0, i=1,...,m. (IV)

We show that then the densities as well as chemical activities are bounded from below by a
positive constant for all ¢ > 0. We start with some results obtained without assumption (II)
which lead to lower estimates depending on the length of the time interval such that Inb; €
L (Ry,L*>®), i = 1,...,m, is found. With this knowledge and now supposing the condition
(IT) we prove the global result. Let

K :=max {|[Inb ()] ||z, - -, | I b (0)] ™ | oo } - (5.1)

Lemma 5.1 Let conditions (1), (III"), (IV) be fulfilled. Let T > 0 be fized and suppose that

essinfb;(t,z) > ecr >0 Vte[0,T], i=1,...,1,
e

for every solution (u,b,v) of (P). Then the estimates
[(Inb;)~ ()]l < y(er) VE€[0,T], j=1+1,...,m,

hold for any solution (u,b,v) of (P) where the function vy itself depends on the data and on the
upper bounds of the densities, but not on T.

Proof. Let (u,b,v) be a solution of (P), let j € {{+1,...,m}, vs := (In(b; +0)+ K)~, K
from (5.1), 6 € (0,e=%). We use the test function —pet (0,... ,O,vf;*l/(bj +4),0,...,0),p > 2.
Because of assumption (I), vi) there is a special reaction Rg(j) B6) which generates source terms
in the j—th continuity equation containing electrochemical activities of diffusing species only.
Since the activities of the diffusing species are supposed to be bounded from below by ¢z > 0
there is a constant €,(cr) > 0 such that the estimate 2k2(j)ﬂ(j)(-,b,¢) ngl a:-l(j)i > e-(cr) ae.
in [0, 7] x € holds. Moreover, we apply Remark 3.1, (III'), and the inequality vs/(b; + ) > v3
to get

l -1 . -1
WAy (-,b qp)[Ha?(”" _az_] Y cajepjw)) ijpfl—e (cr) % cvd " —e(er) vt
ag) B\ i bj+6 =" bj+6 ° b+ T 0 " d

=1
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Additionally using Remark 2.1 for all other reactions

p—1

v a; _ _
Riglog =)y s <eq—tenf T <edf ! (5.2)
J J

follows. Thus we find a constant ¢, > 0 such that

- 1 cﬁ

Z R ¥) (o ﬁy)b+5SCo I—Er(CT)Uf;)Si,I-
(a,8)eR%

The last estimate follows from Young’s inequality. Therefore we obtain

¢ ch ch
t p s o t 4 -K
t < ————dzds < Q ———— Vie[0,T], V6 € (0 .
€p € ||’U§( )“LP = p./[) e L GT(CT)pfl ras e p| | er(CT)pil € [ ) ]a € ( € )
Thus we arrive at

lvs(t)|le < (P]€ & (cr) /€0 )l/p

Co
e (cr)

Passing to the limit p — co we get ||vs(t)||L~ < co/er(c) for all t € [0,T], § € (0,e~¥).
Therefore b;(t) > 0, lims_,o v5(t) = [Inb; + K]~ () a.e. in , and in the limit § — 0 we have

vt €[0,T], V6 € (0,e X), Vp>2.

I(lnb; + )~ (t) || < —2
er(er)

Lemma 5.2 Let the conditions (I), (III’) and (IV) be fulfilled. Then the recursion formula

vte[0,7]. O

¢'l|(In(b; +6) + K)~ (1)}, < C/Ot e’ p* k(|| (In(b; + 8) + K)~(s)II% - +1) ds
VieR,, VYoe(0,e®), Vp>2, i=1,...,1,
holds for any solution (u,b,) of (P) where k, r from (4.2) and ¢ depends only on the data.
Proof. Let (u,b,1) be a solution of (P), let i € {1,...,l}, vs := (In(b; + ) + K)~, § € (0,e~X).
We use the test function —pet (0,...,0, vf;_l/(bi—i—é), 0,...,0), p > 2. Note that (5.2) is also valid

’
for all reactions considered now. Applying the inequahtles (8.1), (8.3) and Young’s inequality
the above test function leads to the estimates

co €' [lvs (£)I1%,

t 1 p—2 p—1
<[e{] [—pDi(-,b,w)pm-[Vbi+bz—Qz~(¢)V¢](” );’5+ Vs )

pfl
+p Z R )

