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Abstract

This paper o�ers a new approach for estimation and few-step ahead forecasting of

the volatility of �nancial time series. No assumption is made about the parametric

form of the processes, on the contrary we only suppose that the volatility can be

approximated by a constant over some interval. In such a framework the main

problem consists in �ltering this interval of time homogeneity, then the estimate of

the volatility can be simply obtained by local averaging. We construct an algorithm

which can perform this task and investigate it both from the theoretical point of

view and through Monte Carlo simulations. Finally the procedure is applied to some

exchange rate data sets and a comparison with a standard GARCH model is also

provided. Both models appear to be able of explaining many of the features of the

data, nevertheless the new approach based on local constant approximation seems to

be slightly superior as far as the out of sample results are taken into consideration.

1 Introduction

Stylized facts of �nancial asset returns such as stocks and exchange rates are: a leptokurtic

density, variance clustering and highly persistent autocorrelation of square and absolute

returns. A typical example can be seen in Figure 1, where the exchange rate returns for

the period from 1 January 1990 to 7 April 2000 and the autocorrelation of their absolute

values are plotted for the Canadian$/US$ exchange rate (�rst and second plot from the

top) and for the Japanese Yen/US$ exchange rate (third and fourth plot). Further details

and examples on this topic can be found in Taylor (1986).

Usually a white noise process with time varying variance is taken to model such features,

so that the observed returns Rt follow the conditional heteroskedasticity model

Rt = �t�t

where �t are standard Gaussian independent innovations and �t is a time-varying volatil-

ity coe�cient. In general situation �t is assumed to be a predictable random process.

For modeling this volatility process one or another parametric assumption is usually used.

The main model classes are the ARCH (Engle 1995a), GARCH (Bollerslev 1995) family,

and the stochastic volatility (Harvey, Ruiz & Shephard 1995). A great amount of pa-

pers has followed the �rst publications on this topic, and the original models have been

extended in order to provide better explanation. For example models which take into

account asymmetries in volatility have been proposed, such as EGARCH (Nelson 1995),
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Figure 1: Exchange rate returns for the period from 1 January 1990 to 7 April 2000 and the

autocorrelation of their absolute values for the Canadian$/US$ exchange rate (�rst and second

plot from the top) and for the Japanese Yen/US$ exchange rate (third and fourth plot). The

horizontal line indicates the 5% signi�cance level of the estimated autocorrelation coe�cients.

QGARCH (Sentana 1995) and GJR (Glosten, Jagannathan & Runkle 1992); furthermore

the research on integrated processes has produced integrated (Engle & Bollerslev 1986)

and fractal integrated versions of the GARCH model.

The availability of very large samples of �nancial data has given the possibility of con-

structing models which display quite complicated parameterizations in order to explain

all the observed stylized facts. Obviously those models rely on the assumption that the

parametric structure of the process remains constant through the whole sample. This

is a nontrivial and possibly dangerous assumption in particular as far as forecasting is

concerned (Clements & Hendry 1998). Furthermore checking for parameter instability

becomes quite di�cult if the model is nonlinear, and/or the number of parameters is
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large. Whereby those characteristics of the returns which are often explained by the long

memory and (fractal) integrated nature of the volatility process, could also depend on

the parameters being time varying.

In this paper we propose another approach focusing on a very simple model but with

a possibility for model parameters to depend on time. This means that the model is

regularly checked and adapted to the data. No assumption is made about the parametric

structure of the volatility process, we only suppose that it can be locally approximated

by a constant, that is, for every time point � there exists a past interval [� � m; � ]

where the volatility �t did not vary much. This interval is referred to as interval of

time homogeneity. An algorithm is proposed for data-driven estimation of the interval

of time homogeneity, after which the estimate of the volatility can be simply obtained

by averaging. It would be noted that the proposed approach attempts to describe the

local dynamic of the volatility process. Such a strategy is particularly appealing for

short term forecasting purposes which is an important building block e.g. in Value-at-

Risk and portfolio hedging problems or backtesting (Härdle & Stahl 1999). At the same

time, the underlying assumption of the local homogeneity can be hardly extended on a

long forecasting horizon, so an application of the locally constant modelling to e.g. the

problems of option price evaluation (where some global dynamic of the volatility process

is important) is questionable.

The reminder paper is organized as follows. The next section introduces the adaptive

modeling procedure, then some theoretical properties are discussed in the general situation

and for a speci�c change-point model. A simulation study illustrates the performances of

the new methodology with respect to di�erent underling volatility processes. The question

of selecting the smoothing parameters is also addressed and some solutions are proposed.

Finally the procedure is applied to a set of nine exchange rates and it appears to be

highly competitive with standard GARCH(1,1), which is used as a benchmark model.

Mathematical proofs are given in the appendix.

2 Modeling volatility via power transformation

Let St be an observed asset process in discrete time, t = 1; 2; : : : ; � and Rt are the

corresponding returns: Rt = log(St=St�1) . We model this process via the conditional

heteroskedasticity assumption

Rt = �t�t ; (2.1)
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where �t , t � 1 , is a sequence of independent standard Gaussian random variables and

�t is the volatility process which is in general a predictable random process, that is, �t �

Ft�1 with Ft�1 = �(R1; : : : ; Rt�1) (� -�eld generated by the �rst t� 1 observations).

A time-homogeneous (time-homoskedastic) model means that �t is a constant. The

process eSt is then a Geometric Brownian motion observed at discrete time moments.

The assumption of time homogeneity is too restrictive in practical applications and it does

not allow to �t well real data. In this paper we consider an approach based on the local

time-homogeneity which means that for every time moment � there exists a time interval

[� � m; � ] where the volatility process �t is nearly constant. Under such a modeling,

the main intention is both to describe the interval of homogeneity and to estimate the

corresponding value �� which can then be used for one-step forecasting etc.

2.1 Data transformation

The model equation (2.1) links the target volatility function �t with the observations Rt

via the multiplicative errors �t . The classical well developed regression approach relies

on the assumption of additive errors which can be then smoothed out by some kind of

averaging. A natural and widespread method of transforming the equation (2.1) into a

regression like equation is to apply the log-function to both its sides squared:

logR2
t = log �2t + log �2t (2.2)

which can be rewritten in the form

logR2
t = log �2t + C + v�t

with C = E log �2t , v2 = Var log �2t and �t = v�1
�
log �2t � C

�
, see e.g. Gouriéroux

(1997). This is a usual regression equation with the �response� Yt = logR2
t , target

regression function f(t) = log �2t + C and homogeneous �noise� v�t .

The main problem with this approach is due to the distribution of the errors �t . It is

log-normal and it has heavy tails. It is also highly skewed and it gives very high weights to

the small values of the errors �t , see Figure 3 for a typical sample from this distribution.

Particularly this leads to a serious problem with missing data which are typically modeled

equal to previous values providing Rt = 0 .

