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Abstract

It is our aim to give a new treatment for some classical models of arches and

plates and for their optimization. In particular, our approach allows to study

nonsmooth arches, while the standard assumptions from the literature require

W
3;1

-regularity for the parametric representation. Moreover, by a duality-

type argument, the deformation of the arches may be explicitly expressed by

integral formulas.

As examples for the shape optimization problems under study, we mention

the design of the middle curve of a clamped arch or of the thickness of a

clamped plate such that, under a prescribed load, the obtained de�ection

satis�es certain desired properties. In all cases, no smoothness is required for

the design parameters.

1 Introduction

If ' : [0; 1] ! IR
2 is a smooth clamped arch and c denotes its curvature, then the

classical Kirchho�-Love model (with normalized mechanical constants) is given by:

1Z
0

h1
"
(v01 � c v2)(u

0

1 � c u2) + (v02 + c v1)
0(u02 + c u1)

0

i
ds

=

1Z
0

(f1 u1 + f2 u2) ds ; 8 u1 2 H
1
0(0; 1) ; 8 u2 2 H

2
0 (0; 1) :

(1.1)

Here,
p
" is the constant thickness of the arch, v1 2 H

1
0 (0; 1), v2 2 H

2
0 (0; 1) are

the tangential, respectively, the normal components of the deformation in the local

coordinate system associated with the arch, and [f1; f2] is a similar representation of

the forces, including the internal and external loading of the arch, which are assumed

to act in the same plane.

A thorough presentation via Dirichlet's principle and Korn's inequality of the ex-

istence and the uniqueness of the solution for (1.1) may be found in Ciarlet [12,

p. 432]. In Chenais and Paumier [9] the �locking� problem, in connection with the

numerical approximation of (1.1) and of shells, is discussed: if the discretization

parameter is of the same order as ", then the obtained numerical approximation

may be meaningless, and special �nite element schemes are necessary in order to

solve (1.1).
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In Section 1, we introduce a new variational formulation for (1.1), based on optimal

control theory, which is valid also for Lipschitz (or, by reparametrization � see

Remark 2.5� absolutely continuous) mappings '. Using duality-type arguments,

we derive explicit integration rules for (1.1). If ' is smooth, we show that our solution

satis�es (1.1). In the general case, if ' is approximated by a sequence of smooth

functions '
Æ
with Æ ! 0 (obtained by a regularization via Friedrichs molli�ers), the

approximation remains valid for the corresponding solutions, as well.

This shows that our variational formulation is a natural extension of (1.1) to the case

of nonsmooth arches. It also provides, by its explicit character, a complete solution

of the above mentioned �locking� problem in dimension one. We also study the

behaviour for "! 0 and obtain, under the weak optimal control formulation of (1.1),

the analogue of �exural models in the sense of Ciarlet [13]. Some of the results of this

section were announced without proofs in Sprekels and Tiba [23]. Our arguments

neither use the Dirichlet principle nor the Korn inequality. Moreover, although the

arch may have an in�nity of corners, we do not impose transmission conditions

as in Geymonat and Sanchez-Palencia [15] � they are implicitly contained in our

approach. Models for shells and rods, under low geometrical regularity conditions,

are also discussed in Blouza and Le Dret [6], Chapelle [8].

In Section 3, we use the optimal control formulation from the previous section in its

equivalent form obtained by a variant of Pontryagin's maximum principle. For given

[f1; f2], we study the shape optimization problem of �nding ' in a closed bounded

subset of the space of Lipschitz arches, such that the obtained de�ection [v1; v2] has

certain desired properties.

It should be noted that in this setting the considered optimization problem ap-

pears as a nonconvex control-into-coe�cients problem. We prove the existence of

the minimizer and we derive the �rst order optimality conditions, by computing

the directional derivative of the cost. Similar problems were studied by Rousselet,

Piekarski and Myslinski [18], Chenais and Rousselet [10], Chenais, Rousselet and

Benedict [11], under di�erentiability assumptions.

