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Abstract

A model allowing for efficiently obtaining band structure information on semiconduc-
tor Quantum Well structures will be demonstrated which is based on matrix-valued
kp-Schrödinger operators. Effects such as confinement, band mixing, spin-orbit in-
teraction and strain can be treated consistently. The impact of prominent Coulomb
effects can be calculated by including the Hartree interaction via the Poisson equa-
tion and the bandgap renormalization via exchange-correlation potentials, resulting
in generalized (matrix-valued) Schrödinger-Poisson systems. Band structure infor-
mation enters via densities and the optical response function into comprehensive
simulations of Multi Quantum Well lasers. These device simulations yield valuable
information on device characteristics, including effects of carrier transport, waveg-
uiding and heating and can be used for optimization.

1999 Physics and Astronomy Classification Scheme (PACS):

42.55.Px, 73.20.Dx, 85.60.Bt, 78.66.Fd.
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1 Introduction

Semiconductor lasers are the most promising optoelectronic devices for generation of
intense light in very small spectral domains. With emission wavelengths ranging now
from near UV to far IR, these laser diodes are used in a wide range of applications.
Their operating state is usually characterized by conduction bands occupied with
electrons and valence bands occupied with holes which are separated by an energy
gap. Emission of light, the wavelength of which is roughly given by this bandgap,
results from recombination of electron-hole pairs. Applications depending on proper
adjustment of the emission wavelength require bandgap engineering.

Laser action requires optical gain, the description of which is the heart of semicon-
ductor laser modeling. The gain corresponds to the imaginary part of the optical
response function, which itself depends on almost all properties of the semiconduc-
tor material and the operating state of the device as well as on properties of the
optical field, e.g. its wavelength and polarization. To increase the gain in a laser,
carriers and photons should be confined together in a small (optical active) region
(see Fig. 1), requiring semiconductor heterostructures, in general nanostructures.
During the last decade sophisticated Quantum Well structures have been developed
to achieve good confinement and high optical gain. This has been done by band
structure engineering, using in particular geometry, band offset and strain. Widely
applied, Strained Multi Quantum Wells (SMQW) are subject to intense research –
as in this project.

act ive

p-contact

n-contactn-InP

p-InP

p-InGaAs

SiNx

InGaAsP-
waveguide

Figure 1: Scheme of a Ridge-Waveguide (RW) Strained Multi Quantum Well
(SMQW) laser diode, by Heinrich–Hertz–Institut für Nachrichtentechnik, Berlin.
By forward biasing the diode, holes are injected from the p-contact, electrons from
the n-contact, and get confined in the optical active SMQW region, which is en-
larged on the right. Supported by the waveguide layers and the ridge optical modes
are guided along the active region to achieve a significant optical gain.

For state of the art optoelectronic devices mainly two material classes are important
which differ in their crystal symmetry: cubic and wurtzite. Cubic materials can
be found in long wavelength lasers based on e.g. Indium Phosphide (InP) and/or
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Gallium Arsenide (GaAs). The more recent blue/UV diode lasers are based on
Gallium Nitride (GaN), usually grown in wurtzite configuration. Gain spectra for
a cubic (left) and a wurtzite material system (right) are drawn in Fig. 2, calculated
with KPLIB[1]. The optical response is extremely sensitive to the electronic band
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Figure 2: Examples of material gain dispersion in Strained Quantum Wells at room
temperature for different sheet concentrations. Left: InGaAsP, Right: AlGaN/GaN.

structure and to the transition matrix elements. The calculation of these quantities
for the optical active SMQW region (see Fig. 1) will be subject of section 2. We
have used these data for predicting the characteristics of devices as drawn in Fig. 1.
Corresponding models and simulation results will be presented in section 3.

Throughout this paper our example device is the SMQW-laser depicted in Fig. 1.
It is a 470µm long single section Fabry–Perot laser with cleaved facets, designed
for emitting at 1.55 µm. The optical active region (enlarged on the right of Fig. 1)
consists of six 7nm thick compressively strained Quantum Wells, sandwiched by
10nm thick tensile strained barriers.

2 Quantum States

Strained Multi Quantum Wells give rise to strong band mixing effects. These affect
not only the Density of States, but also the transition matrix elements between these
states and hence the optical response function.