Another possibility is based on power transformation, see Carroll & Ruppert (1988) which

also leads to a regression with additive noise and this noise is much closer to a Gaussian

one. Due to (2.1) the random variable Rt is conditionally on Ft�1 Gaussian and it holds

E
�
R2
t

��Ft�1
�
= �2t :
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Similarly, for every 
 > 0 ,

E
���Rt

��
 ��Ft�1
�
= �



t E
�
j�j


��Ft�1
�
= C
�



t ;

E
���Rt

��
 � C
�


t

��Ft�1
�2

= �
2

t E (j�j
 � C
)

2
= �

2

t D2




where � denotes a standard Gaussian r.v., C
 = Ej�j
 and D2

 = Var j�j
 . Therefore,

the process jRtj
 allows for the representation

jRtj
 = C
�


t +D
�



t �t ; (2.3)

where �t has conditionally on Ft�1 the distribution (j�j
 � C
) =D
 . In the sequel we

refer to the equation (2.3) as the martingale representation of the process jRtj
 . Indeed,

E (jRtj
 � C
�


t j Ft�1) = E (D
�



t �t j Ft�1) = D
�



tE (�t j Ft�1) = 0:

Note that the problem of estimating �t is in some sense equivalent to the problem of

estimating �t = C
�


t which is the mean value of the transformed process Rt . This

is already a kind of a heteroskedastic regression problem with additive errors D
�


t �t

satisfying

E (D
�


t �t j Ft�1) = 0;

E

�
D2

�

2

t �2t j Ft�1

�
= D2


�
2

t :

A minimization of the skewness E�3
 and the fat E�4
 � 3 with respect to 
 leads to the

choice 
 � 1=2 . The corresponding density p1=2(x) of �
 together with the standard

normal density �(x) is plotted in Figure 2.

3 Adaptive estimation under local time-homogeneity

Here we describe one approach to volatility modeling based on the assumption of local

time homogeneity starting from the preliminary heuristic discussion. The assumption of

local time homogeneity means that the function �t is nearly constant within an interval

I = [� � m; � [ , and the process Rt follows the regression-like equation (2.3) with the

constant trend �I = C
�



I which can be estimated by averaging over this interval I :

e�I = 1

jIj

X
t2I

jRtj
 : (3.1)

By (2.3)

e�I = C


jIj

X
t2I

�


t +

D


jIj

X
t2I

�


t �t =

1

jIj

X
t2I

�t +
s


jIj

X
t2I

�t�t (3.2)
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Figure 2: Density of p1=2(x) (straight line) and of a standard normal random variable (dotted

line).

with s
 = D
=C
 so that

Ee�I = E
1

jIj

X
t2I

�t ; (3.3)

s2


jIj2
E

 X
t2I

�t�t

!2

=
s2


jIj2
E

X
t2I

�2t : (3.4)

De�ne also

v2I =
s2


jIj2
X
t2I

�2t :

In view of (3.4) this value is called the conditional variance of e�I .
Under local homogeneity it holds �t � �I for t 2 I , and hence,

Ee�I = �I ;

v2I = Var e�I = s2
�
2
I

jIj
:
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3.1 Some properties of the estimate e�I

Due to our assumption of local homogeneity, the value �t is close to �� for all t 2 I .

This means that the value

�2
I = jIj�1

X
t2I

(�t � �� )
2

is small.

Theorem 3.1 Let the volatility coe�cient �t satisfy the condition

b � �2t � bB (3.5)

with some positive constant b;B . Then there exists a
 > 0 such that it holds for every

� � 0

P

�
je�I � �� j > �I + �vI

�
� 4

p
e�(1 + logB) exp

�
�
�2

2a


�
:

Remark 3.1 This result can be slightly re�ned for the special case when the volatility

function �t is deterministic:

P

�
je�I � �� j > �I + �vI

�
� 2 exp

�
�

�2

2a


�
:

The result of this theorem bounds the loss of the estimate e�I via value �I and the

conditional standard deviation vI . The latter term depends in its turn on the target

function �t . One would be interested in another bound which does not involve the

unknown function �t . Namely, basing on (3.4) and assuming �I small, one may replace

the conditional standard deviation vI by its estimate

evI = s
e�I jIj�1=2:
Theorem 3.2 Let R1; : : : ; R� obey (2.1) and let (3.5) hold true. Then it holds for the

estimate e�I of �� :

P

�
je�I � �� j > �I(1 + �s
 jIj�1=2) + �evI�
� 4

p
e�(1 + logB) exp

�
�

�2

2a
(1 + �s
 jIj�1=2)2

�
:
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3.2 Adaptive choice of the interval of homogeneity

Given observations R1; : : : ; R� following the time-inhomogeneous model (2.1), we aim to

estimate the current value of the parameter �� using the estimate e�I with a properly

selected time interval I of the form [� �m; � [ to minimize the corresponding estimation

error. Below we discuss one approach which goes back to the idea of pointwise adaptive

estimation, see Lepski (1990), Lepski & Spokoiny (1997) and Spokoiny (1998). The idea

of the method can be explained as follows. Suppose I is an interval-candidate, that is,

we expect time-homogeneity in I and hence, in every subinterval of I . This particularly

implies that the value �I is negligible and similarly for all �J , J � I and that the mean

values of the �t over I and over J nearly coincide. Our adaptive procedure roughly

means a family of tests to check whether e�I does not di�er signi�cantly from e�J for any

subinterval J of I . The latter is done on the base of Theorem 3.2 which allows under

homogeneity within I to bound je�I � e�J j by �evI + �evJ provided that � is su�ciently

large. If there exists an interval J � I such that the hypothesis e�I = e�J cannot be

accepted then we reject the hypothesis of homogeneity for the interval I . Finally, our

adaptive estimate corresponds to the largest interval I such that the hypothesis of ho-

mogeneity is not rejected for I itself and all smaller intervals.

Now we present a formal description. Suppose a family I of interval-candidates I is

�xed. Each of them is of the form I = [� �m; � [ , m 2 N , so that the set I is ordered

due to m . With every such interval we associate the estimate e�I of the parameter ��

due to (3.1) and the corresponding estimate evI of the conditional standard deviations

vI .

Next, for every interval I from I , we suppose to be given a set J (I) of testing subin-

tervals J (one example of these sets I and J (I) is given in the next section). For

every J 2 J (I) , we construct the corresponding estimate e�J from the observations Yt

for t 2 J according to (3.1) and compute evJ .
Now, with two constants � and � , de�ne the adaptive choice of the interval of homo-

geneity by the following iterative procedure:

Initialization Select the smallest interval in I .

Iteration Select the next interval I in I and calculate the corresponding estimate e�I
and the estimated conditional standard deviation evI .

8



Testing homogeneity Reject I , if there exists one J 2 J (I) such that��e�I � e�J �� > � evJ + � evI : (3.6)

Loop If I is not rejected, then continue with the iteration step by choosing a larger

interval. Otherwise, set bI = �the latest non rejected I �.

The adaptive estimate b�� of �� is de�ned by applying this selected interval bI :
b�� = e�

bI
:

It is supposed that the procedure is independently carried out at each time point � . A

possibility to reduce the computational e�ort of the selection rule is to make an adaptive

choice of the interval of homogeneity only for some speci�c time points tk and to keep

the left end-point of the latest selected interval for all � between two neighbor points tk

and tk+1 , see the next subsection for a proposal.

