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Abstract

No front-o�ce software can survive without providing derivatives of op-

tions prices with respect to underlying market or model parameters, the so

called Greeks. We present a list of common Greeks and exploit homogene-

ity properties of �nancial markets to derive relationships between Greeks out

of which many are model-independent. We apply the results to European

style options, rainbow options, as well as options priced in Heston's stochastic

volatility model and avoid exorbitant and time-consuming computations of

derivatives which even strong symbolic calculators fail to produce.

1 Introduction

The computation of sensitivities of option prices, the so-called �Greeks�, is often

cumbersome - both for the mathematician and for symbolic calculators. This paper

provides methods to avoid di�erentiation as much as possible. Many Greeks are

related among each other. These relations are based on model-independent homo-

geneity of time and price level of a �nancial product on the one hand and model

dependent relations such as the partial di�erential equation the value function must

satisfy and relations implied by the assumed distribution of the underlying. The

basic market model we use is the Black-Scholes model with stocks paying a contin-

uous dividend yield and a riskless cash bond. This model supports the homogeneity

properties which are valid in general, but its structure is so simple, that we can

concentrate on the essential statements of this paper. We will also discuss how to

extend our work to more general market models.

We list the commonly used Greeks and their symbols. We do not claim this list

to be complete, because one can always de�ne more derivatives of the option price

function.

As special cases we look at the Greeks of European options in the Black-Scholes

model in one dimension. It turns out, that one only needs to know two Greeks in

order to calculate all the other Greeks without di�erentiating.

Another interesting example is a European derivative security depending on two

assets. For such rainbow options the analysis of the risk due to changing correla-

tion of the two assets is very important. We will show how this risk is related to

simultaneous changes of the two underlying securities.

There are several applications of these homogeneity relations.
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1. It helps saving time in computing derivatives.

2. It produces a robust implementation compared to Greeks via di�erence quo-

tients.

3. It allows to check the quality and consistency of Greeks produced by �nite-

di�erence-, tree- or Monte Carlo methods.

4. It admits a computation of Greeks for Monte Carlo based values.

5. It shows relationships between Greeks which wouldn't be noticed merely by

looking at di�erence quotients.

1.1 Notation

S stock price or stock price process

B cash bond, usually with risk free interest rate r

r risk free interest rate

q dividend yield (continuously paid)

� volatility of one stock, or volatility matrix of several stocks

� correlation in the two-asset market model

t date of evaluation (�today�)

T date of maturity

� = T � t time to maturity of an option

x stock price at time t

f(�) payo� function

v(x; t; : : :) value of an option

k strike of an option

l level of an option

vx partial derivation of v with respect to x (and analogous)

The standard normal distribution and density functions are de�ned by

n(t)
�
=

1
p
2�

e�
1

2
t
2

(1)

N (x)
�
=

Z
x

�1
n(t) dt (2)

n2(x; y; �)
�
=

1

2�
p
1� �2

exp

 
�
x2 � 2�xy + y2

2(1� �2)

!
(3)

N2(x; y; �)
�
=

Z
x

�1

Z
y

�1
n2(u; v; �) du dv (4)

See http://www.MathFinance.de/fronto�ce.html for a source code to compute N2.
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1.2 The Greeks

Delta � vx
Gamma � vxx
Theta � vt
Rho � vr in the one-stock model

Rhor �r vr in the two-stock model

Rhoq �q vq
Vega � v�
Kappa � v� correlation sensitivity (two-stock model)

Greeks, not so commonly used:

Leverage � x

v
vx sometimes 
, sometimes called �gearing�

Vomma �
0 v��

Speed vxxx
Charm vxt
Color vxxt
Cross vx�
Forward Delta �

F vF
Driftless Delta �

dl
�eq�

Dual Theta Dual� vT
Strike Delta �

k vk
Strike Gamma �

k vkk
Level Delta �

l vl
Level Gamma �

l vll
Beta �12

�1

�2
� two-stock model

2 Fundamental Properties

2.1 Homogeneity of Time

In most cases the price of the option is not a function of both the current time t and

the maturity time T , but rather only a function of the time to maturity � = T � t

implying the relations

� = vt = �v� = �vT = �Dual�: (5)

This relationship extends naturally to the situation of options depending on several

intermediate times such as compound or Bermuda options.
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2.2 Scale-Invariance of Time

We present the principle of the scale-invariance of time in this section, because this

principle holds in general. In a market model parameters may be quoted on an

annual basis. We illustrate this idea in a Black-Scholes framework, in which the

volatility is such a model parameter. The same idea can easily be applied to other

market models.

We may want to measure time in units other than years in which case interest rates

and volatilities, which are normally quoted on an annual basis, must be changed

according to the following rules for all a > 0.