We treat band mixing effects based on kp-calculations with the quantum states
Ψl,k‖(r) described within the Envelope Function Approach:

Ψl,k‖(r) = exp(ik‖r‖)
∑

ν

Fνl(z;k‖)uν,k=0(r). (1)

The index ‖ indicates in-plane vectors and z denotes the quantization direction. The
uν,k=0(r) are zone-center Bloch functions, varying on the atomic scale, Fνl(z;k‖) are
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envelope functions, varying on the nanoscale. Based on the conventional kp method
[2, ch.4] applied here this approach yields a matrix Hamiltonian

Hµν

(

k‖, kz = −i
∂

∂z
, V (z), ε

)

.

In this simple form this kp-Schrödinger operator covers the crystal symmetry and
the spin-orbit interaction, expressed by measurable Luttinger parameters, the con-
finement V (z) imposed by the band offsets of the adjacent materials, and the impact
of strain ε induced by their different solitary lattice constants.

The envelope functions Fνl of the quantum states and the corresponding subband
dispersions El(k‖) are solutions of the respective eigenvalue problem

∑

ν

Hµν

(

k‖, kz = −i
∂

∂z
; . . .

)

Fνl(z;k‖) = El(k‖)Fµl(z;k‖). (2)

In KPLIB [1], we have implemented several stages in the hierarchy of kp-models.
The simplest stage applies to Light Hole (LH) – Heavy Hole (HH) band mixing
based on a 4x4 matrix Hamiltonian. Additional coupling to Spin-Split Off (SO)
bands enlarges the problem to a 6x6 matrix Hamiltonian. Both are purely valence-
band Hamiltonians valid for describing the hole dispersion to some extent. Valence-
band (VB) Hamiltonians are mathematically advantageous, because they are always
semibounded [3].

For consistently modeling mixing of conduction and valence bands we use 8x8 Hamil-
tonians. This causes nonparabolic dispersion for the conduction subbands as well
and allows for consistently predicting optoelectronic properties. 8x8 Hamiltonians
are not semibounded and their mathematical and numerical treatment is much more
difficult, because standard comparison arguments for eigenvalues do not apply. In-
deed, spurious solutions and their elimination are discussed in the literature [4].
We have performed a spectral analysis [3], showing, that spurious solutions don’t
appear if the interband coupling remains weak enough. This is the case in wide gap
materials as GaN, whereas GaAs and InP based materials are situated close above
this limit.

2.1 Multi Quantum Wells

We have investigated the Multi Quantum Wells based on (8x8) kp-calculations.
With decreasing barrier width the states localized in the individual Quantum Wells
start to couple with each other which gives rise to miniband formation. We have
studied this behaviour, which is illustrated in Fig. 3. In our example, no dispersion is
observed for the lowest conduction and highest valence minibands, which contribute
most to the optical response. This is a typical feature, indicating a good laser design
for achieving small linewidths in the laser emission. In such cases we may confine
to the single quantum well case, which considerably reduces the numerical effort.
As is visible in Fig. 3, the other minibands exhibit dispersion, corresponding to less
localized states which interfere in Multi Quantum Wells.

4



1 2 3 4 5 6 7 8 9 10 11 12
Nr. of Eigenvalue

800

850

900

950

1000

E
n

er
g

y 
[m

eV
]

conduction band
states

0.0 0.2 0.4 0.6 0.8 1.0
|k| [1/nm]

800

900

1000

1100

1200

1300

E
 [m

eV
]

[100]
[110]

conduction
subbands

1 2 3 4 5 6 7 8 9 10 11 12
Nr. of Eigenvalue

−60

−40

−20

0

20

E
n

er
g

y 
[m

eV
] valence band

states

0.0 0.2 0.4 0.6 0.8 1.0
|k|  [1/nm]

−150

−100

−50

0

E
 [m

eV
]

[100]
[110]

valence
subbands

Figure 3: Miniband formation in a
SMQW structure consisting of 6 Quan-
tum Wells. Due to symmetry all eigen-
values are twice degenerate, yielding
groups of 12 eigenvalues.