/ Y R )b+5dF}ds

(a,B)€RS (e,8)ERT
t
s 2 (p+1)/2 2
< [Fer{ = 2elVar 12 = SIVol O 4 el
0
2 2
+ cpllllwra (g lor + )||w‘°/ Iz + ep(leslfpts + losll s ) b ds
t
2 2 2
< / e{ = ellof®13 + ep (0§ 2130 + 110§ 12 10§ 1 x +1)
+ep® s (10F %2 + 1)} ds

t
S/ecp n(||v5/ 12, +1)ds VteR,, V6e(0,e7), vp>2. O
0
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Theorem 5.1 Let the assumptions (1), (III) and (IV) be fulfilled. Then for every T' € R, there
ezxists a constant ¢(T) > 0 besides on T depending only on the data such that

(0 b))~ ()| < e(T) VEe[0,T], i=1,...,m,

for any solution (u,b, ) of (P).

Proof. Let T € Ry be arbitrarily given, and let ¢ € {1,...,l}. We apply the recursion formula
stated in Lemma 5.2 for p = 2 and continue as follows,

e'l|(n(b; + 8) + K)~ (D)7 < ce’ [|(In(b; + 6) + K)~(1)IZ

scfotes(ll(ln(bz-+5)+K)(s)||il+1)ds vteo,T], Vée(0,eK).

Then Gronwall’s lemma yields that
|(n(b; + 6) + K) (0|2 < o(T) Vee[0,T], V8e (0, K). (5.3)
Again applying the recursion formula we find similarly as in the proof of [5, Lemma 4.6] that

I(In(b; + 6) + K)~ ()|l < cer( sup ||(In(b; +8) + K)™(s)llzr + 1)
s€[0,T]

which together with (5.3) leads to
|(In(b; 4+ 6) + K)~(t)||z~ < (T) Vte[0,T], Ve (0,e ¥).
Passing to the limit § — 0 and arguing as in Lemma 5.1 we obtain that
[(Inb; + K)™ ()|l < e(T) Vtel0,T].

Thus the assertion of the theorem is proved for ¢ = 1,...,l. The corresponding result for
i1=101+4+1,...,m now follows from Lemma 5.1. [

Lemma 5.3 Let the assumptions (I), (II), (IIT’) and (IV) be fulfilled. Then there ezists a
constant ¢ > 0 depending only on the data such that

|(Inbd)~ ()| <c¢ VteR,, i=1,...,1,
for any solution (u,b, ) of (P).
Proof. 1. Let (u,b,v) and (u*, b*, ¢¥*) be a solution of (P) and the steady state of (P) (cf.
Theorem 3.1), respectively. Let ¢ € {1,...,{} be fixed. Because of (III’) and Theorem 5.1

we have Inb;, Inu; € LS (R4, L™), bf/b; € LS (Ry,L*>). Remark 2.2 implies Inb;, Inu; €
C (R, L?). We define z := (1 — b} /b;)~, obviously z € L2 (R, , H') (see Lemma 8.1).

2. We define the functional ©: L2 (Q) — R,
O(w) := / uj () d(w(z))dz, w e L2(Q) == ~L3(Q), d(y)=—-In(l-y), y<0
Q

which is convex and continuous. The extended functional ©: L2(Q) — R, O(w) = +oo
if w € L2(Q2) \ L2(Q), is proper, convex and lower semi-continuous. The functionals © =
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Olyi: HY(Q) - R, G = 0*: [H'(2)]" — R have the same properties. If w € H'(Q) N L% (Q)
then

T:=ul/(1-w)+he€dO@W) VheL:(Q) withh=0ae. in Q\ {z: w(z) =0},

G(w) = (w, W) — O (W),

and especially for @ = —Z(t), b = [u;(t) — u]" we obtain

ui(t) € 00(=Z(t)), —z(t) € 0G(us(t)) faa. teR,,

U

G (1)) :/ {uf (0 2)7() ~ (w—u)) ()} dz faa te R,
Q
From Lemma 8.2 it follows, firstly, that the last equation holds for all ¢ € R, , and thus
G(ui(t)) > cl|(Inb;)) " (t)||gr —e1 YEER,, ¢,e1 >0. (5.4)

Secondly, the chain rule yields

¢ ¢
Gui(®) — G(U) = — [ (wi(s), 26 ds = [ (AG),(0,0 7,0 0)ds VEER,
0 0
Let z := (Inb; —Inbd})~. Since ¢} = const (see Theorem 3.1) it follows Vb} + bfQ;(¢*)Vy* = 0,