� !
�

a
r ! ar

q ! aq

� !
p
a� (6)

The option's value must be invariant under this rescaling, i.e.,

v(x; �; r; q; �; : : :) = v(x;
�

a
; ar; aq;

p
a�; : : :) (7)

We di�erentiate this equation with respect to a and obtain for a = 1

0 = ��+ r�+ q�q +
1

2
��; (8)

a general relation between the Greeks theta, rho, rhoq and vega. Based on the

relation

v(x1; :::; xn; �; r; q1; :::; qn; �11; :::; �nn) =

v(x1; :::; xn;
�

a
; ar; aq1; :::; aqn;

p
a�11; :::;

p
a�nn) (9)

we obtain

Theorem 1 (scale invariance of time)

0 = ��+ r�+
nX
i=1

qi�qi +
1

2

nX
i;j=1

�ij�ij; (10)

where �ij denotes the di�erentiation of v with respect to �ij.

2.3 Scale Invariance of Prices

The general idea is that value of securities may be measured in a di�erent unit, just

like values of European stocks are now measured in Euro instead of in-currencies.

Option contracts usually depend on strikes and barrier levels. Rescaling can have
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di�erent e�ects on the value of the option. Essentially we may consider the following

types of homogeneity classes. Let v(x; k) be the value function of an option, where

x is the spot (or a vector of spots) and k the strike or barrier or a vector of strikes

or barriers. Let a be a positive real number.

De�nition 1 (homogeneity classes) We call a value function k-homogeneous of

degree n if for all a > 0

v(ax; ak) = anv(x; k): (11)

We call an options whose value function is strike-homogeneous of degree 1 a strike-

de�ned option and similarly an option whose value function is level-homogeneous of

degree 0 a level-de�ned option.

The value function of a European call or put option with strike K is then K-

homogeneous of degree 1, a digital option which pays a �xed amount if the stock

price is higher than a level L is L-homogeneous of degree 0. The path-independent

barrier call option paying (S � k)+IfS>Kg is (k;K)-homogeneous of degree 1. A

power call with cap paying min(C; ((S � K)
+
)
2) has a homogeneity structure of

v(aS; aK; a2C) = a2v(S;K;C).

We show how such a scale invariance can be used to determine some relations among

the Greeks. We explain this with two examples. In the �rst example we analyze a

strike-de�ned option and in the second one we concentrate on a level de�ned option.

The generalization to options with some more parameters like the mentioned path-

independent barrier call or power-call can easily be done. For the barrier call one

can use the results from the multi-dimensional strike-de�ned option (26) and (27).

2.3.1 Strike-Delta and Strike-Gamma

For a strike-de�ned value function we have for all a; b > 0

abv(x; k) = v(abx; abk): (12)

We di�erentiate with respect to a and get for a = 1

bv(x; k) = bxvx(bx; bk) + bkvk(bx; bk): (13)

We now di�erentiate with respect to b get for b = 1

v(x; k) = xvx + xvxxx + xvxkk + kvk + kvkxx+ kvkkk (14)

= x�+ x2� + 2xkvxk + k�k
+ k2�k: (15)

If we evaluate equation (13) at b = 1 we get

v = x�+ k�k: (16)

5



We di�erentiate this equation with respect to k and obtain

�
k

= xvkx +�
k
+ k�k; (17)

kxvkx = �k2�k: (18)

Together with equation (15) we conclude

x2� = k2�k: (19)

2.3.2 Level-Delta and Level-Gamma

For a level-de�ned value function we have for all a; b > 0

v(x; l) = v(abx; abl): (20)

We di�erentiate with respect to a and get at a = 1

0 = vx(bx; bl)bx + vl(bx; bl)bl: (21)

If we set b = 1 we get the relation

�x +�
ll = 0: (22)

Now we di�erentiate equation (21) with respect to b and get at b = 1

0 = vxxx
2
+ 2vxlxl + vlll

2: (23)

One the other hand we can di�erentiate the relation between delta and level-delta

with respect to l and get

vxlx + l�l +�
l

= 0: (24)

Together with equation (23) we conclude

x2� + x� = l2�l + l�l: (25)

In general we obtain

Theorem 2 (price homogeneity)

v =

nX
i=1

xi�i +

mX
j=1

kj�
k

j
(26)

nX
i;j=1

xixj�ij =
mX

i;j=1

kikj�
k

ij
(27)

for strike-de�ned options and

0 =

nX
i=1

xi�i +

mX
j=1

lj�
l

j
(28)

nX
i;j=1

xixj�ij +
nX
i=1

xi�i =

mX
i;j=1

lilj�
l

ij
+

mX
i=1

li�
l

i
(29)

for level-de�ned options.
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3 European Options in the Black-Scholes

Model

We start with relations among Greeks for European claims in the n-dimensional

Black-Scholes model

dSi(t) = Si(t)[(r � qi) dt+ �i dWi(t)]; i = 1; : : : ; n (30)

Cov(Wi(t);Wj(t)) = �ijt; (31)

where r is the risk-free rate, qi the dividend rate of asset i or foreign interest rate of

exchange rate i, �i the volatility of asset i and (W1; : : : ;Wn) a standard Brownian

motion (under the risk-neutral measure) with correlation matrix �. Let v denote

today's value of the payo� f(S1(T ); : : : ; Sn(T )) at maturity T . Then it is known

that v satis�es the Black-Scholes partial di�erential equation

0 = �v� � rv +
nX
i=1

xi(r � qi)vxi +
1

2

nX
i;j=1

(� Æ �T )ijxixjvxixj : (32)