Figure 4: Subband dispersion and warp-
ing in a 7nm InGaAsP compressively
strained Quantum Well, calculated with
KPLIB for different crystallographic
directions in the k‖ plane.
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Figure 5: Interband oscillator strength dispersion for transitions between the lowest
conduction subband and the upper valence subbands for different crystallographic
directions, corresponding to Fig. 4, for TE– and TM–polarization.
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2.2 Single Quantum Wells

The conduction and valence subband dispersion El(k‖) for our example Quantum
Well is drawn in Fig. 4. Due to the compressive strain in the Quantum Well the LH-
HH degeneracy at k = 0 is lifted, and the upper two valence subbands correspond to
HH-like states. The dispersion is shown for two different crystallographic directions
([100] and [110]) in the k‖-plane, which exhibits the warping (angular dependence)
effect. Fig. 4 displays weak warping for conduction subbands, but strong warping
for the valence subbands.

2.3 Transition Matrix Elements

Taking the k-gradient of Hµν (k; . . .) and the solutions Fνi = Fνi(z;k‖) of (2) we get
the momentum matrix elements pij = pij(k‖):

pij =
m0

h̄

∑

µ,ν

〈

Fµi

∣

∣

∣
∇kHµν

(

k‖, kz; . . .
)

∣

∣

∣

∣

∣

ikz=
∂
∂z

∣

∣

∣
Fνj

〉

, (3)

(m0 = free electron mass) which quantify the transition rate between the states
involved under presence of optical excitation. This transition rate enters, e.g., the
optical gain, expressed by (7). The corresponding oscillator strengths for our quan-
tum well are depicted in Fig. 5, both for the TE-polarized (pij ⊥ ez) and the
TM-polarized case (pij ‖ ez). Obviously, the TE-polarization is favoured by our
particular structure, which is due to the support for the CB-HH like transitions by
the compressive strain in the wells (see Fig. 4). Especially for the main transitions
we have to state a strong influence of warping and it should be noted that calcula-
tions restricted to only [100] or [110] directions are expected to give wrong results
for the response functions.

2.4 Carrier Densities and Optical Response Function

If the Fermi levels φn and φp of the quantum confined electrons n and holes p are
given, or, alternatively, their sheet concentrations, then the quantum confined carrier
densities are obtained by

n(z) =
∑

l∈c

∫

d2k‖
(2π)2

f
(

El(k‖)− φn

)

∑

ν

|Fνl(z;k‖)|
2, (4)

p(z) =
∑

l∈v

∫

d2k‖
(2π)2

(

1− f
(

El(k‖)− φp

))

∑

ν

|Fνl(z;k‖)|
2 (5)

with the Fermi distribution

f(E) =

(

1 + exp

(

E

kBT

))−1

, (6)
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where kB denotes the Boltzmann constant and T the temperature. An example for
the corresponding density distributions in our quantum well structure is shown in
Fig. 7.

In addition, we can calculate the optical response function εopt. In our model the
real part of εopt, which corresponds to the (squared) refractive index, consists of
different contributions, stemming from a background as well as from interband and
intraband transitions which are calculated according to Wenzel et. al. [5]. The
resulting dispersion of the real part of εopt is shown for different sheet concentrations
in the left part of Fig. 6. Besides a (frequency dependent) prefactor the interband
contribution to the imaginary part of εopt corresponds to the material gain, which
we have calculated according to [6]:

g(ω) =
πh̄q2

ε0m
2

0
nrc

1

Lz

∑

i∈c
j∈v

∫

d2k‖
(2π)2

|pije|
2

Ei − Ej

f(Ei − φn) (1− f(Ej − φp))×

×

[

1− exp

(

h̄ω − (φn − φp)

kBT

)]

1

π

Γ

[(Ei − Ej)− h̄ω]2 + Γ2
, (7)

where the last factor includes broadening processes, modeled with a characteristic
intraband relaxation time τ of 60fs (Γ = h̄/τ). e is the polarization direction of the
optical field, q denotes the elementary charge, c the speed of light, nr the refractive
index and Lz is a normalization length. Examples for the dispersion of the imaginary
part of εopt are drawn in Fig. 6, which exhibit significant maxima, a prerequisite for
laser action (see also the gain maxima in Fig. 2).
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Figure 6: Dispersion of the real (left) and of the imaginary part (right: interband
contribution only) of the optical response (TE-case) in a 7nm compressively strained
InGaAsP Quantum Well for different sheet concentrations.