3.3 Choice of the sets I , J (I) and the parameters � and �

The presented algorithm involves the sets I and J (I) of considered intervals and two

numeric parameters � and � . We now discuss how these parameters can be selected

starting from the set of intervals I . The simplest proposal is to introduce a regular grid

G = ftkg with tk = m0k for some natural number m0 and to consider the intervals

Ik = [tk; � [ for all tk < � . It is also reasonable to carry out the adaptive procedure only

for points � from the same grid G . The value m0 can be selected, e.g., between 5 and

30.

If � = tk� for some k� � 1 , then clearly every interval I = [tk; � [ contains exactly

k� � k smaller intervals I 0 = [tk0 ; � [ for all k < k0 � k� . Next, for every such interval

I = [tk; � [ , we de�ne the set J (I) of testing intervals J by taking all smaller intervals

I 0 = [tk0 ; � [ with the right end-point � and similarly all smaller intervals [tk; tk0 [ with

the left end-point tk , k < k0 � k� :

J (Ik) = fJ = [tk0 ; � [ or J = [tk; tk0 [: k < k0 < k�g:

Let NI stand for the number of subintervals J in J (I) . Clearly, for I = [tk; tk� [ , the

set J (I) contains at most 2(k� � k) elements, that is, NI � 2(k� � k) .

3.4 Data-driven choice of parameters � and �

The behavior of the procedure critically depends on the parameters � and � . The

simulation results from the next section indicate that there is no universal `optimal'
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choice. Below we discuss two possibilities: one is based on a more detailed consideration

for a change-point model and another one is based on the data-driven selector based on

the mean forecast error which we discuss right now.

First we have to make clear the di�erence between the data-driven choice of the interval of

homogeneity I and data-driven choice of parameters � and � . The adaptive procedure

proposed for selecting the interval of homogeneity is local in the sense that it is performed

at every point � independently. Such procedures are also called pointwise or spatially

adaptive, among them: kernel smoothers with plug-in bandwidth selector (Brockmann,

Gasser & Herrmann 1993) or pointwise adaptive bandwidth selector (Lepski, Mammen

& Spokoiny 1997), nonlinear wavelet procedure (Donoho, Johnstone, Kerkyacharian &

Picard 1994). All these procedures have been shown to possess some spatial adaptive

properties. However, every such procedure contains some free parameter(s) which have

strong in�uence on their behavior. The most well known example is given by the thresh-

olding parameter for the wavelets method. The values � and � of the above procedure

have the same �avor as the threshold for wavelets. These parameters are global in the

sense that there is no way to select them optimally for one speci�c point but they deter-

mine the global performance of the procedure on a large observation interval. Namely, for

every pair �; � we can build a corresponding procedure (estimator) b�(�;�)t at every point

t from the `observations' Y1; : : : ; Yt�1 as described in Section 3.2. In view of the martin-

gale representation (2.3), it holds E (Yt j Ft�1) = �t and the estimate e�t constructed on

the base of previous `observations' Y1; : : : ; Yt�1 is a natural one-step forecast of the next

`observation' Yt . Now we de�ne the pair (b�; b�) as the minimizer of the mean forecast

error:

(b�; b�) = inf
�;�

�X
t=t0

�
jRtj
 � b�(�;�)t

�2
;

where in�mum is taken over all considered pairs �; � and t0 is taken to provide enough

data for the starting estimates. Similarly one can choose the grid step m0 in a data-driven

way.

In practical applications, especially for a short term forecasting of the volatility process,

the parameters �; � can also be updated at every time points by application of a moving

window of a �xed length. This would lead to the rule

(b�� ; b�� ) = inf
�;�

�X
t=��M

�
jRtj
 � b�(�;�)t

�2
:

Such a rolling estimator is also meaningful because it takes into consideration the require-

ment of �nancial regulators, such as the Bundesaufsichtamt für Kreditwesen in Germany,
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which does not allow the use of very old data which leads to M = 250 corresponding to

one calendar year.

The cardinality of the considered set of admissible pairs �; � can be drastically reduced.

The latter is based on a more detailed study of a change-point model which is discussed

in Section 5.

4 Theoretic properties

In this section we collect some results describing the quality of the proposed adaptive

procedure.

4.1 Accuracy of the adaptive estimate

Let bI be the interval selected by our adaptive procedure. We also de�ne the �ideal� choice

II = argmax fjIj : I 2 I; �I � DvIg (4.1)

where D is some �xed constant. For this `ideal' choice I = II we have the balance

between the accuracy of approximation (which is controlled by �I ) and the stochastic

error characterized by the stochastic variance vI . By de�nition vI = s
 jIj�1
�P

t2I �
2
t

�1=2
so that vI typically decreases when jIj increases. For simplicity of notation, we shall

suppose further that vI � vJ for J � I .

The �ideal� choice II means that we select the largest interval I for which the variability of

the function �t inside I is not too large compared to the conditional stochastic deviation

vI . This, due to Theorem 9.1, allows us to bound with a high probability the losses of

the �ideal� estimate e�II by (D + �)vII provided that � is su�ciently large. The next

assertion claims that the risk of the adaptive estimate is of the same order vII .

Theorem 4.1 Let (3.5) hold true. Then it holds for the adaptive estimate b� = e�
bI
de�ned

in Section 3.2 with � � � :

P

�
jb� � �� j > 2(�+ �)vII

�
�

X
J2J (II)

4
p
e�J(1 + logB) exp

�
�
�2J
2a


�
(4.2)

where

�J =
�

1 + �s
 jJ j�1=2
� ÆJ ; ÆJ =

�J

vJ
:
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Remark 4.1 The result of Theorem 4.1 leads to the following interpretation of a �good�

choice II : an interval II is good if the value

��II = min
J2J (II)

�
�

1 + �s
 jJ j�1=2
�

�J

vJ

�
is su�ciently large providing a small probability of the event fjb� � �� j > 2(� + �)vIIg .

This particularly implies that the ratio �II=vII should not be too large: �II=vII < �=(1+

�s
 jIIj�1=2) .

5 Change-point model

An important special case of the model (2.1) is the so-called change-point model corre-

sponding to the piecewise constant function �t . For this special case, the above procedure

has a very natural interpretation: when estimating at the point � we search for a largest

interval of the form [� � m; � [ does not containing a change-point. This is doing via

testing for a change-point within the interval-candidate I = [� �m; � [ . It is worth men-

tioning that the classical maximum-likelihood test for no change-point in the regression

case with Gaussian N (0; �2) -errors is also based on comparison of the mean values of

observations Yt over the whole interval I = [��m; � [ and every subinterval J = [��j; � [

or J 0 = [� �m; � � j[ for di�erent j , so that the proposed procedure has strong appeal

in this situation. However, there is an essential di�erence between testing of a change-

point and a testing homogeneity appearing as a building block of our adaptive procedure.