3.1 Relations among Greeks Based on the Log-Normal Dis-

tribution

The value function v has a representation given by the n-fold integral

v = e�r�
Z
f
�
: : : ; Si(0)e

�i

p
�xi+�i� ; : : :

�
g(~x; �) d~x; (33)

where �i = r � qi � 1
2
�2
i
and g(~x; �) is the n-variate standard normal density with

correlation matrix �. Since we do not want to assume di�erentiability of the payo�

f , but we know that the transition density g is di�erentiable, we de�ne a change

the variables yi
�
= Si(0)e

�i

p
�xi+�i� , which leads to

v = e�r�
Z
f(: : : ; yi; : : :)g

 
ln

yi

Si(0)
� �i�

�i
p
�

; �

!
d~yQ
yi�i

p
�
: (34)

3.1.1 Properties of the Normal Distribution

We collect some properties of the multivariate normal density function g. We sup-

pose that the vector X of n random variables with means zero and unit variances

has a nonsingular normal multivariate distribution with probability density function

g(x1; : : : ; xn; c11; : : : ; cnn) = (2�)�
1

2
njCj

1

2 exp

�
�
1

2
x
T
Cx

�
: (35)

Here C is the inverse of the covariance matrix of X, which is denoted by �. Then

the following identity published in [3] can be proved easily by writing the density in

terms of its characteristic function.
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Theorem 3 (Plackett's Identity)

@g

@�ij
=

@2g

@xi@xj
: (36)

In the two-dimensional case this reads as

@n2(x; y; �)

@�
=

@2n2(x; y; �)

@x@y
; (37)

which can be extended readily to the corresponding cumulative distribution function,

i.e.,
@N2(x; y; �)

@�
=

@2N2(x; y; �)

@x@y
= n2(x; y; �): (38)

3.1.2 Correlation Risk and Cross-Gamma

Using the abbreviation gjk
�
=

@
2
g

@xj@xk
the cross-gamma and correlation risk are

@2v

@Sj(0)@Sk(0)
= e�r�

1

Sj(0)Sk(0)�j�k�

Z
f(: : : ; yi; : : :)gjk

d~yQ
yi�i

p
�
; (39)

@v

@�jk
= e�r�

Z
f(: : : ; yi; : : :)g�jk

d~yQ
yi�i

p
�
: (40)

Invoking Plackett's identity (36) saying that g�jk = gjk leads to

Theorem 4 (cross-gamma-correlation-risk relationship)

@v

@�jk
= Sj(0)Sk(0)�j�k�

@2v

@Sj(0)@Sk(0)
: (41)

3.1.3 Interest Rate Risk and Delta

A similar computation yields

Theorem 5 (delta-rho relationship)

@v

@qj
= �Sj(0)�

@v

@Sj(0)
; (42)

@v

@r
= ��

0
@v � nX

j=1

Sj(0)
@v

@Sj(0)

1
A : (43)
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3.1.4 Volatility Risk and Gamma

The �rst and second derivative of the density g satisfy

gj = �g
nX
i=1

xiCij; (44)

gjk = g
nX
i=1

xiCij

nX
i=1

xiCik � gCkj: (45)

For the j-th vega we �nd thus

�j
@v

@�j
= e�r�

Z
f � g �

 
nX
i=1

xiCijx
�
j
� 1

!
d~yQ
yi�i

p
�
; (46)

x�
j

�
=

ln
yi

Si(0)
� (r � qi +

1
2
�2
i
)�

�i
p
�

= xj � �j
p
� ; (47)

where we omit the arguments of f and g to simplify the notation. For the cross

gammas we derive

�j�kSj(0)Sk(0)�
@2v

@Sj(0)@Sk(0)
= e�r�

Z
f � g �Bjk

d~yQ
yi�i

p
�
; (48)

Bjk

�
=

nX
i=1

xiCij

nX
i=1

xiCik � Ckj �
nX
i=1

xiCij�k
p
�Æjk: (49)

We now multiply by �jk, sum over k, remember that � is the inverse matrix of C

and obtain

nX
k=1

�jk�j�kSj(0)Sk(0)�
@2v

@Sj(0)@Sk(0)
= e�r�

Z
f � g �Dj

d~yQ
yi�i

p
�
; (50)

Dj

�
=

nX
i=1

xiCijxj � 1�
nX
i=1

xiCijxj +
nX
i=1

xiCijx
�
j
: (51)

In summary we obtain

Theorem 6 (gamma-vega relationship)

�j
@v

@�j
=

nX
k=1

�jk�j�kSj(0)Sk(0)�
@2v

@Sj(0)@Sk(0)
: (52)

In dimension one the gamma-vega and delta-rho relationships are also mentioned

in [4]. Shaw shows there that v����S2
(t)vS(t)S(t) satis�es the Black-Scholes partial

di�erential equation and is hence identically zero for path-independent options. We

note that the gamma-vega relationship does not hold for barrier options, simply

because gamma and vega are not equal at the barrier.
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4 The One-Dimensional Case

4.1 Results for European Claims in the Black-Scholes Model

We list several relations for European options.