2.5 Selfconsistent Quantum States

The carriers are charged particles and therefore exert Coulomb interaction on each
other which is additionally modified by their fermionic character. The Coulomb
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interaction would guide us to much more complicated and nonlinear problems and
results in important physical effects [7, ch.4] - the most prominent of which being
the reduction of the bandgap to which we confine our analysis here. We include
into our kp-model a Hartree potential and, motivated by the Density Functional
Formalism [8], an exchange-correlation potential.

As can be seen from the thin lines in Fig. 7 the quantum confined carriers exhibit
different localization behaviour in the Quantum Well, which is due to the different
band offsets, Luttinger parameters and the presence of strain. In effect, an electro-
static potential builds up (see the full line in Fig. 8), which attracts the holes and
repulses the electrons from the well in our particular case. Therefore we expect more
equidistributed carriers than suggested by pure kp-calculations. This behaviour is
covered by including the Hartree interaction into the kp-Schrödinger operator. The
Hartree potential ϕH is a solution of the Poisson equation:

d

dz

(

ε
d

dz
ϕH

)

= q(n− p) (8)

where the carrier densities according to (4),(5) enter the r.h.s., ε is the static di-
electric permittivity. The arising system (2),(8) accomplished with (4),(5) can be
viewed as a generalized (matrix-valued) Schrödinger-Poisson system. The bandgap
shift now enters our model via density dependent exchange-correlation potentials
Vxc(n, p). Typical potentials are plotted in Fig. 8.

The mathematical analysis [9], [10] of the case without band mixing displays an
unique solution for certain Vxc–potentials. Fortunately, in our example we also ob-
served rapid convergence. In our particular case the wells and barriers are undoped.
Therefore, we are close to the local charge neutrality n = p. For this case we have
adopted a formula which is based on a result by Zimmermann [11] for parabolic
bands:

V e
xc = V h

xc ∝

√

ns
√

ns + T/T0

, ns ∝
n + p

2
, (9)

which is also valid for finite temperatures. Fig. 7 shows the impact of the Hartree-
contribution together with the exchange-correlation effects on the density distribu-
tions.

Exchange-correlation effects enhance the tendency for localization of the carriers in
the Quantum Well, uniformly for electrons and holes. At the chosen sheet concen-
tration the exchange-correlation potential Vxc is approximately of the same amount
as the Hartree potential (see Fig. 8). We have no net effect on the electrons be-
cause ϕH and Vxc nearly cancel each other, which is reflected in the similarity of the
pure-kp (thin) and the selfconsistent (thick) electron density distribution curve in
Fig. 7. For the holes the two potentials sum up to approximately twice the Hartree
potential effect. This yields a strong enhanced localization for the holes, as reflected
by the thick dashed curve in Fig. 7. The resulting net gap shrinkage of about 30meV
is finally reflected in the shift of the gain spectrum in Fig. 9. The redshift, approxi-
mately 50nm, of the TE- as well as the TM-gain spectra corresponds very good to
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that value. The relative enhancement of the gain maxima visible in Fig. 9 reflects
the more equidistributed electron- and hole wave functions, which results in a better
overlap between them and hence increases the oscillator strength.

3 Device Simulation

A schematic overview on our simulations based on the packages KPLIB [1] and
WIAS-TeSCA [12] is depicted in Fig. 10. The carrier transport is governed by

Optical Field

Heating

Drift-Diffusion equations

Carrier Flow

Density of States
gain

Quantum Confinement

kp-Schroedinger-Poisson system Energy transport equation

Helmholtz-equations

Power BalanceFD-statistics

Figure 10: Schema of how the differ-
ent models intertwine in our simula-
tions. The treatment of carrier flow,
optical field and heating is fully self-
consistent, whereas the results of the
kp-calculations (shaded module) en-
ter parametrically via the Density of
States and the optical gain.

Drift-Diffusion equations for electrons and holes:

q
∂

∂t
n−∇Jn(n, ϕ) = qR (10)

q
∂

∂t
p +∇Jp(p, ϕ) = qR, (11)

which are coupled to the Poisson equation for the electrostatic potential ϕ

−∇(ε∇ϕ) = q(ND −NA + p− n). (12)

In the above equations ND−NA is the net doping profile and R in (10),(11) is short
for all recombination terms, which depend on the carrier densities, the electrostatic
potential, the optical field and much other quantities. The relation between the
carrier densities and the potentials is described by state equations in terms of Fermi-
Dirac statistics

n = NcF1/2

(

Ec + qFn − qϕ

kBT

)

, p = NvF1/2

(

qFp − Ev − qϕ

kBT

)

, (13)

where Ec denotes the conduction and Ev the valence band edge. Fn and Fp are
the quasi Fermi potentials of electrons and holes, the gradients of which drive the
current densities Jn,Jp, respectively. F1/2 is the Fermi-integral of order 1/2.

