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This paper studies the dependence of solutions to conical di�raction problems upon

geometric parameters of non�smooth pro�les and interfaces between di�erent materials

of di�ractive gratings. This problem arises in the design of those optical devices to

di�ract time�harmonic oblique incident plane waves to a speci�ed far��eld pattern. We

prove the stability of solutions and give analytic formulas for the derivatives of re�ection

and transmission coe�cients with respect to Lipschitz perturbations of interfaces. These

derivatives are expressible as contour integrals involving the direct and adjoint solutions of

conical di�raction problems.

1. Introduction

Di�ractive optics is a modern technology in which optical devices are micromachined

with complicated structural features on the order of the length of light waves. Exploiting

di�raction e�ects, those devices can perform functions unattainable with conventional

optics. Because of great advantages in terms of size and weight and many far�

reaching applications in micro�optics, the optimal design of microoptical devices has

received considerable attention in the engineering community and has stimulated several

mathematical investigations.

One of the most common geometrical con�gurations is the so called periodic di�raction

grating, which is formed by a periodic pattern of nonmagnetic materials (of permeability

�) with di�erent dielectric constants �. If the coordinate system is chosen such that the

grating structure is periodic in the x1�direction and invariant in the x3�direction, then the

di�raction problem is determined by the function �(x1; x2) which is say d�periodic in x1.

This function is assumed to be piecewise constant and complex valued with 0 6 arg � < �.

Throughout, the material above and below the grating is assumed to be homogeneous with

dielectric constants � = �
+
> 0 and �

�, respectively. The grating is illuminated by an

incoming plane electromagnetic wave

Ei = p ei�x1�i�x2+ix3e�i!t ; Hi = q ei�x1�i�x2+ix3e�i!t (1.1)

from the top with the angles of incidence �; � 2 (��=2; �=2). In practical applications

the wavelength � = 2�c=!, c denoting the speed of light, is comparable to the period d.

In this situation geometrical optics approximations to the underlying electromagnetic �eld

equations are not accurate, hence, the mathematical modelling has to rely on Maxwell's

equations or related partial di�erential equations.

The direct problem, i.e. the determination of the di�racted �eld for a given incident

wave and some �xed periodic grating structure, is by now well understood. The case  = 0
corresponds to the classical di�raction problem dating back to Rayleigh and Bloch. In that

case Maxwell's equations reduce to the two scalar models of transverse electric (TE) and

transverse magnetic (TM) polarization, and results on existence, uniqueness and regularity

of solutions for rather general grating structures have been obtained during the last decade;

see the references given in [9]. The underlying analysis is based on a variational approach

which goes back to Achdou &Pironneau [1], Bonnet-Bendhia & Starling [2] and Bao &

Dobson [5]. Recently [12] this approach was extended to the case  6= 0, the conical

di�raction problem; see Section 2 for a review of some results.

A major part of the motivating applications in di�ractive optics, however, is associated

with the inverse problems of optimal interface shape design or pro�le reconstruction from
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scattered �elds. To solve these problems via optimization methods, it is crucial to study the

dependence of the di�racted �eld upon the grating structure, i.e. upon the piecewise constant

coe�cients of the underlying di�erential equations. Several recent articles are devoted to

the regularity of the forward map which maps the dielectric coe�cients to the solutions

of the model. In particular, for the TE di�raction problem, rather general di�erentiability

results as well as e�ective gradient formulas are known; see [1], [7], [3], [8]. The case of TM

polarization, where the discontinuities occur in the principal part of the di�erential operator,

is much more di�cult to study than the TE case. In [3] it is shown that the forward map

is Frechet di�erentiable with respect to variations of interfaces in the uniform norm, which

however excludes the design of practically relevant di�ractive structures. Existence of an

optimal design for TM polarization is established in [4].

More precise regularity results for inverse TM di�raction problems can be obtained if

the grating geometry is determined by a �nite number of parameters. In [9] we derived

explicit analytic formulas for the derivatives of cost functionals involving the re�ection

and transmission coe�cients of binary di�ractive gratings, where the derivatives have to

be taken with respect to the transition points and the height of those gratings. Assuming

that the solutions of the direct problem have only mild singularities at the corners of the

grating pro�le, these derivatives can be expressed as one�dimensional integrals over the part

of the interface to be varied. A new approach to this problem, which works for arbitrary

singularities of the direct solution and also for more general non�smooth (e.g., polygonal)

material interfaces, was given in [11].

In the present paper we extend these results to the di�raction of time�harmonic plane

waves from periodic structures under oblique incidence. In Section 2 we brie�y describe

the conical di�raction problem including its variational formulation and review some basic

results. In Section 3 we study the dependence of solutions to this problem with respect

to rather general variations of the (non�smooth) grating pro�le and interfaces between

di�erent optical materials. Our result on the unique solvability of the perturbed problem

is even new in the case of classical di�raction. In Section 4 we show that the derivatives

of re�ection and transmission coe�cients can be represented as certain domain integrals.

These formulas are simpli�ed in Section 5 to get interface integrals or, in case of strong

singularities of solutions, interface integrals plus point functionals. Alternative expressions

in terms of path�independent contour integrals are derived in Section 6.

As in the classical di�raction case [10], the results may be used to develop gradient type

optimization methods for solving design problems for di�raction by binary and multilevel

gratings under oblique incidence. Further applications to the stability of the inverse problem

of pro�le reconstruction from far �eld data will be given in a future publication.

2. Variational formulation

For notational convenience we will change the length scale by a factor of 2�=d so that

the grating becomes 2��periodic: �(x1 + 2�; x2) = �(x1; x2). Note that this is equivalent to
multiplying the frequency ! by d=2�. Then the wave vector of the incident �eld is expressed

in terms of the angles of incidence as

k = (�;��; ) = k
+(sin � cos �;� cos � cos�; sin�) with k+ = !(��+)1=2 :

Note that (Ei
;Hi) satisfy the time�harmonic Maxwell equations if the constant amplitude

vectors p, q ful�l the relations p � k = 0 and q = (!�)�1k � p. Thus the incoming �eld is

2



determined by two of their components, for example, p3 and q3.