(Vb + Qi) V6] V% = (Vi + b Qi(p)VY — oVb; — b Qi) V] vz

B
= —b}(Vz)? + b} [Qi(¥)) Ve — Qi(¢*)V* | Vz,
and we derive
t
G(ui(t)) < /0 {—eesmseglsz‘(x) V2|22 + el V(% — ") |2 V2] 2

+cllp = [Vl e[V 2] 22

+ / Z k,?ﬁ [aa — a'B] (; — Bi)Zdzx (5.5)
? (@, p)erD

+/ Z kgﬂ[aa—aﬁ](ai—Bi)EdF}ds—i-G(Ui) Vit e Ry
T (a, )err

where € and ¢ are defined in Remark 3.1 and in Lemma 3.1, respectively, » = 2q/(q¢ — 2). By
assumption (IV) the initial value G(U;) is finite. From (IIT’) and inequality (4.1) we find that
V4|l po(®,,Le) < c. In arguments (s, z) with Z(s,z) # 0 we have

[a® — a°|(ai — Bi) Z = [a* — a”] (e — ;) bi (bf —bi) <c |bf —b;| V(a,B) € RTURE

3

because of (2.2) and (IIT"). Applying Theorem 3.4, (3.8) we continue estimate (5.5) by

Gui(t)) <e{l1+ |1y — ¢*“%2(R+,H1) + 116i — bf L ry nry + 116i = bF [l Lory 2y } S ¢ VEER, .

Using (5.4) the assertion follows. O
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Theorem 5.2 Let the assumptions (I), (II), (IIT’) and (IV) be fulfilled. Then there exist con-
stants ¢, ¢ > 0 depending only on the data such that

|(Ind;)~ (t)|lp~ <€, essinfb;(t,z) >e ¢, essinfu;(t,z)>c VEER,,i=1,...,m,
zed e

“(lnbi)iuL‘x‘(R_*_,L"o(F)) <c,i=1,...,1,

for any solution (u,b, ) of (P).

Proof. 1. Bounds for the diffusing species. Let i € {1,...,l} and K as in (5.1). Since (Inb; +
K) € LS. (Ry, L*) (cf. Theorem 5.1) we can pass to the limit § — 0 in the recursion formula

loc

of Lemma 5.2. We obtain
¢
e'||(Inb; + K)~ (8)[}5, < C/o e® p* i (||(Inb; + K) ()7, + l)ds VteR,, Vp>2,

and conclude as in the proof of Theorem 5.1 that

(lnb; + K) (t)||p~ < cn( sup ||(Inb; + K) (8)||zr + 1) Vte R, .
SER+

Using now the result of Lemma 5.3 we find that ||(Inb; + K)™ (¢t)||ze < cforallt € Ry, i =
1,...,1, and therefore all the results for the diffusing species follow.

2. Bounds for the non-diffusing species. Let j € {{ +1,...,m} and let T € R} be arbitrarily
given. From Lemma 5.1 and the result of the first step of the present proof we find that

I(Ind;)~ (&)llz~ < (e ®) Vvt e[0,T].

Since the function v does not depend on 7" we obtain the global result. [

Corollary 5.1 Under the assumptions (I) — (IV) there exists a constant ¢ > 0 depending only
on the data such that

essinfu;(t,z) >¢c Vt€ERy,i=1,...,m,
zeN

for any solution (u,b, ) of (P).

6 Asymptotic behaviour

In addition to the results stated in Theorem 3.3, Theorem 3.4 we find the following asymptotic
estimates concerning the densities u; and the potential .

Theorem 6.1 We assume (I) - (IlI). Let p € [1,400). Then there exist positive constants c,
¢, Ap, A depending only on the data such that

u(t) — ullLr(rm) s [[6(t) = b%[|Lr(orm) < c et VteR,,
9(t) — ¥*lwra, [(t) —¢*|lze <Ee ™" VieR, g asin Lemma 3.1,

for any solution (u,b, ) of (P).
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Proof. Concerning the continuity properties of the functions u, b and ¢ with respect to time we
refer to Remark 2.2. We use the assertions (3.6) of Theorem 3.4, Theorem 4.1 and obtain for
pE[l,+00),i=1,...,m,

i (8) = wi 170 < llua(t) = ufl|orlui(t) = wilff= < Pe™™2 VieR, . (6.1)
Because of ||b;(t) — b} || < c||ui(t) —ul|lp1, |bi(¢) — b) ||z < c|lui(t) — uf||L~ and (6.1) we find
the assertion of the theorem for b;, i = 1,..., m. Regularity results for elliptic equations [13,