According to (13) the carriers are treated bulk-like with band-edge Density of States
Nc and Nv. For the quantum confined carriers the kp-calculations yield at least a
modified Density of States Nc and Nv. In an advanced stage of the model the
quantum confined carriers will be established as a separate species coupled to the
free carriers by capture-escape mechanisms.
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3.1 Optics

The above carrier equations are coupled to equations for the optical field. Due to
properties of the laser resonator the latter are scalar Helmholtz equations (written
here for TE modes)

[

∆ +
ω2

c2
εopt(ω, n, p)

]

Φj = β2

j Φj, (14)

which describe the spatial distribution of the optical modes Φj within the simulation
plane (see Fig. 11). These modes are characterized by their respective (complex)
eigenvalues βj. The imaginary part of εopt(ω, n, p) in (14) contains the material gain
contribution, which is fitted to our (8x8) kp-calculations (see (7) and Fig. 6), as
well as contributions from the Inter Valence Band Absorption (IVBA), described
by phenomenological models in WIAS-TeSCA. As argued earlier and indicated by
Fig. 9, we have strong support for the TE-polarization, but nearly no support for
the TM-polarization in our structure. For this reason, calculations here are confined
to TE modes, drawn in Fig. 11.

In 2D-simulations with WIAS-TeSCA, longitudinal properties are considered by
assuming a longitudinally homogeneous power distribution, which is approximately
met in Fabry-Perot lasers or in edge-emitting lasers with properly designed Bragg
gratings [13]. In our calculations the two modes shown in Fig. 11 have been involved,
the number of photons Sj of which are balanced by corresponding photon rate
equations

Ṡj = vgj
(2=mβj − αj)Sj + Ṡspont

j , (15)

where Ṡspont
j is short for the spontaneous emission into the mode, vgj

denotes the
modal group velocity, αj is the sum of longitudinal scattering- and output losses at
the facets and =mβj is the imaginary part of the corresponding eigenvalue subject
to (14).

Figure 11: Intensity distribution of transverse TE-modes in a cross section of a
RW-Laser as shown in Fig. 1, calculated with WIAS-TeSCA. Due to symmetry
only the right half plane has been considered, which only partially is shown. Left:
fundamental TE mode, right: 1st excited TE mode.
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3.2 Heating

For a realistic estimation of the device performance heating effects are considered
within the model. To that end WIAS-TeSCA comprises an energy transport equa-
tion [14], [15].

In Fig. 12 a stationary spatial temperature distribution for our example device is
shown. The temperature of the heat sink was adjusted to room temperature (300K).
The main heat source is located within the active region, corresponding to the profile
of the main mode. Accordingly, we address the main heating processes to the IVBA.

Figure 12: Temperature
distribution, calculated
with WIAS-TeSCA.
I=27 mA, 3mW internal
power. The maximum
local heating is +3K
in the active region,
corresponding to the
localization of the main
mode (see Fig. 11) and
can be mainly addressed
to the IVBA.
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Figure 13: PI-
characteristics of the
SMQW-RW Laser, for
heat sink temperatures
from 300K to 370K. A
significant thermal shift
of the laser threshold
is observed, as well
as a thermal roll over
at high temperatures,
which corresponds to the
experiments.

For estimating the thermal stability of the device operation we have studied the in-
fluence of different temperatures of the heat sink on the power-current (PI) charac-
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teristics. Results of our simulations are shown in Fig. 13. Two important effects are
observed, which are in agreement with the measurements. First, we can reproduce
the significant shift of the laser threshold with temperature caused by decreasing
material gain accompanied by an increase of IVBA. Due to these processes higher
carrier densities are required for lasing, which enhances the recombination and there-
fore requires a larger threshold current (Fig. 13). Second, we can computationally
reproduce a thermal roll-over at higher temperatures, which can be explained mainly
by the significant increase of the Auger recombination which strongly decreases the
quantum efficiency.