Following [12] we transform Maxwell's equation to a simpler system of two�dimensional

Helmholtz equations coupled via transmission conditions at the interfaces. The periodicity

of �, together with the form of the incident wave, motivates to seek for physical solutions E

and H having the representation

(E;H)(x1; x2; x3) = (E;H)(x1; x2) e
ix3 ; (2.1)

where E;H : R2! C
3 are � quasi�periodic in x1, i.e.

(E;H)(x1 + 2�; x2) = e
2�i�(E;H)(x1; x2) :

Then the time�harmonic Maxwell equations for (E;H) are equivalent to

(@1; @2; i)� E = i!�H ; (@1; @2; i)�H = �i!�E (2.2)

in each subdomain in which � is constant. The well�known jump conditions on the interface

between two such subdomains take the form

[(�; 0) � E]��R= [(�; 0) �H]��R= 0 (2.3)

where (�; 0) = (�1; �2; 0) is the normal vector to the interface � � R and [(�; 0) � E]��R
denotes the jump of the function (�; 0) � E across the interface.

For the following we introduce the piecewise constant function

k =
p
!2�� ; (2.4)

where the branch of the square-root is chosen such that k > 0 for positive real arguments

!
2
�� and its branch�cut is (�1; 0). Under the assumption that

k
2
 := k

2 � 
2 6= 0 ; (2.5)

it follows from (2.2) that

E1 =
i

k2

(!�@2H3 + @1E3) ; H1 =
i

k2

(�!�@2E3 + @1H3) ;

E2 =
i

k2

(�!�@1H3 + @2E3) ; H2 =
i

k2

(!�@1E3 + @2H3) :
(2.6)

The third components E3;H3 satisfy Helmholtz equations

(�+ k
2
) E3 = (�+ k

2
)H3 = 0 (2.7)

in each of the domains in which � is constant, and the jump conditions are transformed to

the transmission conditions

[E3]� = [H3]� = 0 ;
h


k2

@�H3 +
!�

k2

@�E3
i
�
=
h


k2

@�E3 �
!�

k2

@�H3

i
�
= 0 ; (2.8)

at the interfaces �, where @� = �1@2 � �2@1 is the tangential derivative and [�]� denotes the

jump across the interface �.
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Due to the quasi�periodicity of E3;H3 we consider the problem in the strip x1 2 (0; 2�),
and de�ne the functions u = e

�i�x1 E3, v = e
�i�x1 H3, which are 2��periodic in x1. De�ning

the operators

r� = r+ i (�; 0) ; �� = r� � r� = �+ 2i�@1 � �
2
;

@�;� = � � r� ; @�;� = �1@2 � �2@1 � i��2 ;

(2.7) and (2.8) are transformed to the di�erential equations

(�� + k
2
)u = (�� + k

2
) v = 0 in R2 (2.9)

and the transmission conditions

[u]� = [v]� = 0h


k2

@�;�u�
!�

k2

@�;�v

i
�j

=
h


k2

@�;�v +
!�

k2

@�;�u

i
�
= 0 ;

(2.10)

which have to be satis�ed together with periodic boundary conditions. Because the domain

is unbounded in the x2�direction, a radiation condition must be imposed ensuring the �nite

energy of the scattered �eld. Since the factors E;H in (2.1) are analytic and ��quasiperiodic

above and below the grating, this condition implies that they admit a representation as a

sum of outgoing bounded plane waves plus the incoming plane wave.

Applied to the functions u and v this means the following: If we choose b 2 R such

that the material remains homogeneous for jx2j > b, i.e. �(x1;�x2) = �
�, x2 > b, then the

representations

u(x1; x2) =
X
n2Z

E
+
n e

inx1+i�
+
n x2 + p3e

�i�x2 ;

v(x1; x2) =
X
n2Z

H
+
n e

inx1+i�
+
n x2 + q3e

�i�x2 ;

u(x1; x2) =
X
n2Z

E
�

n e
inx1�i�

�

n x2 ; v(x1; x2) =
X
n2Z

H
�

n e
inx1�i�

�

n x2 ;

(2.11)

are valid with unknown complex constants E�

n ;H
�

n : Here we use the notation

�
�

n = �
�

n (�) =
p

(k�)2 � 2 � (n+ �)2 ; n 2Z; (2.12)

where the square-root is de�ned as in equation (2.4). The so�called Rayleigh amplitudes

E
�

n ;H
�

n de�ne the di�raction pattern of the grating and their exact computation is the �nal

goal of direct di�raction problems. More details can be found in [14, 12].

Now the problem can be reduced to the rectangular cell 
 = (0; 2�) � (�b; b). Let us
denote by Hs

p(
); s > 0, the restriction to 
 of all functions in the Sobolev space Hs
loc(R

2)
which are 2��periodic in x1. Note that if f; g 2 H1

p (
) and 
0 � 
 has Lipschitz boundary,

then Green's formula yields the identitiesZ

0

��f g = �
Z

0

r�f r�g +

Z
@
0

@�;�f g ;

Z

0

r�g r?

�f = �
Z
@
0

@�;�g f ; (2.13)

where we use the notation r?

� := (@2;�@1)� i (0; �).
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Let 
j, j = 1; : : : ;m, be the subdomains of 
 in which � does not jump. Throughout the

paper the boundaries @
j are supposed to be piecewise smooth having corners with angles

strictly between 0 and 2�. In the following the set ([j@
j) n @
 of all interface points lying

in the bounded cell 
 will be denoted by �. It contains only a �nite number of singular

points where smooth arcs meet at a corner or may intersect each other.

To obtain the variational form of the conical di�raction problem, we multiply the

equations (2.9) in each subdomain 
j by the constant factors !�=k
2
 and !�=k

2
 , respectively.

The application of the �rst identity in (2.13) with '; 2 H1
p (
) leads to the equations

mX
j=1

�Z

j

�
!�

k2

r� u r�'� !� u '

�
�
Z
@
j

!�

k2

@�;�u '

�
= 0 ;

mX
j=1

�Z

j

�
!�

k2

r�v r� � !�v  

�
�
Z
@
j

!�

k2

@�;�v  

�
= 0 :

(2.14)

Using the second identity in (2.13) and the transmission condition on the interface �, we

obtain the equivalent equationsX
j

Z

j

�
!�

k2

r�ur�'�


k2

r�vr?