Theorem 1] applied to the solution ¢ = 1 — ¥* of

—V-(eVP)+Y=hinQ, v-(eVy)=0onT,

m

h=e(y*) —e(®) + Y (Qi(¥)ui — Qi(¥* )uf) + ¢ — ¢*
i=1
supply that
9]l < cl[@llwra < cllhllpz. (6.2)

Since |[¢*||z, |[Y(t)|lo= < ¢, t € Ry, Q; € CY(R) and e(z,-) is locally Lipschitz continuous
uniformly with respect to  we obtain

m
Ibllze < e{ll = 6"l + 3 llui = wfllza }
=1

Thus, from (6.2), Theorem 3.4 and (6.1) the last assertion follows. [

7 Remarks

1. Non-negativity. Our formulation of (P) involved the requirement that u is non-negative.
This was mainly done by physical reasons since the kinetic coefficients D; and kfﬁ are defined in
a natural way only for non-negative b. If we define the kinetic coefficients also for other b € R™
in such a way that the assumptions (I) iv) and v) are fulfilled for all b € R™ (e.g. by defining
Di(z,b,%) := D;(z,b", ), kfﬂ(m,b,z/)) = k&(m,b‘*,@b) for b € R™ \ RT), and if we define the
operator A as in (2.3) on [X x H(Q)] N L*®(2, R™*1) we can consider the following modified
formulation of (P):

W(t) + AD), () =0, E@(),u(t) =0, u(t)=Bbt) faa. t>0,
u(0) =U, u€ H (R, X*), be L} (Ry, X) N Ly, (Ry, L2(Q,R™)), (P’)

Y € L (Ry, HY(Q)) N LS, (R+, L=(Q)) -

Lemma 7.1 Let (u,b,v) be a solution of (P’). Then u(t) >0, b(t) > 0 a.e. on Q for allt € R,
bi>0ae onRy xI', e =1,...,1.

Proof. Let (u,b,1) be a solution of (P’). Then for every 7" > 0 there exists a ¢ > 0 such that
[9(E) | zoes N1 (@)lLee(ry, 16)][Loe(@rmys 1bi(E)Le@ry < ¢ 1 =1,...,1, faa. t € [0,T]. Again
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[13, Theorem 1] ensures that |[¢(¢)] g1, ||©(¢)|wie < ¢ fa.a. t €[0,T] for some g > 2. We test
(P’) with —b~. First, we estimate
/QDi(',b,iﬁ)pm [Vb; + 6:Qi(¥) VY] Vb; de < —€l| Vb7 [z + cllby I| p2ara-» 19l wrall V07 | 2
< G IVB 5 + el I 67 27 < =5 1907 12 + el 13
Next, we write
R35(2,b,) (s — B)b7 =k2p(2,b1, -, b, %) (@) = (a¥)] (s — Bi)b7
+ kfﬁ(x, bi, .-, bmg, V) {aa —af — (™)™ + (a+)'3} (0 — Bi)b; .

Because of (2.2) the first term is non-positive, and since |[a® — a® — (a1)® + (a7)?| < c[|a™ ||gm
we find that

/QZ R, (2, b,9)(a — Bi)by dz < 3 1671122
=1 =1

l

l l
_ _ €, _ _
[ 3 e byt w)(as = 00 A < e 3 10 3y < 3 {516 I+l 122}
=1

Therefore, since U > 0 in summary

m r m
S5 @2 < c / S5 (0)|2.ds Vi€ [0,T]
=1 j=1

follows, and Gronwall’s lemma leads to the non-negativity of b; and u; on €2. The estimate for
bi, i =1,...,l, at the boundary follows from (8.2). O

2. Uniqueness. We prove a uniqueness result under the additional assumptions that

kfﬂ (z,-,-) are locally Lipschitz continuous uniformly with respect to
V(e, B) € R¥, £=0Q,T;
Di: OQxR—-Ry,42=1,...,l, do not depend on b,

D;(z,-) are locally Lipschitz continuous uniformly with respect to z,i=1,...,1[.
Lemma 7.2. Under the assumptions (I) and (V) there exists at most one solution of (P).