4 Summary

Many modern optoelectronic applications essentially rely on Quantum Well struc-
tures which need to be properly designed. Based on the Envelope Function Ap-
proach and kp-theory, a model has been developed which allows to simulate such
structures consistently. Important information provided by the model are the non-
parabolic band structure, the quantum confined states, their respective transition
matrix elements, carrier densities and the optical response function, which is crucial
for semiconductor laser modeling. Furthermore, this model has been extended for
the Hartree interaction as well as for the density dependent bandgap shift to become
as realistic as possible. Based on such results, more comprehensive device simula-
tions have been performed. These simulations additionally included effects of carrier
transport, doping, optical waveguiding and heating. The simulation results are in
good agreement with the experiments, indicating their applicability for designing
modern optoelectronic devices.
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Berlin) and H.-J. Wünsche (HU Berlin) for many fruitful discussions on laser mod-
eling. Uwe Bandelow gratefully acknowledges the German Federal Ministry for Ed-
ucation, Sciences, Research and Technology for support of this work under grant no.
03-KA7FV1-4. The work of Thomas Koprucki has been supported by the Deutsche
Forschungsgemeinschaft under grant no. HA 1807/5-1.

References

[1] T. Koprucki and U. Bandelow. KPLIB: An open tool box for the numerical
treatment of k · p Schrödinger operators. WIAS Report, in preparation.

13



[2] S. L. Chuang. Physics of optoelectronic devices. Wiley&Sons, New York, 1995.

[3] U. Bandelow, H.-Chr. Kaiser, T. Koprucki, and J. Rehberg. Spectral properties
of k · p Schrödinger operators in one space dimension. submitted to Numerical
Functional Analysis and Optimization.

[4] B. A. Foreman. Elimination of spurious solutions from eight–band k · p theory.
Physical Review B, 56:R12748–R12751, 1997.

[5] H. Wenzel, G. Erbert, and P. M. Enders. Improved theory of the refractive–
index change in quantum–well lasers. IEEE Journal of Selected Topics in Quan-
tum Electronics, 5(3):637–642, 1999.

[6] P.M. Enders. Enhancement and spectral shift of optical gain in semiconductors
from non–markovian intraband relaxation. IEEE Journal of Quantum Elec-
tronics, 33(4):580–588, 1997.

[7] Weng W. Chow, Stephan W. Koch, and Murray Sargent III. Semiconductor–
Laser Physics. Springer–Verlag, Berlin, 1994.

[8] R. M. Dreizler and E. K. U. Gross. Density Functional Theory. Springer–Verlag,
Berlin, 1990.

[9] H.-Chr. Kaiser and J. Rehberg. About a one–dimensional stationary
Schrödinger–Poisson system with Kohn–Sham potential. Zeitschrift für Ange-
wandte Mathematik und Physik (ZAMP), 50:423–458, 1999.

[10] H.-Chr. Kaiser and J. Rehberg. About a stationary Schrödinger–Poisson system
with Kohn–Sham potential in a bounded two– or three–dimensional domain.
Nonlinear Analysis, 41:33–72, 2000.

[11] R. Zimmermann. Many–Particle Theory of Highly Exited Semiconductors, vol-
ume 18 of Teubner–Texte zur Physik. BSB Teubner, Leipzig, 1988.

[12] H. Gajewski et al. TeSCA Two– and three–dimensional SemiConductor Analy-
sis package. Weierstrass Institute for Applied Analysis and Stochastics, Mohren-
straße 39, 10117 Berlin, Germany.

[13] H. J. Wünsche, U. Bandelow, and H. Wenzel. Calculation of combined lateral
and longitudinal spatial hole burning in λ/4 shifted DFB lasers. IEEE Journ.
of Quant. electron., 29(6):1751–1761, 1993.

[14] U. Bandelow, H. Gajewski, and H.-Chr. Kaiser. Modeling combined effects
of carrier injection, photon dynamics and heating in Strained Multi-Quantum
Well Lasers. to appear in SPIE Proc. of Physics and Simulation of Optoelec-
tronic Devices VIII, 2000.

[15] G. Albinus, H. Gajewski, and R. Hünlich. Thermodynamic design of energy
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