Usually a test for a change-point is constructed in a way to provide the prescribed type I

error (in the change-point framework such an error is called a �false alarm�). Our adaptive

procedure involves a lot of such tests for every candidate I , which leads to a multiple

testing problem. As a consequence, each particular test should be performed at a very

small level, i.e., it should be rather conservative providing a joint error probability at a

reasonable level.

5.1 Type I error

For the change-point model, the type I error would mean that the interval-candidate I is

rejected although the hypothesis of homogeneity is still ful�lled. On the other hand, the

type II error means that interval I is not rejected in spite of a violation from homogeneity,

so that the type II error probability describes the sensitivity of the procedure to changes.

The arguments used in the proof of Theorem 4.1 lead to the following upper bound for

the type I error probability:
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Theorem 5.1 Let bI be selected by the adaptive procedure with � � � . If I = [� �m; � [

is an interval of homogeneity, that is �t = �� for all t 2 I , then

P (I is rejected) �
X

J2J (I)

2 exp

�
�

�2

2a
(1 + �s
 jJ j�1=2)2

�
:

This result is a special case of Theorem 4.1 with �J � 0 and B = 1 when taking into

account Remark 9.1.

As a consequence of this result one can immediately see that for every �xed value M there

exists a �xed � providing a prescribed upper bound � for the type one error probability

for a homogeneous interval I of length M . Namely, the choice

� � (1 + �)

r
2a
 log

2M

m0�

leads for a proper small positive constant � > 0 to the inequalityX
J2J (I)

2 exp

�
�

�2

2a
(1 + �s
 jJ j�1=2)2

�
� �:

(Here 2M=m0 is approximately the number of intervals in J (I) .) This bound is however,

very rough and it is only of theoretical importance since we estimate the probability of

the sum of dependent events by the sum of single probabilities. The problem of �nding

� providing a prescribed type I error probability is discussed in the next section.

5.2 Type II error

Next we consider the case of estimation immediately after a change-point. Let a change

occur at a moment Tcp . It is convenient to suppose that Tcp belongs to the grid G on

which we carry out the adaptive choice of the interval of homogeneity. This assumption

is not restrictive if the grid is `dense', that is, if the grid step m0 is not too large. In the

case with Tcp 2 G , the `ideal' choice II is clearly [Tcp; � [ . Theorem 4.1 provides that the

quality of estimation at � is essentially the same as if we knew the latest change-point

Tcp a priori. In fact, one can state a slightly stronger assertion: every interval I which

is essentially larger than II will be rejected with a high probability provided that the

magnitude of the change is large enough.

Denote m0 = jIIj , that is, m0 = � � Tcp . Let also I = [Tcp �m; � [= [� �m0 �m; � [ for

some m , so that jIj = m+m0 , and let � (resp. �0 ) denote the value of parameter �t

before (resp. after) change-point Tcp . The magnitude of the change-point is measured

by the relative change b = 2j�0 � �j=� .
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The interval I will be certainly rejected if, either je�I � e�J j or je�I � e�II j is su�ciently
large compared to the corresponding critical value.

Theorem 5.2 Let EYt = � before the change-point at Tcp and EYt = �0 after it, and

let b = j�0 � �j=� . Let also m0 = jIIj = � � Tcp and I = [� �m0 �m; � [ . Then

P (I is not rejected) � 4e
� �

2

2a


provided that

1� Æ �
�

�
p
2
Æ(1 + Æ) > 0 and b �

Æ + Æ(1 + Æ) + �

�
p
2
Æ(1 + Æ)

1� Æ � �

�
p
2
Æ(1 + Æ)

(5.1)

with Æ =
�s
p

minfm;m0g
.

The result of Theorem 5.2 delivers some additional information about the sensitivity of

the proposed procedure to change-points. One possible question is about the minimal

delay m0 between the change-point Tcp and the �rst moment � when the procedure

starts to indicate this change-point by selecting an interval of type II = [Tcp; � [ . Due to

Theorem 5.2, the change will be certainly `detected' if the value Æ = �s
=
p
m0 ful�lls

(5.1). With �xed b > 0 , � and � , condition (5.1) leads to Æ � bC0 where C0 depends

on �=� only. The latter condition can be rewritten in the form

m0 �
b�2�2s2


C2
0

:

We see that the required delay m0 depends quadratically on the change-point magnitude

b and on the threshold � . In its turn, for the prescribed type I error � of rejecting a

homogeneous interval of length M , the threshold � can be bounded by C
q
log M

m0�
.

In particular, if we �x the length M and � , then m0 = O(b�2) . If we keep �xed the

values b and M but aim to provide a very small probability of a `false alarm' by letting

� go to zero, then m0 = O(log��1) . All these issues are in agreement with the theory

of change-point detection, see, e.g. Pollak (1985) and Brodskij & Darkhovskij (1993).

6 Monte Carlo simulation

The aim of this section is to illustrate the performance of the proposed procedure on some

simulated examples and to give some hints concerning the choice of the parameters �, �,

m0 and M . We �rst consider the simplest homogeneous model and study the stability of

the procedure in such a situation. Then a change point model with two jumps is analyzed

and the sensitivity with respect to the jump magnitude is measured. Finally we apply

the procedure to a stochastic volatility model.

14



6.1 Type I error

It has already been mentioned that a reasonable approach for selecting m0; �; � is by

providing a prescribed level � for rejecting a homogeneous interval I of a given length

M . This would clearly imply at most the same level � for rejecting a homogeneous

interval of a smaller length. This can be made on the base of Theorem 5.1. However,

the resulting upper bound for the error probability of the type I is rather conservative.

More accurate choice of the parameters m0; � and � can be made on the base of Monte

Carlo simulation for the time homogeneous model. We examine the procedure described

in Section 3.2 with the sets of intervals I and J (I) on the regular grid with the �xed

step m0 . The time homogeneous model assumes that the parameter �t does not vary in

time, i.e. �t � � . It can easily be seen that the value � has no in�uence on the procedure

under time homogeneity. One can therefore suppose that � = 1 and the original model

(2.1) is transformed into the regression model Yt = 1 + s
�t with the constant trend

and homogeneous variance s
 . This model is completely described and therefore, one

can de�ne r1(m0; �; �) as the probability for this model to reject a homogeneous interval

of length M if the parameters m0; �; � are applied. To determine this parameters we

simulate two set of white noise time series (i.i.d N(0; 1)) of lengthM = 40; 80 respectively,

each set containing 1000 realizations. We consider three testing steps: m0 = 5; 10; 20 and

for each testing step we compute the values of � and � for which the time homogeneous

interval is not rejected with an �approximate� frequency of 95%.

The relationship among M , m0, � and � can be summarized as follows.

� M = 40; 80 represents the length of the true time homogeneous interval, which is

obviously known only for simulated data. For �xed m0, � and � the probability of

rejecting the true hypothesis of time homogeneity grows with M .

� m0 = 5; 10; 20 is the grid step. If m0 is small the test of homogeneity is performed

very often and therefore, for �xed M , � and � the probability of rejecting the true

hypothesis of time homogeneity decreases with increasing m0.

� (�; �) are the smoothing parameters. For �xedM andm0 the probability of rejecting

the true hypothesis of time homogeneity decreases with increasing � and/or �.