0 = �� + r�+ q�q +
1

2
�� scale invariance of time (53)

v = x�+ k�k price homogeneity and strikes (54)

x2� = k2�k price homogeneity and strikes (55)

x� = �l�l price homogeneity and levels (56)

x2� + x� = l2�l + l�l price homogeneity and levels (57)

� = ��(v � x�) delta-rho relationship (58)

� + �q = ��v rates symmetry (59)

rv = �+ (r � q)x�+
1

2
�2x2� Black-Scholes PDE (60)

qv = �+ (q � r)k�k
+

1

2
�2k2�k dual Black-Scholes (strike) (61)

rv = �+ (q � r + �2)l�l
+

1

2
�2l2�l dual Black-Scholes (level) (62)

�q = ��x� delta-rho relationship (63)

� = ��k�k combination of (63) and (54) (64)

� = ��x2� gamma-vega relationship (65)

An interpretation of equation (65) can be found in [6]. We would like to point out

that this relationship is based on a fact concerning the normal distribution function,

namely de�ning

n(t; �)
�
=

1
p
2��2

e�
t2

2�2 ; (66)

N (x; �)
�
=

Z
x

�1
n(t; �) dt; (67)

one can verify that

�@2
xx
N (x; �) = @�N (x; �): (68)

There are surely more relations one can prove, but the next theorem will give a

deeper insight into the relations of the Greeks.

Theorem 7 If the price and two Greeks g1; g2 of a European option are given with

g1 2 G1 = f�;�k;�l; �; �qg; (69)

g2 2 G2 = f�;�k;�l;�;�g; (70)

then all the other Greeks (2 G1 [ G2) can be calculated. Furthermore, if � and

another Greek from G2 is given, it is also possible, to determine all other Greeks.
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Proof. The relations (53) to (60) are independent of each other. The relations

(61) to (63) are conclusions. To get an overview over all these relations, we list the

appearance of each Greek in all these relations. With X or O we denote, that the

marked Greek appears in the relation. The relations marked with X show, that

there is a relation between Greeks of G1 and G2 and the O shows, that this relation

concerns only the Greeks of one set.

Greeks 2 G1 Greeks 2 G2

equation v � �
k

�
l � �q � �

k
�
l

� �

(53) X X X X

(54) O O O

(55) O O

(56) O O

(57) X X X X

(58) O O O

(59) O O O

(60) X X X X

(61) X X X X

(62) X X X X

(64) O O

(65) O O

(63) O O

Let us now assume the option price and one Greek from the set G1 are given. Then

a look at the table shows that all Greeks of the set G1 can be evaluated. If all

Greeks of the set G1 are known and additionally one Greek of the set G2 is given,

all other Greeks can be determined. One the other hand, only eight equations are

independent, so the knowledge of two Greeks is also the minimum knowledge one

needs to determine all ten Greeks. This is the proof of the �rst statement.

If � and another Greek from G2 is given, then it is always possible to determine

one Greek of the set G1 and one applies the part of this theorem already proved. If

�;�k or �l is given, one can use one of the Black-Scholes equations (60) to (62). If

vega � is given, one can use (65) to get �.

We conclude this section with an example. In the special case of plain vanilla calls

and puts in a foreign exchange market all relations for the Greeks presented above

are valid. These formulas are well known and can be found in [7].

4.2 A Path-Independent Barrier Call

4.2.1 Value

The payo� of a path-independent down-and-out barrier call is given by

f(ST ; k;K) = (S � k)+ � IfST>Kg (71)
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We assume k < K - otherwise it would be a plain vanilla call - and therefore the

payo� can be written as (ST�k)IfST>Kg. We claim that k andK are strikes, because

this option has the scaling behavior f(aST ; ak; aK) = af(ST ; k;K). Intuitively one

would call K a level; but we de�ned a level by its scaling behavior in section 2.3.2,

which is not valid in this case. Therefore the path-independent barrier call is an

example for a strike-de�ned option.

Using the abbreviation

d�
�
=

ln(
S0

K
) + (r � q)� � 1

2
�2�

p
�2�

; (72)

the value of a path-independent down-and-out barrier call is given by

v(S0; k;K) = e�r�
Z 1

K

s� k

s
p
2��2�

exp

 
�
(ln(

s

S0
)� (r � q)� + 1

2
�2�)2

2�2�

!
ds

= S0e
�q�N (d+)� ke�r�N (d�): (73)

We now want to calculate all Greeks of this option. We show that Theorem 7 can

be used to organize the calculation of the Greeks.