�'� !�u'

�
�
Z
@


�
!�

k2

@�;�u+


k2

@�;�v

�
' = 0 ;

X
j

Z

j

�
!�

k2

r�vr� +


k2

r�ur?

� � !�v 

�
�
Z
@


�
!�

k2

@�;�v �


k2

@�;�u

�
 = 0 ;

(2.15)

which must hold for all '; 2 H1
p (
).

Since all functions are periodic in x1, the boundary integrals in (2.15) consist of integrals

over the arti�cial boundaries �� = f(x1;�b); x1 2 [0; 2�]g. If we introduce the matrix

functions

M
�

n =
1

(k�)2 � 2

 
�i!���n �i(n+ �)

�i(n+ �) �i!���n

!
; (2.16)

then the boundary operators applied to functions u and v satisfying (2.11) can be represented

in the form�
(!�@�;�u+ @�;�v)=k

2


(!�@�;�v � @�;�u)=k
2


�����
�+

= �
X
n2Z

M
+
n

�
E

+
n

H
+
n

�
e
inx1+i�

+
n b � i!� e

�i�b

(k+)2 � 2

�
� p3

� q3

�
;

�
(!�@�;�u+ @�;�v)=k

2


(!�@�;�v � @�;�u)=k
2


�����
��

= �
X
n2Z

M
�

n

�
E
�

n

H
�

n

�
e
inx1+i�

�

n b
:

(2.17)

On the other hand, de�ning the operators T�� acting on 2�-periodic vector functions on R

(T�� w)(x) =
X
n2Z

M
�

n ŵne
inx

; ŵn = (2�)�1
2�Z
0

w(x) e�inx dx ; (2.18)

then for functions u and v satisfying (2.11)

T
+
�

�
u

v

�
=
X
n2Z

M
+
n

�
E

+
n

H
+
n

�
e
inx1+i�

+
n b � i!� e

�i�b

(k+)2 � 2

�
� p3

� q3

�
;

T
�

�

�
u

v

�
=
X
n2Z

M
�

n

�
E
�

n

H
�

n

�
e
inx1+i�

�

n b
;

(2.19)
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where T
�

� (u; v) denote the action of these pseudodi�erential operators on the traces

(u; v)j�� 2 (Hs�1=2
p (��))2.

Therefore, combining (2.15), (2.17) and (2.19), the conical di�raction problem (2.9) �

(2.11) can now be formulated as follows: Find u; v 2 H1
p (
) such that

B
��
u

v

�
;

�
'

 

��
:= B�(u; ') +B�(v;  )� C(v; ') + C(u;  )

+

Z
�+

T
+
�

�
u

v

�
�
�
'

 

�
+

Z
��

T
�

�

�
u

v

�
�
�
'

 

�

= �2i e�i�b

k2

Z
�+

�
!�

+
p3 ' + !�q3  

�
; 8'; 2 H1

p (
) ;

(2.20)

where we denote

B�(u; ') =

Z



�
!�

k2

r�ur�'� !� u'

�
; C(v; ') =

Z





k2

r�vr?

�' : (2.21)

Under the assumption on the dielectric coe�cients � of the materials and the incidence

angle � that

0 6 arg � < � ; �
+
> 0 ; and � > �

+ sin2 � for real �; (2.22)

it was proved in [12] that the sesquilinear form B is strongly elliptic in the following sense:

The form

A
��
u

v

�
;

�
'

 

��
:= B

��
u

v

�
;

�
'

 

��
+

Z



(!� u'+ !�v ) (2.23)

is coercive after multiplying by some complex number �:

Re �A
��
u

v

�
;

�
u

v

��
> c !

�u
v

�
H1
p(
) :

Moreover, the constant c depends only on the incidence angles �; � 2 (��=2; �=2), and the

graph of the piecewise constant function �. The following existence and regularity results

hold (cf .[12]):

1. If Im � > 0 in some subdomain 
1 � 
 then the variational problem (2.20) has a

unique solution (u; v) 2 (H1
p (
))2 for all ! > 0.

2. Assume that �� > �
+(1� cos2 � cos2 �) if �� is real.

(i) The di�raction problem (2.20) is solvable in (H1
p (
))2 for any frequency !.

(ii) For all but a countable set of frequencies !j, !j !1, one has unique solvability.

3. If for (!0; �0; �0) =2 R the equation (2.20) is uniquely solvable, then the solution

depends analytically on !; �; � in a neighbourhood of this point. Here R is the set of

Rayleigh frequencies

R =
n
(!; �; �) : 9n 2Z s. th. !2�(�� � �

+ sin2 �) = (n+ !
2
��

+ sin2 � cos2 �)
o

Note that for  = 0 the form C vanishes, the factor !�=k2 becomes constant in 
 and

the system (2.20) decouples into scalar problems for u and v corresponding to the TE and

TM polarisation, respectively.
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3. Variation of interfaces

We are interested in the solvability of the conical di�raction problem and the dependence of

Rayleigh amplitudes E�

n and H�

n if parts of the interfaces � between di�erent materials are

varied to some new interfaces �h. This variation leads to a new piecewise constant function

k
2
h = !

2
�h� and to the corresponding di�raction problem

Bh
��
u

v

�
;

�
'

 

��
= �2i e�i�b

k2

Z
�+

�
!�

+
p3 ' + !�q3  

�
; 8'; 2 H1

p (
) ; (3.1)

representing a strong perturbation of the original problem. However, the unique solvability

is retained under the mild assumption that the operator of multiplication by �h�� converges
strongly to zero in L2(
),

k(�h � �)ukL2(
) ! 0 as h! 0 ; 8 u 2 L2(
) : (3.2)

Theorem 3.1 If for �xed parameters !, � and � the conical di�raction problem (2.20)

has a unique solution (u; v) and the perturbation of the grating satis�es (3.2), then for all

su�ciently small h the perturbed problems (3.1) are also uniquely solvable. Their solutions

converge to (u; v) in the norm of H1.