Furthermore if we also �x the rejection probability � is decreasing in �. Monte

Carlo simulations displayed in Figure 3 show an approximately linear relationship

between these two quantities.
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Figure 3: Pairs (�; �) which provide a type I error probability of 0.05 for di�erent grid step:

m0 = 5 (solid line), m0 = 10 (thin dotted line) and m0 = 20 (thick dotted line).

6.2 Type II Error

To evaluate the type II error we consider the sets (M;m0; �; �) which keep the frequency of

the type I error at a 5%. Such sets guarantee that if the true interval of time homogeneity

is M , then the algorithm will keep the whole interval on the average 95 times every 100.

We evaluate the performances of the smoothing parameters with respect to di�erent time

inhomogeneous process. In particular we consider two deterministic piecewise constant

processes with small, and large jumps respectively, and a stochastic volatility process.

Two jump processes of length T = 240 are considered with two jumps of the same magni-

tude in opposite directions, i.e.: �t = � for t 2 [1; 80] and t 2 [161; 240] and and �t = �0

for t 2 [81; 160]. Where � = 1 and �0 = 3 and 5 respectively. For each model 500 realiza-

tions are generated, the estimation is performed at each time point t 2 [t0; 240], where t0

is set equal to 20.

The above model ful�lls very well the assumptions of local homogeneity upon which our

procedure relies. It is therefore interesting to see how the algorithm perform on a process,

where a local constant estimation may not appear as the best strategy. The following

example illustrates how the estimator behaves in a �worst case�. We consider a stochastic

volatility model, i.e. a white noise where the logs of the standard deviation follow an
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AR(1) process:

Rt = �t�t

log �t = ! + � ln�t�1 + ���t:

The following parameters are chosen: ! = 0, � = 0:987, and �� = 0:1, �t is standard

normally distributed.

The performances of the di�erent parameter sets are compared for two di�erent criteria:

averaged quadratic risk (MSE) and average absolute deviation risk (MAE), and also on

their empirical counterparts based on forecast error (FE): mean squared forecast error

(MSFE) and mean absolute forecast error (MAFE):

MSE = E
� 1

T � t0 � 1

TX
t=t0

(b�t � �t)
2;

MAE = E
� 1

T � t0 � 1

TX
t=t0

jb�t � �tj;

MSFE = E
� 1

T � t0 � 1

TX
t=t0

(b�t � Yt)
2;

MAFE = E
� 1

T � t0 � 1

TX
t=t0

jb�t � Ytj:

Table 1 shows the selected parameters for both the theoretical and empirical criteria.

Note that the choice among all criteria is not qualitatively di�erent. Another interesting

result is shown in Figure 4, where the result of the theoretical error measures are plotted

against the empirical ones. A high positive correlation is observable. It must also be

noted that the most conservative parameter sets, i.e. for M = 80, are never chosen.

Furthermore the parameter sets with the smallest grid step m0 = 5 are also never chosen.

This result is very useful for practical application, because it allows us to restrict our

attention to the values of � and �, for which M = 40, and m0 = 10 and 20.

Table 1: The optimal results for all error measures for the three models.

M m0 � � MSE MAE MSFE MAFE

jump process with (� = 1, �0 = 3)

40 10 0.4 3.05 0:035169� 0:1152� 0:24703� 0.38978

40 20 0.6 1.15 0.035345 0.11667 0.24706 0:38974�

jump process with (� = 1, �0 = 5)

40 10 2.2 0.45 0:06841� 0.13988 0:37332� 0:45954�

40 10 1.8 0.95 0.068481 0:13957� 0.37351 0.45966

stochastic volatility

40 20 0.8 0.05 0:023386� 0:118� 0:14332� 0:29875�
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Figure 4: Scatterplot of the theoretical error measures against the empirical ones for the three

models. Squared errors on the left, absolute errors on the right. From the top: (� = 1, �0 = 3),

(� = 1, �0 = 5), SV .

Figure 5 shows the result of the estimation for the parameters selected with the MSFE.

The �rst, third and �fth plots from the top indicate: the true process (straight line), the

median among all estimates (dashed line) and the quartiles of the estimates (dotted line).

The second, fourth and sixth plots from the top show the �ideal� interval of time homo-

geneity (straight line), the median among all estimates (dashed line) and the quartiles of

the estimates (dotted line).

The results are very satisfactory in particular for the jump processes. As far as the

SV process is concerned the plot shows some oversmoothing of the underlying volatility

process. This can be explained by the fact that a local constant approximation is good, in

this case, only for very small intervals. Nevertheless the behavior of the procedure under

such very unfavorable conditions remain quite remarkable.

7 Empirical Evidence

We apply the local constant volatility estimation to a set of nine exchange rates, which

are available from the web page of the Federal Reserve. The data sets represent the daily

exchange rate of the US$ against the following currencies: Canadian$, Norwegian Krone,

Swedish Krone, New Zeeland$, Japanese Yen, Danish Krone, Swiss Franc, Australian$
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Figure 5: Estimation of the jump and SV processes and relative interval of homogeneity. From

the top: (� = 1, �0 = 3), (� = 1, �0 = 5), SV. The smoothing parameters are the ones that

minimize the MSFE.

and British Pound. The period under consideration goes from 1 January 1990 to 7 April

2000. The summary statistics of the exchange rate returns are shown in Table 2. All the

data sets display a mean value which is very close to zero and an excess kurtosis. Fur-

thermore the volatility clustering e�ect can be appreciated from Figure 7, while the �rst

column of Figure 8 shows the typical persistent autocorrelation of the absolute returns.

7.1 Practical implementation of the local constant estimator

In Section 6 we have considered the question of selecting good smoothing parameters.

Simulation results have shown that di�erent kinds of processes may lead to di�erent

optimal smoothing parameters, depending on the magnitude and on the frequency of the
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Table 2: Summary statistics.

currency n mean�10
5 variance�105 skewness kurtosis

Canadian $ 2583 8.819 0.895 0.042 5.499

Norwegian Kr. 2583 9.493 4.251 0.313 8.630

Swedish Kr. 2583 12.660 4.615 0.372 9.660

New Zeeland $ 2583 -6.581 3.604 -0.356 49.178

Japanese Yen 2583 -12.700 5.486 -0.585 7.366

Danish Kr. 2583 6.097 4.201 -0.037 4.967

Swiss Fr. 2583 1.480 5.402 -0.186 4.526

Australian $ 2583 -10.410 3.191 -0.187 8.854

British Pd. 2583 -0.679 3.530 -0.279 5.792

jumps. Nevertheless the result of Section 6.2 allow us to exclude those parameters which

make the procedure too much conservative, i.e. the case ofM = 80, and those parameters

which make the testing grid too dense, i.e. the case of m0 = 5. All the combination of �

and �, for which M = 40 and m0 = 5 and 10 still remain. Nevertheless simulation results

suggest that small changes in the parameters do not a�ect too much the performance

of the estimator. Therefore we decide to keep a selection of the remaining smoothing

parameters (Table 3), which should contain, according to the simulation result, a �good

case� for any process similar to the ones that we have analyzed.