4.2.2 Greeks

Delta. Since di�erentiation cannot be avoided entirely, we choose the derivative

with respect to k, which is obviously

vk = �e�r�N (d�): (74)

Next we di�erentiate the integral representation of v with respect to K and

obtain

vK = e�r�
k �K

K
p
2��2�

exp

0
@�(ln(

K

S0
)� (r � q)� + 1

2
�2�)2

2�2�

1
A

=
k �K

K

1
p
�2�

e�r�n(d�): (75)

In Theorem 7 we had assumed only one strike. In our example we have two

strikes, and therefore we need two Greeks from the set G1 to determine all

other Greeks of this set. >From the price homogeneity we know that the

relation

v = S0vS0 + kvk +KvK (76)

holds, whence we obtain for the spot delta

vS0 = e�q�N (d+) +
K � k

S0

1
p
�2�

e�r�n(d�): (77)
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Rho. We use relations (58) and (63) and obtain

vr = �ke�r�N (d�) + �
K � k
p
�2�

e�r�n(d�); (78)

vq = ��S0e�q�N (d+)� �
K � k
p
�2�

e�r�n(d�): (79)

Gamma. We have calculated all Greeks in G1. To determine some other Greeks

without di�erentiation we need at least one Greek of the setG2. In the theorem

above we assumed, that the option will be described by one strike, but the

option we analyze depends on two strikes. So we have to di�erentiate trice to

get all dual gammas.

vkk = 0 (80)

vkK =
1

K

1
p
�2�

e�r�n(d�) (81)

vKK = �
k

K2

e�r�
p
�2�

n(d�) +
k �K

K2

e�r�

�2�
n(d�)d� (82)

The extension of (55) to the case of one stock and two strikes is the equation

(27) with n = 1 and m = 2. In our example this relation is given by

S2
0� = k2�kk + 2kK�

kK
+K2

�
KK: (83)

>From this relation, which follows from the homogeneity of v, we obtain for

the spot gamma without di�erentiation

vS0S0 =
ke�r�

S2
0

p
�2�

n(d�) +
k �K

S2
0

�
e�r�

�2�
n(d�)d�: (84)

Vega. >From (65) we get

v� =
p
�ke�r�n(d�)� (K � k)e�r�

1

�
n(d�)d�: (85)

Theta. >From the scale invariance of time (53) we obtain

vt = �v� = �rke�r�N (d�) + qS0e
�q�N (d+)

�(r � q)
K � k
p
�2�

e�r�n(d�)�
�

2
p
�
ke�r�n(d�)

+
1

2�
(K � k)e�r�n(d�)d� (86)
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5 A European Claim in the Two-Dimensional

Black-Scholes Model

5.1 Pricing of a European Option

Rainbow options are �nancial instruments which depend on several risky assets.

Many of them are very sensitive to changes of correlation. We call kappa (�) the

derivative of the option value v with respect to the correlation �.

The computational e�ort to compute the kappa is hard, even in a simple framework,

but in the Black-Scholes model with two stocks and one cash bond we can use the

cross-gamma-correlation-risk relationship which can be used easily to �nd kappa.

Let the stock price processes S1 and S2 be described by

ln
S1(�)

S1(0)
= (r � q1 �

1

2
�21)� + �1W

1
�
; (87)

ln
S2(�)

S2(0)
= (r � q2 �

1

2
�22)� + �2�W

1
�
+ �2

q
1� �2W 2

�
: (88)

W 1 and W 2 are two independent Brownian motions under the risk neutral measure.

The probability density for the distribution of S1(�) is denoted by h1(x) and is given

by the log-normal density

h1(x) =
1q

2��21�

1

x
exp

 
�

A2

2�21�

!
; (89)

A
�
= ln

 
x

S1(0)

!
� r� + q1� +

1

2
�21�: (90)

The equation for the second stock price process can be written as

ln
S2(�)

S2(0)
= (r � q2 �

1

2
�22)� +

�2�

�1

 
ln

 
S1(�)

S1(0)

!
� (r � q1 �

1

2
�21)�

!

+�2

q
1� �2W 2

�
: (91)

The conditional distribution of S2(�) given S1(�) is thus log-normal with density

h2j1(yjx) =
1

y
q
2��22(1� �2)�

exp

 
�

B2

2�22(1� �2)�

!
; (92)

B
�
=

"
ln

 
y

S2(0)

!
� r� + q2� +

1

2
�22� �

�2�

�1
A

#
: (93)

The joint distribution of S1(�) and S2(�) is given by the product of h1 and h2

h(x; y) = h1(x) � h2j1(yjx): (94)
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A European option with maturity � and payo� f(S1(�); S2(�)) will be priced by

v = e�r�
1Z
0

1Z
0

h(x; y) � f(x; y)dxdy: (95)

This integral has exactly the structure of the integrals studied in section 3.1. Using

the results provided above, one can collect several relationships for the Greeks in the

two-dimensional case. Additional, the fundamental symmetry �scale invariance of

time� is valid too. Because we concentrate on European options, the two dimensional

Black-Scholes-PDE also holds.