Proof. One can use standard arguments from the theory of projection methods. The forms

Bh(�; �) generate a sequence of bounded operators, denoted again by Bh and acting from

(H1
p (
))2 into its dual ((H1

p(
))2)0, which in view of (3.2) converge strongly to B. Suppose
that there exists a sequence Uh = (uh; vh) 2 (H1

p (
))2, kUhk = 1, such that Bh
Uh ! 0.

A subsequence, again denoted by fUhg, converges weakly to some U 2 (H1
p (
))2, hence

U = 0. On the other hand, as mentioned above, the operators allow the representation

Bh = Ah + T h, where

�(Ah
Uh; Uh) > c ! kUhk(H1

p(
))2

with a constant c depending only on the graph of �h, i.e. not depending on h. Furthermore,

T h
Uh = �!(�huh + �vh) ! 0 ;

contradicting the assumption kUhk = 1.

To study the convergence of the solutions Uh of the perturbed problems (3.1) to the

solution U of the original problem, we consider a more regular perturbation of the interfaces

assuming that, for su�ciently small jhj, the perturbed interface �h is given by

�h = �h(�) ; �h(x) = x+ h�(x) : (3.3)

Here �h is a Lipschitz di�eomorphism of 
 onto itself, and � = (�1; �2) is 2��periodic in

x1 and has compact support in [0; 2�]� (�b; b).
Then we can de�ne the isomorphism 	h : H1

p (
) ! H
1
p (
) which maps u to u Æ ��1h .

Moreover, �h = 	h�, kh = 	hk and the change of variables y = �h(x) provides

dy = jJ(x)jdx

with

J(x) = 1 + h

�
@�1

@x1

+
@�2

@x2

�
+ h

2
�
@�1

@x1

@�2

@x2

� @�1

@x2

@�2

@x1

�

7



and

@

@y1
=

1 + h@�2=@x2

J(x)

@

@x1
� h@�2=@x1

J(x)

@

@x2
;

@

@y2

= �h@�1=@x2
J(x)

@

@x1

+
1 + h@�1=@x1

J(x)

@

@x2

:

Hence we obtain

B
h
� (	hu; 	h') =

Z



�
!�h(y)

k
2
h(y)� 2

r�	hu � r�	h'� !�h(y)	hu	h'
�
dy

=

Z



!�((1 + h@2�2)@1 + i�J(x)� h@1�2@2)u ((1 + h@2�2)@1 � i�J(x)� h@1�2@2)'

J(x)k2(x)
dx

+

Z



!�(� h@2�1@1 + (1 + h@1�1)@2)u (� h@2�1@1 + (1 + h@1�1)@2)'

J(x)k2(x)
dx

�
Z



!�u'J(x) dx = B�(u; ') + hB�;1(u; ') + h
2
B

h
�;2(u; ') ; (3.4)

where

B�;1(u; ') = �
Z



!�(@1�1 + @2�2)u'
�

�
Z



!�

k2

�
@1�2(@1;�u@2'+ @2u@1;�') + @2�1(@1u@2'+ @2u@1')

+

Z



!�

k2

�
@2�2(@1;�u@1;�'� @2u@2') + @1�1(@2u@2'� @1u@1'+ �

2
u')

� (3.5)

and the remainder term satis�es

jBh
�;2(u; ')j 6 ckuk1k'k1 ; u; ' 2 H1

p (
 ; jhj 6 h0 :

Here we have used the notation @j = @=@xj, @1;� = @1 + i� and the relation

J(x)�1 = 1 � h(@1�1 + @2�2) +O(h2) ; jhj 6 h0 ;

which holds uniformly in x 2 
.

Since � is constant in 
, the form B
h
�(	hu; 	h') admits an expansion with � replaced by

� in (3.4). The o��diagonal form has the expansion

C
h(	hv; 	h') =

Z





k
2
h(y)� 2

r�	hvr?

�	h' dy

=

Z



((1 + h@2�2)@1 + i�J(x)� h@1�2@2)v (� h@2�1@1 + (1 + h@1�1)@2)'

J(x)k2(x)
dx

�
Z



(� h@2�1@1 + (1 + h@1�1)@2)v ((1 + h@2�2)@1 � i�J(x)� h@1�2@2)'

J(x)k2(x)
dx

= C(v; ') + hC1(v; ') + h
2
C

h
2 (v; ') ;

8



where

C1(v; ') =
X
j

Z

j

i�

k2

(@1�1(v@2'+ @2v')� @2�1(v@1'+ @1v')) (3.6)

and the remainder term satis�es

jCh
2 (v; ')j 6 ckvk1k'k1 ; v; ' 2 H1

p (
 ; jhj 6 h0 :

Since the substitution y = �h(x) in the sesquilinear form Bh does not change the boundary

terms, we have for jhj 6 h0

Bh
��
	hu

	hv

�
;

�
	h'

	h 

��
= B

��
u

v

�
;

�
'

 

��
+h (B�;1(u; ') +B�;1(v;  )� C1(v; ') + C1(u;  ))

+h2 (Bh
�;2(u; ') +B

h
�;2(v;  )� C

h
2 (v; ') + C

h
2 (u;  )) :

(3.7)

Theorem 3.2 If the perturbation of the grating geometry is given by the regular mapping

(3.3), then the solution of this problem takes the form

	
�1
h uh = u+ hu1 + h

2
u2;h ; 	

�1
h vh = v + hv1 + h

2
v2;h ; (3.8)

where (u; v) is the solution of the original problem (2.20), (u1; v1) 2 (H1
p (
))2 solves the

equation

B
��
u1
v1

�
;

�
'

 

��
= �B�;1(u; ')�B�;1(v;  ) + C1(v; ')� C1(u;  ) ; 8'; 2 H1

p (
); (3.9)

and the remainders satisfy ku2;hk1; kv2;hk1 6 c for jhj 6 h0.

Proof. Inserting the ansatz (3.8) for the solution Uh of (3.1) into (3.7), yields equation (3.9)

for (u1; v1). For (u2;h; v2;h) one gets a similar equation with uniformly bounded right�hand

side.