Table 3: Set of smoothing parameters which are used to perform the estimation.

M m0 � � M m0 � �

40 10 0.2 3.45 40 10 2.2 0.45

40 10 0.6 2.75 40 20 0.2 1.75

40 10 1.0 2.15 40 20 0.6 1.15

40 10 1.4 1.55 40 20 1.0 0.65

40 10 1.0 0.95 40 20 1.4 0.15

For the parameter selection we apply the MSFE rule described in Section 3.4 with a

moving window for the optimization of the smoothness parameters �; � . The MSFE has

shown in the simulation a high correlation with the MSE (Figure 4), and a performance

which is qualitative identical to the one of the MAE and MAFE.
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7.2 A benchmark model

As a matter of comparison we also consider a model which is commonly used to estimate

and forecast volatility processes: the GARCH(1,1) model, which was �rst proposed by

Bollerslev (1995). Among all parametric volatility models it represents the most common

speci�cation: �The GARCH(1,1) is the leading generic model for almost all asset classes of

returns. . . . it is quite robust and does most of the work in almost all cases.� (Engle 1995b).

Rt = �t�t

�2t = ! + �R2
t�1 + ��2t�1:

We do not require the parameters to be constant through the whole sample, but similarly

to Franses & Dijk (1996) we consider a rolling estimator. We thus �t the model to a

sample of 350 observations, generate the forecast, delete the �rst observation from the

sample and add the next one. Such a procedure reduce the harmful e�ect of possible

parameter shifts on the forecasting performances of the model, even if at the same time

it may increase the estimation variability.

7.3 Forecast evaluation

The volatility is a hidden process which can be observed only together with a multi-

plicative error, therefore the evaluation of the forecasting performance of an algorithm

is not straightforward. Due to the model (2.1), it holds E
�
R2
t+1 j Ft

�
= �2t+1 and

E (jRt+1j j Ft) = c�t+1 with c =
p
2=� . Therefore, given a forecast �t+1jt , the empiri-

cal mean value of the jR2
t+1 � �2

t+1jtj 's resp. of the
�
jRt+1j � c�t+1jt

�2
's can be used to

measure the quality of the forecast �t+ijt . Similarly one can consider a larger forecasting

horizon. The following di�erent measures are computed in order to get a feeling of the

robustness of the technique:

d1 =
1

T � t0 � 1

TX
t=t0

�
jRt+ij � c�t+ijt

�2
;

d2 =
1

T � t0 � 1

TX
t=t0

���R2
t+i � �2t+ijt

��� :
with i = 1 resp i = 5 corresponding to one step ahead resp. �ve step ahead forecast

horizon. The relative performance of the local constant model and of the GARCH(1,1)

model is displayed in Table 5.
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7.4 Estimation results

The results of the estimation are quite satisfactory. Figure 7 shows two typical exchange

return time series: Canadian$/US$ and Japanese Yen/US$, together with the local con-

stant estimation of the volatility process, and of the interval of time homogeneity. The

estimated standard deviation is nicely in accordance with the development of the volatil-

ity and in particular sharp changes in the volatility tend to be very quickly recognized.

Note also that the variance of the estimated interval of time homogeneity appears to

grow as the estimated interval becomes larger. This is a feature of the algorithm because

the number of tests grows with the accepted interval, so that a rejection becomes more

probable. Nevertheless this variability does not a�ect strongly the estimated volatility

coe�cient.

Figure 8 shows the �rst one hundred values of the autocorrelation of the absolute returns

for the nine exchange rates in the �rst column. The second and the third columns show

the autocorrelation of the absolute returns divided by the one step forecasted standard

deviation estimated respectively with the local constant and with the GARCH (1; 1)

model. The dashed line indicated the 5-percent level of signi�cance. Both models seems

to explain equally well the dynamics of the volatility. Particularly no signi�cant positive

correlation for the standardized returns is observed.

Both the local constant model and the GARCH model assume conditional normality of

the returns. It is therefore interesting to test whether this hypothesis is supported by the

empirical evidence. Figure 6 shows an example of the empirical densities for both models,

plotted against a standard normal density. It can be seen that the three curves are mostly

very close to each other and that the di�erence with the normal becomes larger as far as

the tail behavior and the region about zero are concerned. One reasonable explanation of

this fact is that both GARCH and local constant modelling fail to predict extreme events

which typically occur in �nancial time series. A possible testing procedure compares the

third and fourth empirical moments with skewness and kurtosis of the standard normal

distribution. This approach mostly focuses on the tails of the empirical density and it

usually leads to rejecting the hypothesis of conditional normality. We applied here the

Kolmogorov/Smirnov test, which is based on the uniform distance between the empirical

distribution and the theoretical one. The test statistic is:

KSn = sup
x
jWn(x)� �(x)j;

where Wn(x) is the empirical distribution and �(x) the standard normal distribution.

The critical values (Bronstein & Semendjajew 1991) for an � = 0:05 are between 1.35

and 1.36 and for an � = 0:01 are between 1.62 and 1.63. Table 4 presents the results of
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the test statistic for the nine exchange rates for both the local constant and the GARCH

model. We remark that the returns are standardized by the one-step forecasted standard

deviation. It appears that the local constant model at least partially succeeds in normal-

izing the returns, while the hypothesis of normality is always rejected for the GARCH

model at high signi�cance level. As far as the forecasting e�ciency is concerned (Ta-

Table 4: Results of the Kolmogorov/Smirnov test. (*) and (**) indicate the rejection of the

hypothesis of normality at a 5%, 1% signi�cance level respectively.

Currency Loc. Const. GARCH

Canadian $ 1:3990� 1:7352��

Norwegian Kr. 1.1014 1:7271��

Swedish Kr. 1.1377 2:1376��

New Zeeland $ 1.2432 2:7273��

Japanese Yen 1.1577 2:1606��

Danish Kr. 1:5544� 1:6047�

Swiss Fr. 1.2698 1:5872�

Australian $ 1.3346 2:1127��

British Pd. 1.3268 2:3691��

ble 5), the GARCH (1; 1) is slightly outperformed by the local constant model. Both for

the 1-step-ahead and 5-step-ahead forecast horizon the local constant model is preferred

by all exchange rates for d2-distance, while six exchange rates out of nine prefer the local

constant model for d1-distance.

Table 5: Relative forecasting performance: local constant versus GARCH modeling for di�erent

forecast horizons and di�erent measures of the forecasting ability.

1 step forecast 5 step forecast

d1 d2 d1 d2

Canadian $ 1.007 0.985 1.025 0.994

Norwegian Kr. 0.974 0.937 0.982 0.941

Swedish Kr. 0.983 0.942 0.997 0.950

New Zeeland $ 0.962 0.857 0.962 0.858

Japanese Yen 0.982 0.949 0.992 0.969

Danish Kr. 1.009 0.982 1.017 0.993

Swiss Fr. 0.990 0.979 0.992 0.984

Australian $ 0.975 0.919 0.982 0.921

British Pd. 1.010 0.955 1.029 0.968
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Figure 6: Empirical densities of the standardized returns of the Canadian$/US$ exchange rate

(upper plot) Japanese Yen/US$ (lower plot). The three curves represent respectively: local

constant model (straight line), GARCH (thin dotted line) and a standard normal density (thick

dotted line).