5.2 Relations among the Greeks

We specialize the relationships among the Greeks found in n dimensions. Some

results are

0 = �q1 + S1(0)��1; (96)

0 = �q2 + S2(0)��2; (97)

0 = q1�q1 + q2�q2 +
1

2
�1�1 +

1

2
�2�2 + r�r + ��; (98)

0 = �� rv + (r � q1)S1(0)�1 + (r � q2)S2(0)�2

+
1

2
�21S1(0)

2
�11 + ��1�2S1(0)S2(0)�12 +

1

2
�22S2(0)

2
�22; (99)

� = �1�2�S1(0)S2(0)�12; (100)

0 = ��� �1�1 + �21�S1(0)
2
�11; (101)

0 = ��� �2�2 + �22�S2(0)
2
�22; (102)

0 = �1�1 � �2�2 � �21�S1(0)
2
�11 + �22�S2(0)

2
�22; (103)

�r = �� (v � S1(0)�1 � S2(0)�2) ; (104)

0 = �v + �q1 + �q2 + �r: (105)

Of course one can get more relations by combining some relations above. The

relations we have chosen to present are either similar to the one-dimensional case or

have another natural interpretation.

� (96) and (97). These relations are a justi�cation for the rough way to deal

with dividends. One subtracts the dividends from the actual spot price and

prices the option with this price and without dividends. This relation is not

e�ected by the two-dimensionality of the problem.

� (98). This is the two-dimensional version of the general invariance under time

scaling.

� (99). This is the Black-Scholes di�erential equation. This relation must hold,

because we concentrated on European claims. It turns out, that the dynamic
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of an option price is described by the market model and that the price of the

option is de�ned as a boundary problem.

� (100). This is the cross-gamma-correlation-risk relationship; it is remarkable,

that this relationship has such a simple structure.

� (101) and (102). These are the gamma-vega relationships. Notice that one can

determine � only by knowledge of some derivatives with respect to parameters

which concern only one stock. Of course, there is no di�erence between the

�rst and the second stock. These relations are valid in the one-dimensional

case with � � 0.

� (103) follows from (100).

� (104). This is the delta-rho relationship. The interest rate risk is well known

to be the negative product of duration and the amount of money invested.

The term in the parentheses is exactly the amount of money one would have

to invest in the cash bond in order to delta-hedge the option.

� (105). This relation is the two-dimensional rates symmetry, an extension of

equation (59). It follows from (104), (96) and (97).

In the following we treat one example in full detail. Further examples such as outside

barrier options and spread options are available in [7].

5.3 European Options on the Minimum/Maximum of Two

Assets

We consider the payo�

[� (�min(�S1(T ); �S2(T ))�K)]
+
: (106)

This is a European put or call on the minimum (� = +1) or maximum (� = �1) of
the two assets S1(T ) and S2(T ) with strike K. As usual, the binary variable � takes

the value +1 for a call and �1 for a put. Its value function has been published in [5]

and can be written as

v(t; S1(t); S2(t); K; T; q1; q2; r; �1; �2; �; �; �) (107)

= �
h
S1(t)e

�q1�N2(�d1; �d3;���1)

+S2(t)e
�q2�N2(�d2; �d4;���2)

� Ke�r�
 
1� ��

2
+ �N2(�(d1 � �1

p
� ); �(d2 � �2

p
�); �)

!#
;

�2
�
= �21 + �22 � 2��1�2; (108)
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�1
�
=

��2 � �1

�
; (109)

�2
�
=

��1 � �2

�
; (110)

d1
�
=

ln(S1(t)=K) + (r � q1 +
1
2
�21)�

�1
p
�

; (111)

d2
�
=

ln(S2(t)=K) + (r � q2 +
1
2
�22)�

�2
p
�

; (112)

d3
�
=

ln(S2(t)=S1(t)) + (q1 � q2 � 1
2
�2)�

�
p
�

; (113)

d4
�
=

ln(S1(t)=S2(t)) + (q2 � q1 � 1
2
�2)�

�
p
�

: (114)

5.3.1 Greeks

Delta. Space homogeneity implies that

v = S1(t)
@v

@S1(t)
+ S2(t)

@v

@S2(t)
+K

@v

@K
: (115)

Using this equation one only has to di�erentiate twice in order to get all deltas.
It turns out, that the value function is given in the natural representation,
which is presented in the appendix, and one is allowed to read o� the deltas:

@v

@S1(t)
= �e�q1�N2(�d1; �d3;���1); (116)

@v

@S2(t)
= �e�q2�N2(�d2; �d4;���2); (117)

@v

@K
= ��e�r�

�
1� ��

2
+ �N2(�(d1 � �1

p
�); �(d2 � �2

p
�); �)

�
:

(118)

Gamma. Computing the gammas is actually the last situation where di�erentiation

is needed. We use the identities

@

@x
N2(x; y; �) = n(x)N

 
y � �x
p
1� �2

!
; (119)

@

@y
N2(x; y; �) = n(y)N

 
x� �y
p
1� �2

!
; (120)

and obtain
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@2v

@(S1(t))2
=

�e�q1�

S1(t)
p
�

"
�

�1
n(d1)N

 
��

d3 � d1�1

�2
p
1� �2

!

�
�

�
n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!#
; (121)

@2v

@(S2(t))2
=

�e�q2�

S2(t)
p
�

"
�

�2
n(d2)N

 
��

d4 � d2�2

�1
p
1� �2

!