Remark 3.1 One can prove recursively that for any N > 2 the solution of (3.1) admits

the expansion

	
�1
h uh =

NX
j=0

h
j
uj + h

N+1
uN+1;h ; 	

�1
h vh =

NX
j=0

h
j
vj + h

N+1
vN+1;h ;

with u0 := u; u1; v0 := v; v1 as above, certain functions uj; vj 2 H1
p (
), j > 2, and remainders

satisfying kuN+1;hk1; kvN+1;hk1 6 cN .

4. Optimization of grating e�ciencies

De�ne the �nite sets of indices P� = fn 2 Z: ��n > 0g, where ��n is given by (2.12). Then

the Rayleigh amplitudes E�

n and H�

n , n 2 P�, correspond to the propagating modes of the

9



�elds E;H and can be obtained from the traces of the solution u; v of the problem (2.20) on

the arti�cial boundaries ��,

E
+
n = �p3 Æ0ne�2i�b +

e
�i�+n b

2�

Z
�+

u e
�inx1 dx1 ;

H
+
n = �q3 Æ0ne�2i�b +

e
�i�+n b

2�

Z
�+

v e
�inx1 dx1 ;

9>>>>>=
>>>>>;

n 2 P+
;

E
�

n =
e
�i��n b

2�

Z
��

u e
�inx1 dx1 ; H

�

n =
e
�i��n b

2�

Z
��

v e
�inx1 dx1 ; n 2 P� :

(4.1)

These re�ection and transmission coe�cients are used to compute the so called conical

di�raction e�ciencies of the grating, which are de�ned by

e
+
n =

�
+
n

�

�
+jE+

n j2 + �jH+
n j2

�+jp3j2 + �jq3j2
; e

�

n =
k
2
+ � 

2

k
2
�
� 2

�
+
n

�

�
�jE�

n j2 + �jH�

n j2
�+jp3j2 + �jq3j2

:

If the energy of the incoming �eld is normalized to �+jp3j2 +�jq3j2 = 1, then the e�ciencies

e
�

n represent the energy of the re�ected or transmitted plane waves of order n 2 P� with the

corresponding wave vector (�n;���n ; ). For dielectric gratings, i.e. the dielectric coe�cients

� of all materials are real, the principle of conservation of energy then yields the relationX
n2P+

e
+
n +

X
n2P�

e
�

n = 1 ; (4.2)

whereas for metallic gratings the total sum of the e�ciencies is less than 1. Note that P� = ;
if Im �

� 6= 0.

The problem of designing a di�ractive grating, which gives rise to a speci�ed far��eld

pattern, can often be viewed as a minimization problem for some function F depending

smoothly on the Rayleigh amplitudes:

F = F (E+
n ;H

+
n ; E

�

n ;H
�

n ) :

To �nd local minima of F , gradient�type or higher order optimization algorithms are

advantageous. It can be easily seen that for �xed parameters !, � and � the function F

is di�erentiable with respect to regular perturbations (3.3) of the interface �. Indeed, since

	h'j�� = 'j�� for any ' 2 H
1
p (
), it follows from Theorem 3.2 that the derivatives of

E
�

n ;H
�

n with respect to the Lipschitz di�eomorphism �h(x) = x+ h�(x) are given by

DE
�

n (�) = lim
h!0

e
�i��n b

2�h

Z
��

(uh � u) e�inx1 dx1 =
e
�i��n b

2�

Z
��

u1 e
�inx1 dx1 ;

DH
�

n (�) = lim
h!0

e
�i��n b

2�h

Z
��

(vh � v) e�inx1 dx1 =
e
�i��n b

2�

Z
��

v1 e
�inx1 dx1 ;

(4.3)

where (uh; vh) is the solution of the di�raction problem (3.1) with the perturbed geometry

(3.3) and (u1; v1) solves (3.9). Hence the derivative of F is given by

DF (�) =
X

a
�

nDE
�

n (�) +
X

b
�

nDH
�

n (�) :

10



with known coe�cients a�n and b�n (depending in general on E�

n and H�

n ).

Now let (w; z) denote the solution of the adjoint problem

B
��
'

 

�
;

�
w

z

��
=
X

a
�

n

e
�i��n b

2�

Z
��

'e
�inx1 +

X
b
�

n

e
�i��n b

2�

Z
��

 e
�inx1 ; (4.4)

for all '; 2 H1
p (
). Taking ' = 0;  = 0 on �� and using (2.13), one obtains

B
��
'

 

�
;

�
w

z

��
= �

Z



�
'

�
r�

!�

k2

r�w � !�w

�
+  

�
r�

!�

k2

r�z � !�z

��

+
X
j

Z

j

�
'
!�

k2

@�;�w +  
!�

k2

@�;�z �  


k2

@�;�w + '


k2

@�;�z

�
= 0 ;

hence the solution (w; z) of the adjoint problem (4.4) satis�es the di�erential equations

(�� + k2)w = (�� + k2) z = 0 in 
 (4.5)

together with the transmission conditions

[w]� = [z]� = 0h


k2

@�;�w �
!�

k2

@�;�z

i
�j

=
h


k2

@�;�z +
!�

k2

@�;�w

i
�
= 0 :

(4.6)

Now, from (4.3) and (4.4) we see that

DF (�) = B
��
u1
v1

�
;

�
w

z

��
;

which together with Theorem 3.2 proves the following

Theorem 4.1 The derivative of the cost function F with respect to the variation (3.3) of

the interface � is given by the formula

DF (�) = �B�;1(u;w)�B�;1(v; z) + C1(v;w)� C1(u; z) ; (4.7)

where the sesquilinear formsB�;1,B�;1 and C1 are de�ned by (3.5), (3.6), and (u; v) and (w; z)
denote the solutions of the direct and adjoint di�raction problems (2.20), (4.4), respectively.

5. Derivatives of grating e�ciencies as interface integrals

Theorem 4.1 states that the derivative of the cost functional can be obtained from certain

integrals with supp r� as domain of integration. In the following formula (4.7) will be

simpli�ed by transforming these domain integrals to contour integrals. In this section we

will only consider the variation of interfaces between two di�erent materials. This means the

support of the function � is divided by some part of the interface � into two subdomains



+ and 
� where the functions �, k take constant values, denoted by �+, k+ and ��, k�,

respectively.