8 Conclusions and outlook

A new algorithm for estimating and short term forecasting the volatility of �nancial

returns is proposed. It is assumed that a local constant approximation of the volatility

process holds over some unknown interval. The issue of �ltering this interval of time

homogeneity out of the return time series is considered, and a nonparametric approach

is presented. The estimate of the volatility process is then found by averaging over the

interval of time homogeneity.

The problem of selecting the smoothing parameters is analyzed through Monte Carlo sim-

ulation. First all the parameter sets are computed, which reject a true time homogeneous

interval with an approximate frequency of 5%, then the set of smoothing parameters is
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chosen that optimizes the forecasting performances.

Finally an empirical application to exchange rate returns and a comparison with a GARCH

(1; 1) provides a good evidence that the new method is competitive and can even outper-

form the standard parametric models especially for forecasting with a short horizon.

An important feature of the proposed method is that it allows for a straightforward

extension on the multivariate volatility estimation, see Härdle, Herwartz & Spokoiny

(2000) for a detailed discussion.

Obviously, if the underlying conditional distribution is not normal, the estimated volatility

can give only a partial information about the riskiness of the asset. Recent developments

in the risk analysis tends to focus on the estimation of the quantiles of the distribu-

tion. In this direction the local constant estimator can be used as a convenient tool for

pre-whitening the returns and obtain a sample of �almost� identical and independently

distributed returns, which do not display any more variance clustering. So that the usual

techniques of quantile estimation could be applied in a static framework. We regard such

a development as a topic for future research.
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Figure 7: Exchange rate returns, estimated standard deviation and interval of homogeneity for

Canadian$/US$ (the �rst three plots) and Japanese Yen/US$ (the last three plots).
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Figure 8: First one hundred lags of the autocorrelation function. From the left: ACF of the

absolute exchange rate returns, ACF of the absolute returns divided by the standard deviation

estimated with local constant, ACF of the absolute returns divided by the standard deviation

estimated with GARCH (1; 1). From the top: Canadian$, Norwegian Krone, Swedish Krone,

New Zeeland$, Japanese Yen, Danish Krone, Swiss Franc, Australian$ and British Pound.
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9 Proofs

In this section we collect the proofs of the results stated above. We begin by considering

some useful properties of the power transformation introduced in Section 2.1.

Some properties of the power transformation

Let g
(u) be the moment generating function of �
 = D�1

 (j�j
 � C
) :

g
(u) = Ee
u�
 :

It is easy to see that this function is �nite for 
 < 2 and all u and for 
 = 2 and u < 1 .

For 
 = 1=2 the function 2u�2 log g
(u) is plotted in Figure 9.
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Figure 9: The log-Laplace transform of �1=2 divided by the log-Laplace transform of a standard

normal r. v.

Lemma 9.1 For every 
 � 1 there exists a constant a
 > 0 such that

logEeu�
 �
a
u

2

2
: (9.1)

Proof. It is also easy to check that the function g
(u) with 
 � 1 is positive and

smooth (in�nitely many times di�erentiable). Moreover, the function h
(u) = log g
(u)

is also smooth and satis�es h
(0) = h0
(0) = 0 , h00
(0) = E�2
 = 1 . This yields that
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u�2h
(u) = u�2 log g
(u) is bounded on every �nite interval of the positive semiaxis

[0;1) . It therefore remains to show that

lim
u!1

u�2 logEeu�
 <1:

Since �
(u) = D�1

 (j�j
 � C
) , it su�ces to bound u�2Eeuj�j


=D
 . It holds for every

t > 0

Eeuj�j

D

�1

 = Eeuj�j


D
�1

 1(j�j � t) +Eeuj�j


D
�1

 1(j�j > t)

� eut

D

�1

 +Eeuj�jt


�1D
�1



� eut

D

�1

 + 2Eeu�t


�1D
�1



= eut

D

�1

 + 2eu

2t2
�2D
�2

 :

Next, with t = u1=(2
) and 
 < 1 , it holds for u!1 :

u�2 log eut

D

�1

 = u�1=2D�1


 ! 0;

u�2 log eu
2t2
�2D

�2

 = u�(1�
)=
D�2


 ! 0:

For 
 = 1 , the last expression remains bounded and the assertion follows.

For 
 = 1=2 , condition (9.1) meets with a
 = 1:005 .

The next technical statement is a direct consequence of Lemma 9.1.

Lemma 9.2 Let ct be a predictable process w.r.t. the �ltration F = (Ft) , i.e. every

ct is a function of previous observations R1; : : : ; Rt�1 : ct = ct(R1; : : : ; Rt�1) . Then the

process

Et = exp

 
tX

s=1

cs�s �
a


2

tX
s=1

c2s

!
is a supermartingale, that is,

E (Et j Ft�1) � Et�1: (9.2)

The next result has been stated in Lipster & Spokoiny (1999) for Gaussian martingales,

however, the proof is based only on the property (9.2) and allows for a straightforward

extension to the sums of the form Mt =
Pt

s=1 cs�s .

Theorem 9.1 Let Mt =
Pt

s=1 cs�s with predictable coe�cients cs . Let then T be �xed

or a stopping time. For every b > 0 , B � 1 and � � 1

P

�
jMT j > �

p
hMiT ; b �

p
hMiT � bB

�
� 4

p
e� (1 + logB) e

� �2

2a
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where

hMiT =

TX
t=1

c2t :

Remark 9.1 If the coe�cients ct are deterministic then the quadratic characteristic

hMiT is also deterministic, and one derives directly from Lemma 9.1 using the Tschebysh-

e� inequality:

P

�
jMT j > �

p
hMiT

�
� 2e

� �
2

2a
 :

Proof of Theorem 3.1

Due to (3.3) the bias jEe�I � �� j of the estimate e�I is bounded by �I . De�ne

��I =
1

jIj

X
t2I

�t:

Then by the Cauchy-Schwarz inequality

j��I � �� j = jIj�1
�����X
t2I

(�t � �� )

����� �
(
jIj�1

X
t2I

(�t � �� )
2

)1=2

� �I (9.3)

and, since ��I is the arithmetic mean of �t over I ,X
t2I

(�t � ��I)
2 �

X
t2I

(�t � �� )
2 � jIj�2

I :

This yieldsX
t2I

�2t = jIj��2I +
X
t2I

(�t � ��I)
2 � jIj

�
��2I +�2

I

�
� jIj

�
��I +�I

�2
: (9.4)

Next, by (3.2)

e�I � �� = jIj�1
X
t2I

(�t � �� ) + s
 jIj�1
X
t2I

�t�t

and the use of (9.3) yields

P

�
je�I � �� j > �I + �vI

�
� P

 ����X
t2I

�t�t

���� > �

�X
t2I

�2t

�1=2
!
:

In addition, if the volatility coe�cient �t satis�es b � �2t � bB with some positive

constant b;B , then the conditional variance v2I = s2
 jIj�2
P

t2I �
2
t ful�lls

b0jIj�1 � v2I � b0jIj�1B

with b0 = bs2
 . Now the assertion follows from (3.5) and Theorem 9.1.
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Proof of Theorem 3.2

Clearly

je�I � �� j � je�I � ��I j+ j��I � �� j � �I + je�I � ��I j

and hence,

P

�
je�I � �� j > �I + �s
(e�I +�I)jIj�1=2

�
� P

�
je�I � ��I j > �s
(��I � je�I � ��I j+�I)jIj�1=2

�
� P

�
je�I � ��I j >

�s


1 + �s
 jIj�1=2
(��I +�I)jIj�1=2

�
:

By (2.3)

e�I � ��� = jIj�1
X
t2I

(jRtj
 � �t) = jIj�1s

X
t2I

�t�t

and the use of (9.4) implies

P

�
je�I � ��I j >

�s


1 + �s
 jIj�1=2
(��I +�I)jIj�1=2

�
� P

 ����X
t2I

�t�t

���� > �

1 + �s
 jIj�1=2

�X
t2I

�2t

�1=2
!
:

Now the desirable result follows directly from Theorem 9.1.

Proof of Theorem 4.1

Let II be the �ideal� interval from (4.1). We intend to show thatn���b� � ��

��� > 2(�+ �)vII

o
�

[
J2J (II)

n
je�J � ��J j > �JvJ

o
which would imply the assertion in view of Theorem 9.1, cf. the proof of Theorem 3.1.

This statement is equivalent to saying that the inequality jb� � �� j > 2(� + �)vII is

impossible if

je�J � ��J j � �JvJ ; 8J 2 J (II): (9.5)

Obviouslyn
jb� � �� j > 2(�+ �)vII

o
�
n
jb� � �� j > 2(�+ �)vII ; II � bIo + fII is rejectedg :

We consider separately each event in the right side of this inequality using the following

31



Lemma 9.3 Let (9.5) hold true. Then, for every 8J 2 J (II) ,

evJ �
vJ

1 + �s
 jJ j�1=2
;

evJ � vJ

�
2�

1

1 + �s
 jJ j�1=2

�

Proof. De�ne �0J =
�
jJ j�1

P
t2J �

2
t

�1=2
. Then vJ = s
 jJ j�1=2�0J and evJ = s
 jJ j�1=2e�J .

The de�nition of �I implies

j�0J � ��J j =

 
��2J +

1

jJ j

X
t2J

(�t � ��J)
2

!1=2

� ��J �
�
��2J +�2

J

�1=2 � ��J � �J :

Along with (9.5) this implies

evJ = s
 jJ j�1=2e�J
� s
 jJ j�1=2

�
�0J � je�J � ��J j � j�0J � ��J j

�
� vJ � s
 jJ j�1=2(�JvJ +�J)

= vJ

 
1�

�s
 jJ j�1=2

1 + �s
 jJ j�1=2

!

and the �rst assertion of the lemma follows. The second one is proved similarly.

It holds on the event fII � bIg in view of the de�nition of bI
je�
bI
� e�II j � �evII + �ev

bI
� (�+ �)evII

and by Lemma 9.3

je�
bI
� e�IIj � (�+ �)vII

�
2�

1

1 + �s
 jIIj�1=2

�
Next, by (9.5)

je�II � �� j � je�II � ��II j+ j��II � �� j � je�II � ��II j+�II

� �IIvII +�II =
�vII

1 + �s
 jIIj�1=2
:

Hence, fII � bIg implies

jb� � �� j � je�
bI
� e�II j+ je�II � �� j

� 2�vII + �vII

�
2�

1

1 + �s
 jIIj�1=2

�
� 2(�+ �)vII :
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Now we study the event fII is rejectedg . By de�nition

fII is rejectedg =
[

I2J (II)

[
J2J (I)

n
je�I � e�J j > �evI + �evJo :

Since j��J � �� j � �J = ÆJvJ for all J 2 J (II) , condition (9.5) yields for every pair

J � I 2 J (II)

je�I � e�J j � je�I � ��I j+ j��I � �� j+ je�J � ��J j+ j��J � �� j

� (�I + ÆI)vI + (�J + ÆJ )vJ

=
�vI

1 + �s
 jIj�1=2
+

�vJ

1 + �s
 jJ j�1=2
:

By Lemma 9.3

�evI + �evJ � �vI

1 + �s
 jIj�1=2
+

�vJ

1 + �s
 jJ j�1=2

so that the event fII is rejectedg is impossible under (9.5) in view of � � � .

Proof of Theorem 5.2

To simplify the exposition, we suppose that � = 1 . (This does not restrict generality

since one can always normalize each `observation' Yt by � .) We also suppose that

�0 > 1 and b = 2(�0 � 1) . (The case when �0 < � can be considered similarly.) Finally

we assume that m0 = m (One can easily see that this case is the most di�cult one.)

Under the change-point model, the `observations' Yt = jRtj
 are independent for all t

and identically distributed within each interval of homogeneity. In particular, it holds fore�J with J = [Tcp �m;Tcp) :

e�J =
1

m

X
t2J

Yt = 1 +
s
p
m
� ;

with � = m�1=2P
t2J �t . Similarly, for I = [� � 2m; � [ ,

e�I =
1

2m

X
t2I

Yt =
1 + �0

2
+

s


2m

X
t2J

�t +
s
�

0

2m

X
t2II

�t

=
1 + �0

2
+

s


2
p
m
� +

s
�
0

2
p
m
�0

with �0 = m�1=2P
t2II �t , and hence,

e�I � e�J = b�
s


2
p
m
� +

s
�
0

2
p
m
�0 :
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Since Ej�j2 = Ej�0j2 = 1 , by Lemma 9.1 (see also Remark 9.1)

P (j�j > �) + P
�
j�0j > �

�
� 4e

� �
2

2a


and it su�ces to check that the inequalities j�j � � , j�0j � � and (5.1) imply

je�J � e�I j � �evJ + �evI :
Since 1 + �0 = 2b and since evJ = s
 jJ j�1=2e�J and similarly for evI , it holds under the
assumptions made:

je�J � e�I j � b�
�s


2
p
m
(1 + �0) = b(1� Æ)� Æ;

evJ =
s
p
m

�
1 +

s
p
m
�

�
� ��1Æ (1 + Æ) ;

evI =
s
p
2m

�
1 + �0

2
+
s
(� + �0�0)

2
p
m

�
�

s
p
2m

1 + �0

2
(1 + Æ) =

(1 + b)Æ(1 + Æ)

�
p
2

:

Therefore

je�J � e�I j � �evJ � �evI
� b(1 � Æ) � Æ � Æ(1 + Æ) �

�

�
p
2
(1 + b)Æ(1 + Æ)

= b

�
1� Æ �

�

�
p
2
Æ(1 + Æ)

�
� Æ � Æ(1 + Æ)�

�

�
p
2
Æ(1 + Æ) > 0

in view of (5.1) and the assertion follows.
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