�
�

�
n(d4)N

 
��

d2 � d4�2

�1
p
1� �2

!#
; (122)

@2v

@S1(t)@S2(t)
=

��e�q1�

S2(t)�
p
�
n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!
: (123)

Kappa. The sensitivity with respect to correlation is directly related to the cross-

gamma

@v

@�
= �1�2�S1(t)S2(t)

@2v

@S1(t)@S2(t)
: (124)

Vega. We refer to (101) and (102) to get the following formulas for the vegas,

@v

@�1
=

�v� + �21�(S1(t))
2vS1(t)S1(t)

�1
(125)

= S1(t)e
�q1�

p
�

"
�1��n(d3)N

 
��

d1 � d3�1

�2
p
1� �2

!

+ n(d1)N
 
��

d3 � d1�1

�2
p
1� �2

!#
; (126)

@v

@�2
=

�v� + �22�(S2(t))
2vS2(t)S2(t)

�2
(127)

= S2(t)e
�q2�

p
�

"
�2��n(d4)N

 
��

d2 � d4�2

�1
p
1� �2

!

+ n(d2)N
 
��

d4 � d2�2

�1
p
1� �2

!#
: (128)

Rho. Looking at (96), (97) and (104) the rhos are given by

@v

@q1
= �S1(t)�

@v

@S1(t)
; (129)

@v

@q2
= �S2(t)�

@v

@S2(t)
; (130)

@v

@r
= �K�

@v

@K
: (131)
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Theta. Among the various ways to compute theta one may use the one based

on (98).

@v

@t
= �

1

�

�
q1vq1 + q2vq2 + rvr +

�1

2
v�1 +

�2

2
v�2

�
: (132)

6 Generalization to Higher Dimensions

and other Market Models

6.1 Beyond Black-Scholes

Up to now we illustrated our ideas in the Black-Scholes model and in some parts

we used speci�c properties of this model. Nevertheless there are some properties,

which are so fundamental, that they should hold in any realistic market model.

These fundamental properties are the homogeneity of time, the scale invariance of

time and the scale invariance of prices. For every market model one uses, one should

check, if the model ful�lls these properties.

An example for a market model with non-deterministic volatility is Heston's stoch-

astic volatility model [2].

In this more general framework one needs to clarify the notion of vega. A change

of volatility could mean a change of the entire underlying volatility process. If the

pricing formula depends on input parameters such as initial volatility, volatility of

volatility, mean reversion of volatility, then one can consider derivatives with respect

to such parameters. It turns out that our strategy to compute Greeks can still be

applied successfully in a stochastic volatility model.

6.2 Heston's Stochastic Volatility Model

dSt = St

�
� dt+

q
v(t)dW

(1)
t

�
; (133)

dvt = �(� � vt) dt+ �
q
v(t)dW

(2)
t ; (134)

Cov

h
dW

(1)
t ; dW

(2)
t

i
= � dt; (135)

�(S; v; t) = �v: (136)

The model for the variance vt is the same as the one used by Cox, Ingersoll and

Ross for the short term interest rate, see [1]. We think of � > 0 as the long term

variance, of � > 0 as the rate of mean-reversion. The quantity �(S; v; t) is called

the market price of volatility risk.

Heston provides a closed-form solution for European vanilla options paying

[� (ST �K)]
+
: (137)
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As usual, the binary variable � takes the value +1 for a call and �1 for a put, K

the strike in units of the domestic currency, q the risk free rate of asset S, r the

domestic risk free rate and T the expiration time in years.

6.2.1 Abbreviations

a
�
= �� (138)

u1
�
=

1

2
(139)

u2
�
= �

1

2
(140)

b1
�
= �+ �� �� (141)

b2
�
= �+ � (142)

dj
�
=

q
(��'i� bj)2 � �2(2uj'i� '2) (143)

gj
�
=

bj � ��'i + dj

bj � ��'i� dj
(144)

�
�
= T � t (145)

Dj(�; ')
�
=

bj � ��'i+ dj

�2

"
1� edj�

1� gjedj�

#
(146)

Cj(�; ')
�
= (r � q)'i�

+
a

�2

(
(bj � ��'i + d)� � 2 ln

"
1� gje

dj�

1� edj�

#)
(147)

fj(x; v; t; ')
�
= eCj(�;')+Dj(�;')v+i'x (148)

Pj(x; v; �; y)
�
=

1

2
+

1

�

Z 1

0
<
"
e�i'yfj(x; v; �; ')

i'

#
d' (149)

pj(x; v; �; y)
�
=

1

�

Z 1

0
<
h
e�i'yfj(x; v; �; ')

i
d' (150)

P+(�)
�
=

1� �

2
+ �P1(lnSt; vt; �; lnK) (151)

P�(�)
�
=

1� �

2
+ �P2(lnSt; vt; �; lnK) (152)

This notation is motivated by the fact that the numbers Pj are the cumulative

distribution functions (in the variable y) of the log-spot price after time � starting

at x for some drift �. The numbers pj are the respective densities.

6.2.2 Value

The value function for European vanilla options is given by

V = �
h
e�q�StP+(�)�Ke�r�P�(�)

i
(153)
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The value function takes the form of the Black-Scholes formula for vanilla options.

The probabilities P�(�) correspond to N (�d�) in the constant volatility case.