Let � � 
 be a simple closed piecewise smooth curve enclosing the domain G such that

� = const in G. Let � = (�1; �2) be the exterior normal to � . We denote by B�;1(u;w;G),
C1(u; z;G) the forms (3.5) and (3.6), respectively, where the integrals are taken over G

instead of 
.
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Lemma 5.1 ([11]) If u;w solve the Helmholtz equations

(�� + k
2
)u = (�� + k2)w = 0 in G (5.1)

and supp� \ � does not contain a corner point of �, then

B�;1(u;w;G) =

Z
�

!�

k2

�
(�; �)J (u;w) + (�; � )K(u;w) + �1L(u;w)

�
; (5.2)

where

J (u;w) = (@�;�u@�;�w � @�;�u@�;�w)� k
2
uw (5.3)

K(u;w) = �(@�;�u@�;�w + @�;�u@�;�w) ; L(u;w) = i�(u@�;�w � @�;�uw) :

The proof follows from repeated application of Green's formula to (3.5), which is justi�ed

since u;w 2 H2(supp� \G).

Remark 5.1 If � = const and � = const in G and @G does not contain singular points

of the interface �, then from (3.5) and Lemma 5.1 it is clear thatZ
@G

�
(�; �)J (u;w) + (�; � )K(u;w) + �1L(u;w)

�
= 0

for any function u;w satisfying the equations (5.1). Moreover, by Green's formula we haveZ
@G

L(u;w) = i�

Z
@G

(u@�;�w � @�;�uw) = 0 ;

implying Z
@G

!�

k2

�
(�; �)J (u;w) + (�; � )K(u;w)

�
= 0 :

Green's formula applied to the domain integrals in (3.6) leads to

Lemma 5.2 For any '; 2 H1(G)

C1('; ;G) =

Z
�

i�

k2

�1(�1@2(' )� �2@1(' )) =

Z
�

i�

k2

�1(@�;�' + '@�;� ) : (5.4)

The following corollary contains, in particular, our �nal result in the case of smooth

interfaces.

Corollary 5.1 If � has no corner points in supp �, then

DF (�)= �
Z
�

(�; �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�
: (5.5)

Here � denotes the normal to � pointing from 

+ into 
� and [v]� stands for the jump

vj+� � vj�� across �, where vj�� represents the limit as the interface is approached from the

region 
�.
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Proof. Applying Lemma 5.1 with G = 

�, we obtain

B�;1(u;w) = B�;1(u;w;
+) +B�;1(u;w;
�)

=

Z
�

!�+

k2

�
(�; �)J j+� + (�; � )Kj+� + �1Lj+�

�
�
Z
�

!��

k2

�
(�; �)J j�� + (�; � )Kj�� + �1Lj��

�

=

Z
�

(�; �)
h
!�

k2

J (u;w)
i
�
+

Z
�

(�; � )
h
!�

k2

K(u;w)
i
�
+

Z
�

�1

h
i�!�

k2

(u@�;�w � @�;�uw)
i
�

and

B�;1(v; z) = B�;1(v; z;

+) +B�;1(v; z;


�)

=

Z
�

(�; �)
h
!�

k2

J (v; z)
i
�
+

Z
�

(�; � )
h
!�

k2

K(v; z)
i
�
+

Z
�

�1

h
i�!�

k2

(v @�;�z � @�;�v z)
i
�
:

From Lemma 5.2 one has

C1(v;w)� C1(u; z) = C1(v;w;
+) + C1(v;w;
�)� C1(u; z;
+)� C1(u; z;
�)

=

Z
�

�1

h
i�

k2

(@�;�v w + v @�;�w)
i
�
�
Z
�

�1

h
i�

k2

(@�;�u z + u@�;�z)
i
�
:

Collecting in DF (�) = �B�;1(u;w)� B�;1(v; z) + C1(v;w)� C1(u; z) the terms containing

the factor i� then gives

i�

Z
�

�1

h


k2

(@�;�v w + v @�;�w � @�;�u z � u@�;�z)
i
�

�i�
Z
�

�1

h
!�

k2

(u@�;�w � @�;�uw) +
!�

k2

(v @�;�z � @�;�v z)
i
�

= i�

Z
�

�1

�h


k2

@�;�v +
!�

k2

@�;�u

i
�
w �

h


k2

@�;�u�
!�

k2

@�;�v

i
�
z

�

+i�

Z
�

�1

�
v

h


k2

@�;�w �
!�

k2

@�;�z

i
�
� u

h


k2

@�;�z +
!�

k2

@�;�w

i
�

�
= 0

due to the transmission conditions (2.10) and (4.6) for the solutions (u; v) and (w; z). The
same relations also implyZ
�

(�; � )
h
!�

k2

K(u;w)
i
�
+

Z
�

(�; � )
h
!�

k2

K(v; z)
i
�

=

Z
�

(�; � )

�h


k2

(@�;�v @�;�w + @�;�u@�;�z)
i
�
�
h


k2

(@�;�u@�;�z + @�;�v @�;�w)
i
�

�
= 0:

Remark 5.2 Since � is constant and v; z are continuous across �, we haveh
!�

k2

J (v; z)
i
�
=
h
!�

k2

(@�;�v @�;�z � @�;�v @�;�z)
i
�
;

whereas h
!�

k2

J (u;w)
i
�
=
h
!�

k2

(@�;�u@�;�w � @�;�u@�;�w) � !� uw

i
�
:
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We now extend formula (5.5) to the case that supp � contains corner points of �. It

is well known that non�smooth boundaries or interfaces give rise to corner singularities of

solutions to partial di�erential equations. For the conical di�raction problem (2.20), these

corner singularities were studied in [12]. Assume that � has exactly one corner point at O,

and denote by Æ the angle at O seen from 

+. Without loss of generality we may assume

that 
+ locally coincides with the sector f(r; ') : 0 < r < 1; j'j < Æ=2g, where (r; ')
denote polar coordinates centered at O. Then the solution (u; v) 2 (H1

p (
))2 satis�es

�uj
� = Cu + C r
�0 u

�

0 + u1 ; �vj
� = Cv + C r
�0 v

�

0 + v1 ; (5.6)

where Cu, Cv and C are certain constants, � is a smooth cut�o� function near O, the

remainder terms u1; v1 satisfy

u1j
�; v1j
� 2 H2�"(
�) for all " > 0 ;

and �0 is the unique zero of the transcendental equation

sin (� � Æ)�

sin��
= �

�� + �+

�� � �+
; � = �1 (5.7)

in the strip 0 < Re � < 1, which exists if j�+=��j 6= 1. Moreover, the functions u�0 ; v
�

0 take

the form

(u+0 ; v
+
0 ) =

�


!�+
cos �(� � Æ

2
) sin�� ; cos�(� � Æ

2
) cos��

�
; � 2 (�Æ

2
;
Æ

2
) ;

(u�0 ; v
�

0 ) =
�


!��

cos
�Æ

2
sin �(�� �) ; cos

�Æ

2
cos�(� � �)

�
; � 2 (

Æ

2
; 2� � Æ

2
) ;

(5.8)

if �0 solves (5.7) with � = 1. Note that  = !
p
��+ sin�, where �+ denotes the dielectric

coe�cient of the medium above the grating. If �0 solves (5.7) with � = �1, then

(u+0 ; v
+
0 ) =

�


!�+
sin�(

Æ

2
� �) cos�� ; sin�(� � Æ

2
) sin��

�
; � 2 (�Æ

2
;
Æ

2
) ;

(u�0 ; v
�

0 ) =
�


!��

sin
�Æ

2
cos �(�� �) ; sin

�Æ

2
sin�(� � �)

�
; � 2 (

Æ

2
; 2� � Æ

2
) :

(5.9)

It is clear from (4.5), (4.6) that the complex conjugate (w; z) of the solution of the adjoint

problem (4.4) also admits the representation (5.6) with other constants C, Cw, Cz and

remainder terms. Hence, if Re �0 > 1=2 then the solutions (u; v) and (w; z) belong to

H
3=2+"(
�) for some " > 0, ensuring that the line integrals in the gradient formula (5.5)

exist. Note that the condition Re �0 > 1=2 is always satis�ed if �� are real; see [6]. If three

materials with real dielectric constants � meet at some corner points then this condition

holds if the maximum angle is less or equal �. This follows from a recent result of Petzoldt

[16].

Formula (5.5) has to be modi�ed if strong corner singularities (with Re �0 < 1=2) occur.
For TM di�raction problems, this was done in [11, Theorem 4.4] where the explicit knowledge

of the functions v�0 was employed to express the limit

lim
"!0

�
B1;�(v; z;


+
" ) +B1;�(v; z;


�

" )
�
= B1;�(v; z)
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as a contour integral plus some remainder term, where 
�

" = 

� nfr 6 "g. Since for conical

di�raction the coe�cient functions u�0 ; v
�

0 are the same as for the TM problem, one can

show by repeating the arguments of [11] that

lim
"!0

�
B1;�(u;w;
+

" ) +B1;�(u;w;
�

" )
�

= lim
"!0

�
"

2�0 � 1
(G(O�") + G(O")) +

Z
�"

G
�
+

Z
�

�1

h
i�!�

k2

(u@�;�w � @�;�uw)
i
�
:

Here we used the notation G :=
h
!�

k2

((�; �)J (u;w) + (�; � )K(u;w))
i
�
, �" = � n (OO�" [

OO"), where the two points O�" on � satisfy dist(O;O�") = ".

Analogously, for the form B1;�(v; z) we have

B1;�(v; z) = lim
"!0

�
"

2�0 � 1
(H(O�") +H(O")) +

Z
�"

H
�
+

Z
�

�1

h
i�!�

k2

(v @�;�z � @�;�uw)
i
�

with H :=
h
!�

k2

((�; �)J (v; z) + (�; � )K(v; z))
i
�
. Using the transmission conditions as in the

proof of Corollary 5.1, one obtains

Theorem 5.1 If �\ supp � contains exactly one corner point at O, then

DF (�) = lim
"!0

�
"

2�0 � 1
(Y(O�") + Y(O")) +

Z
�"

Y
�
; (5.10)

where

Y = (�; �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�

and the form J is de�ned in (5.3).

Remark 5.3 Since Y(x) = O(r2�0�2) as r ! 0, the formula (5.10) coincides with formula

(5.5) if Re �0 > 1=2.

Remark 5.4 The extension of (5.10) to the case of �nitely many corners O1; : : : ; Or

of � with angles Æ1; : : : ; Ær is straightforward. Introducing the points Oj;�" 2 � with

dist(Oj ; Oj;�") = ", formula (5.10) then holds with �" = � n
r[

j=1

(OjOj;�" [OjOj;") and the

correction terms replaced by the sum

rX
j=1

"

2�j � 1
(Y(Oj;�") + Y(Oj;"))

�
;

where �j denotes the root of equation (5.7) (with Æ = Æj) in the strip 0 < Re � < 1.
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6. Derivatives of grating e�ciencies as contour integrals

Formula (5.10) requires the knowledge of the zero �0 of the transcendental equation (5.7). An

alternative representation of DF (�) can be given by a path�independent contour integral;

see Theorem 6.1 below. In contrast to Theorem 5.1, the result is also valid if several materials

meet at some interior point O with angles di�erent from zero. Under this assumption, it is

known [13] that the solutions of the direct problem belong to H1+"
p (
) for some " > 0 and

admit the asymptotics

�u = Cu + C r
�0p`(log r)u0 + u1 ; (6.1)

with Re�0 > ". Here p` is some polynomial of degree `, the 2��periodic function u0 = u0(�)
is continuous and u1 2 H

1+Æ
p (
), Æ > ". A generalization of Theorem 5.1 to the case of

interface intersection points would require more detailed information about the second term

on the right�hand side of (6.1), which presently seems to be not available.

We �rst extend formula (5.2) and the corresponding representation of the form B�;1 to

the case where supp � contains a singular interface point. Recall that 
j, j = 1; : : : ;m, are

the subdomains of 
 where � = const.