Proof. Let (u?,b,47), j = 1,2, be solutions of (P), let T > 0, S := [0,7]. Then there exists a
constant ¢ such that

167 o= s 197 (@)l s 187 @)ooy s 197 Ollzry s [ @) lwra < cfaa tes, (7.1)

j=1,2i=1,...,mx, where ¢ > 2 (cf. Lemma 3.1). Let b := b' — b2, ¢ := ¢! —¢%. By
Lemma 3.1 we obtain that

[B(8)|| < cllB(®)|ly faa. t€S. (7.2)

Moreover, we apply Groger’s regularity result [13, Theorem 1] to the equation for 1 and estimate
the W—14(Q UT)-norm of the right hand side by the corresponding L?-norm,

[l < clPllwra < cllp’ —9* +e(¥?) — e(®") + 71 Qi uf — Qi(w?)uf) e -
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Properties of e and @ and the estimates in (7.1) and (7.2) ensure that
%)l < cllb(t)lly faa. t€S. (7.3)

We use b € L%(S, X) as test function for (P) and take into account that REﬂ(a:, ), Di(z,-) are
locally Lipschitz continuous uniformly with respect to z and @; are locally Lipschitz continuous.
With r := 2¢/(¢ — 2) and (8.1), (8.3), (7.2), (7.3) we get

t l
€0, - - — -
5||b(t)||§/ < /0 {Z{ — ellBallFn + c(l1Billr 19 lwra + [l (103 L + 19" |er)) 1Bl e
=1
+ ||l 1Bll e + ellbillZo oy} + e(IIBl + WH%I)} ds

£ 1
< [ {18 B + 196" s+ 3 e + 1] Bl s vees.
=1

Since the function in the brackets belongs to L!(S) Gronwall’s lemma yields b = 0 on S. With
(7.2) the assertion follows. [

3. More general boundary conditions for the Poisson equation. As mentioned in [16,
Remark 3] also mixed boundary conditions for the Poisson equation can be considered such that
the results of the present paper remain valid. For the treatment of such boundary conditions
see also [10].

4. Solvability. Under the assumptions (I), (III) and the first assumption in (V) problem (P)
has a solution. This will be proved in a forthcoming paper.

8 Appendix

Let Q C R? be a bounded Lipschitzian domain. We apply Sobolev’s imbedding theorems (see
[17]) as well as some other imbedding results. By a modified application of the Holder inequality
from [17, p. 317, formula (5)] we derive

w0l Fary < coqllwllfag g lwlm@ vYweH (), 2<q¢<oo. (8.1)
By means of this trace inequality we get
lwllory < lollmey Voo € HI(R) N L=(9). (8.2)
As a special version of the Gagliardo—Nirenberg inequality (see [4, 19]) we use the estimate

k —k
lwllze < cqp lw]¥ wl5n"? vw e HY(Q), 1<k < g < oo. (8.3)

Additionally, from Trudinger’s imbedding theorem (see [21]) we get
le™lllzs < dg(lwllg) Vw € HY(RQ), 1< ¢ < oo. (8.4)

Moreover, we apply different rules of the calculus of weakly differentiable functions, especially
the following chain rules.



26 Glitzky & Hiinlich
Lemma 8.1 Let f : R — R be locally Lipschitz continuous, and let u € VVI})’J(Q) Then
foue WI})’CI(Q), and

Vfou=0, Vu=0 a.e. on{z:u(z)ec A},
Viou=f'(u)yVu  a.e. on{z:u(z)¢ A}
where A denotes the set of points in which f is not differentiable.

For the proof we refer to [7, pp. 127-129].

Lemma 8.2 Let X be a Hilbert space, X* its dual, S = [0,T]. Let the functional F : X* — R
be proper, conver, lower semi-continuous. Suppose that v € H'(S,X*), f € L*(S,X) and
f(t) € 0F (u(t)) f.a.a. t € S. Then the function F ou : S — R is absolutely continuous, and

di;”(t) - <%(t),f(t)>x faa tes.

Proof. We denote by J : X — X* the duality map. Then we have Jf € L?(S, X*),
F(v) — F(u(t)) > (v—u(t), f(t))x = (Jf(t),v —u(t))x» Yve X", faa. tes,

and the assertions follow from [1, Lemma 3.3]. O
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