In Section 4, we consider the case of nonhomogeneous clamped plates with variable

thickness u 2 L
1(
) in a smooth domain 
 � IR

N :

�(u3�y) = f in 
 ;

y = z on @
 ;

@y

@n
=

@z

@n
on @
 ;

(1.2)

where the load f 2 L
2(
) and z 2 H

2(
) are given. A characterization of the

solution of (1.2) via an optimal control problem is obtained as in Section 2. For

shape optimization problems associated to (1.2), existence for u in closed bounded

sets of L1(
) was established in Sprekels and Tiba [21]. Here, we derive the �rst

order optimality conditions without imposing di�erentiability assumptions on u .

They are used to prove bang-bang type results in some applications.
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The last section collects numerical experiments related to arches and to their op-

timization. For simple input functions, the deformations can be computed by

MAPLE. In the optimization case, local gradient methods are combined with some

global search, due to the nonconvexity of the problem. We have succeeded in �nding,

in some examples, global minimum points which have been theoretically justi�ed a

posteriori.

Finally, we point out that the core of our methods are various special decompositions

of (1.1) or (1.2) obtained via the �rst order optimality conditions for appropriately

de�ned control problems. In this respect, the present work continues the investiga-

tions from Sprekels and Tiba [19, 20, 21, 22, 23]. The main tools that we are using

are control theory and duality.

2 The control approach

Let �(t) denote the angle between the tangent vector to the arch (given by '
0)

and the horizontal axis. If ' is smooth, then �
0 = c , see Ciarlet [12, p. 432]. If

' 2 (W 1;1(0; 1))2 , then � 2 L
1(0; 1) and this is the assumption we impose in the

sequel. Note that in this case the variational formulation (1.1) is not meaningful.

Now, we introduce the fundamental matrix W of the homogeneous linear ODE

system v
0

1 = c v2 ; v
0

2 = �c v1 (which is suggested by (1.1)), namely

W (t) =

�
cos �(t) sin �(t)

� sin �(t) cos �(t)

�
; (2.1)

and the functions l ; h ; g1 ; g2 that are constructed from f1; f2 2 L
2(0; 1) as follows.

g1 = " l; �g002 = h; g2(0) = g2(1) = 0 ; (2.2)

�
l

h

�
(t) = �

tZ
0

W (t)W�1(s)

�
f1(s)

f2(s)

�
ds : (2.3)

We then de�ne the constrained control problem

(P
"
) Min

8<
: 1

2"

1Z
0

u
2
ds +

1

2

1Z
0

(z0)2 ds

9=
; ;

subject to u 2 L
2(0; 1) , z 2 H

1
0 (0; 1) , such that the mappings [v1; v2] 2 (L1(0; 1))2 ,

�
v1

v2

�
(t) :=

tZ
0

W (t)W�1(s)

�
u + g1

z + g2

�
(s) ds ; (2.4)

satisfy v1(1) = v2(1) = 0 in the sense that

1Z
0

W
�1(s)

�
u(s) + g1(s)

z(s) + g2(s)

�
ds =

�
0

0

�
: (2.5)
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Clearly, u = �g1 , z = �g2 give an admissible control pair for (P
"
). By the

coercivity and strict convexity of the cost, there follows the existence of a unique

minimizer [u
"
; z

"
] 2 L

2(0; 1)�H
1
0 (0; 1) .

Denote by S � L
2(0; 1)�H

1
0 (0; 1) the closed subspace of admissible variations for

(P
"
). Then, [�; �] 2 S if and only if

1Z
0

W
�1(s)

�
�(s)

�(s)

�
ds =

�
0

0

�
: (2.6)

The Euler equation associated with [u
"
; z

"
] is

1

"

1Z
0

u
"
� ds +

1Z
0

z
0

"
�
0
ds = 0 8 [�; �] 2 S : (2.7)

In particular, (2.7) says that [u
"
; z

"
] 2 S

?

"
, where S

?

"
denotes the orthogonal sub-

space of S � L
2(0; 1)�H

1
0 (0; 1) with respect to the modi�ed scalar product de�ned

by the left-hand side of (2.7).