Lemma 6.1 Suppose that supp � contains exactly one corner or intersection point O of

�. Then for any 
j

B�;1(u;w;
j) =

Z
@
j

!�

k2

�
(�� �(O); �)J (u;w) + (�� �(O); � )K(u;w) + �1L(u;w)

�
;

B�;1(v; z;
j) =

Z
@
j

!�

k2

�
(�� �(O); �)J (v; z) + (�� �(O); � )K(v; z) + �1L(v; z)

�
;

where (u; v) and (w; z) solve the direct and adjoint problems (2.20), (4.4), respectively.

Proof. Suppose that O is a boundary point of G = 
j, and let G" = G n fr 6 "g, r =
dist(x;O). Consider the form B�;1, for example. From Remark 5.1 we have

Z
@G"

!�

k2

�
(�(O); �)J (u;w) + (�(O); � )K(u;w)

�
= 0 :

Hence, from Lemma 5.1

B�;1(u;w;G") =

Z
@G"

!�

k2

�
(�� �(O); �)J (u;w) + (�� �(O); � )K(u;w) + �1L(u;w)

�
;

and using the asymptotics of u and w one can pass to the limit.

Theorem 6.1 Assume that � contains exactly one corner or intersection point O, and

let � = @G � 
 be an arbitrary simple closed piecewise smooth curve around that point.
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Then, with the sesquilinear forms J and K de�ned in (5.3), we have

DF (�)=

Z
�

(�(O); �)
�
!�

k2

J (u;w) +
!�

k2

J (v; z)
�

+

Z
�

(�(O); � )
�
!�

k2

K(u;w) +
!�

k2

K(v; z)
�

�
Z

G\�

(�� �(O); �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�

�
Z

�nG

(�; �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�
:

(6.2)

Proof. Applying Lemma 6.1 to the subdomains 
j and summing over j gives

B�;1(u;w)=
mX
j=1

B�;1(u;w;
j)

=

Z
@


!�

k2

�
(�� �(O); �)J (u;w) + (�� �(O); � )K(u;w) + �1L(u;w)

�

+

Z
�

�
(�� �(O); �)

h
!�

k2

J (u;w)
i
�
+ (�� �(O); � )

h
!�

k2

K(u;w)
i
�
+ �1

h
!�

k2

L(u;w)
i
�

�

= �
Z
@


!�

k2

�
(�(O); �)J (u;w) + (�(O); � )K(u;w)

�

+

Z
�

�
(�� �(O); �)

h
!�

k2

J (u;w)
i
�
+ (�� �(O); � )

h
!�

k2

K(u;w)
i
�
+ �1

h
!�

k2

L(u;w)
i
�

�
:

Similarly to the proof of Corollary 5.1, we obtain by using the transmission conditions for

(u; v) and (w; z) on �

B�;1(u;w) +B�;1(v; z)� C1(v;w) + C1(u; z)

= �
Z
@


�
(�(O); �)

�
!�

k2

J (u;w) +
!�

k2

J (v; z)
�
+ (�(O); � )

�
!�

k2

K(u;w) +
!�

k2

K(v; z)
��

+

Z
�

(�� �(O); �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�
;

which proves (6.2) for � = @
. Furthermore, Remark 5.1 applied to the subdomains 
j nG
gives Z

@(
jnG)

�
(�(O); �)J (u;w) + (�(O); � )K(u;w)

�
= 0 ;
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hence, again by using the transmission conditions for (u; v) and (w; z) one obtainsZ
@


�
(�(O); �)

�
!�

k2

J (u;w) +
!�

k2

J (v; z)
�
+ (�(O); � )

�
!�

k2

K(u;w) +
!�

k2

K(v; z)
��

=

Z
�

�
(�(O); �)

�
!�

k2

J (u;w) +
!�

k2

J (v; z)
�
+ (�(O); � )

�
!�

k2

K(u;w) +
!�

k2

K(v; z)
��

�
Z

�nG

(�(O); �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�
:

Remark 6.1 Formula (6.2) easily extends to the case of �nitely many singular points

O1; : : : ; Or of the interface �. Let �j = @Gj be a simple piecewise smooth curve enclosing

the singular point Oj only. Then the right�hand side of (6.2) has to be replaced by the sum

X
j

�Z
�j

(�(Oj); �)
�
!�

k2

J (u;w) +
!�

k2

J (v; z)
�

+

Z
�j

(�(Oj); � )
�
!�

k2

K(u;w) +
!�

k2

K(v; z)
�

�
Z

Gj\�

(�� �(Oj); �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�

�

�
Z

�n([Gj)

(�; �)
h
!�

k2

J (u;w) +
!�

k2

J (v; z)
i
�
:

(6.3)

7. An application to coated gratings

Finally we apply the gradient formula to a simple example. A periodic binary structure is

etched into a substrate material and a coating is deposit as shown in Figure 1.

Fig. 1. Coated binary grating

We are interested in the derivative of the cost functional F with respect to variations of

the grating depth t with �xed thickness c of the coating.

The corresponding computational domain 
 is shown in Figure 2. The variation of

the grating depth t can be given by the function � = (0; �2(x2)), where �2 is compactly

supported in [t� Æ; t+ c+ Æ] with �2(x2) = 1, t 6 x2 6 t+ c.
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2x

x 1

t+c
δ}

t
δ}

0 2π

Fig. 2. Computational domain for the coated binary grating

Thus the support of � contains several singular points Oj . However, since �(Oj) = (0; 1)
for all of those points, one can apply Theorem 6.1 directly. If G = [0; 2�]� [t� Æ; t+ c+ Æ]
then on �nG we have � = 0. Moreover, for the horizontal pieces of G\� one has � = (0; 1),
whereas (��(0; 1); �) = 0 for the vertical pieces. Therefore in formula (6.2) only the integral

over the two lines S1 = ft+ c+ Æg � [0; 2�] and S2 = ft� Æg � [0; 2�] (the boundary of G)

remain, and the gradient can be computed from

DF (�)=

Z
S1

�
!�

k2

(@1;�u@1;�w � @2u@2w)� !�uw +
!�

k2

(@1;�v @1;�z � @2v @2z)� !�vz

�

�
Z
S2

�
!�

k2

(@1;�u@1;�w � @2u@2w)� !�uw +
!�

k2

(@1;�v @1;�z � @2v @2z)� !�vz

�
:
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