6.2.3 Greeks

We use the homogeneity of prices, to obtain the deltas. But we must show, that the

price is given in its natural representation. So we use the following strategy.

We assume, that equation (153) gives the natural price representation, which is

de�ned in appendix A. Under this assumption we can read o� the deltas, and from

the deltas we derive the gammas. Using Theorem 8 we show that the assumption

of (153) giving the natural price representation was correct.

Spot delta.

�
�
=

@V

@St
= �e�q�P+(�) (154)

Dual delta.

�
K �
=

@V

@K
= ��e�r�P�(�) (155)

Gamma. Under the condition, that the deltas are correct, we obtain for the gam-

mas by di�erentiation:

Spot Gamma.

�
�
=

@�

@St
=

@�

@x

@x

@St
=

e�q�

St
p1(lnSt; vt; �; lnK) (156)

Dual Gamma.

�
K �
=

@�K

@K
=

@�K

@y

@y

@K
=

e�r�

K
p1(lnSt; vt; �; lnK) (157)

Proof of the natural representation assumption >From Theorem 8 we know,

that our initial guess for the deltas is correct, if the relation

S2
t
� = K2

�
K (158)

holds. In fact, this equation is given by

Ste
�q�p1(lnSt; vt; �; lnK) = Ke�r�p2(lnSt; vt; �; lnK); (159)

and this statement is true. So our calculation for the deltas and gammas has

been �nished.
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Rho. Rho is connected to delta via equations (64) and (63).

@V

@r
= �Ke�r��P�(�); (160)

@V

@q
= ��Ste�q��P+(�): (161)

Theta. Theta can be computed using the partial di�erential equation for the Heston

vanilla option

Vt + (r � q)SVS +
1

2
�vVvv +

1

2
vS2VSS + ��vSVvS � qV

+[�(� � v)� �]Vv = 0; (162)

where the derivatives with respect to initial variance v must be evaluated

numerically.

7 Summary

We have learned how to employ homogeneity-based methods to compute analytical

formulas of Greeks for analytically known value functions of options in a one-and

higher-dimensional market. Restricting the view to the Black-Scholes model there

are numerous further relations between various Greeks which are of fundamental

interest. The method helps saving computation time for the mathematician who has

to di�erentiate complicated formulas as well as for the computer, because analytical

results for Greeks are usually faster to evaluate than �nite di�erences involving at

least twice the computation of the option's value. Knowing how the Greeks are

related among each other can speed up �nite-di�erence-, tree-, or Monte Carlo-

based computation of Greeks or lead at least to a quality check. Many of the

results are valid beyond the Black-Scholes model. Most remarkably some relations

of the Greeks are based on properties of the normal distribution refreshing the active

interplay between mathematics and �nancial markets.

A The Natural Price Representation for Homoge-

neous Options

We analyze the following problem. Let v(x; k) be the value of an option and v(x; k)

is homogeneous of degree 1. After Evaluating the integral to determine the option-

price, one obtains the following formula:

v(x; k) = xf(x; k) + kg(x; k) (163)

One the other hand, we know from the homogeneity of v:

v(x; k) = xvx(x; k) + kvk(x; k) (164)
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So the question is: Can we conclude f(x; k) = vx(x; k) and g(x; k) = vy(x; k)? The

answer is: No, not in general.

Because of v being homogeneous of degree 1 we know, that f(x; k),g(x; k),vx(x; k)

and vk(x; k) are homogeneous of degree 0. Therefore we know that f(x; k) has the

representation f(x
k
) and so on. Introducing the notation u =

x

k
we �nd from (163)

and (164) that

uf(u) + g(u) = uvx(u) + vy(u) (165)

We de�ne h(u) = vx(u)� f(u). The answer to the question above would be yes, if

and only if h(u) = 0 for all u. One can easily show, that the function h(u) has the

following properties:

lim
u!0

h(u) = 0 (166)

lim
u!1

h(u) = 0 (167)

h(u) = uf 0(u) + g0(u) (168)

So we come to the following de�nition:

De�nition 2 (Natural Representation of Homogeneous Functions)

Let v(x; k) be a homogeneous function of degree 1. Then there is a unique represen-

tation

v(x; k) = xf

�
x

k

�
+ kg

�
x

k

�
with (169)

0 = uf 0(u) + g0(u) (170)

We call this the natural representation.

Of course, the de�nition of the natural representation can be extended to higher

dimensions. The question of this section can now be answered more exactly. One

can read o� the deltas if and only if the price formula is given in its natural repre-

sentation. This statement also holds in higher dimensions. For the two dimensional

case, we summarize:

Theorem 8 Let v(x; k) be a homogeneous function of degree 1. The representation

v(x; k) = xf(x; k) + kg(x; k) (171)

is the natural representation if and only if

x2@xf(x; k) = k2@kg(x; k) (172)

Theorem 9 Let v(x; k) = xf(x; k) + kg(x; k) be the natural representation of a

homogeneous function of degree 1. Then the following equations hold:

@xv(x; k) = f(x; k) (173)

@kv(x; k) = g(x; k) (174)
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