Remark 2.1 If � 2 W
1;1(0; 1) , then c 2 L

1(0; 1) and relation (2.4) can be written

in di�erential form as

v
0

1 � c v2 = u + g1 a.e. in (0; 1) ; (2.8)

v
0

2 + c v1 = z + g2 a.e. in (0; 1) : (2.9)

Relation (2.4) gives the �mild� solution of (2.8), (2.9) with null initial conditions

in the sense of semigroup theory, Bénilan [5], Barbu [3]. If (2.8), (2.9) give the

state equations of the control problem (P
"
), then (2.5) is a state constraint. It is

expressed directly in the form of a control constraint, since the system (2.8), (2.9)

is integrated by (2.4), and W (t) is a nonsingular matrix.

We denote by [v"1; v
"

2] 2 (L1(0; 1))2 the optimal state of (P
"
), obtained from [u

"
; z

"
]

via (2.4).

Theorem 2.1 If ' 2 (W 3;1(0; 1))2 then [v"1; v
"

2] is the solution to (1.1).

Proof. Under this regularity assumption, (2.4) can be written in the form (2.8),

(2.9).

For any u1 2 H
1
0 (0; 1) , u2 2 H

2
0(0; 1) , we introduce

~� = u
0

1 � c u2 2 L
2(0; 1) ; (2.10)

~� = u
0

2 + c u1 2 H
1
0 (0; 1) ; (2.11)

and we have, consequently,

�
u1

u2

�
(t) =

tZ
0

W (t)W�1(s)

�
~�

~�

�
(s) ds : (2.12)
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Since u1 ; u2 vanish at both ends of [0; 1] , it follows from (2.12) and (2.6) that

[~� ; ~�] 2 S . Hence they may be used in (2.7). Taking into account relations (2.8),

(2.9) satis�ed by v
"

1 ; v
"

2 , as well as (2.10), (2.11), and (2.2), we obtain that

0 =
1

"

1Z
0

�
(v"1)

0 � c v
"

2 � g1

�
(u01 � cu2)ds+

1Z
0

�
(v"2)

0 + c v
"

1 � g2

�
0

(u02 + c u1)
0
ds

=
1

"

1Z
0

�
(v"1)

0 � c v
"

2

�
(u01 � c u2) ds +

1Z
0

�
(v"2)

0 + c v
"

1

�
0

(u02 + c u1)
0
ds

�
1Z

0

l(u01 � c u2) ds �
1Z

0

h(u02 + c u1) ds :

By the regularity assumption, (2.3) can be rewritten in the di�erential form (2.8),

(2.9), and we can infer that

1Z
0

l(u01 � c u2) ds +

1Z
0

h(u02 � c u1) ds

=�
1Z

0

u1(l
0 � c h) ds �

1Z
0

u2(h
0 + c l) ds =

1Z
0

(f1 u1 + f2 u2) ds :

The last two relations give (1.1) and the proof is �nished. 2

Remark 2.2 The approach via problem (P
"
) is constructive and does not use

either Dirichlet's principle or Korn's inequality. As the formulation of (P
"
) is valid

for � 2 L
1(0; 1) , this method may give solutions even in nonsmooth situations when

Korn's inequality is not valid. For such cases, we refer to Geymonat and Gilardi

[14].

In the general case, the following extension of Theorem 2.1 holds true.

Theorem 2.2 If ' 2 (W 1;1(0; 1))2 , then we have for any [�; �] 2 S :

1

"

1Z
0

(u
"
+ g1)� ds +

1Z
0

(z
"
+ g2)

0
�
0
ds =

1Z
0

(f1 u1 + f2 u2) ds ; (2.13)

with u1; u2 2 L
1(0; 1) given by

�
u1

u2

�
(s) = �

1Z
s

W (s)W�1(t)

�
�(t)

�(t)

�
dt; for a.e. s 2 (0; 1) : (2.14)
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Proof. Since [u
"
; z

"
] 2 S

?

"
(see (2.7)), we obtain that

1

"

1Z
0

(u
"
+ g1)� ds +

1Z
0

(z
"
+ g1)

0
�
0
ds =

1

"

1Z
0

g1 � ds �
1Z

0

� g
00

2 ds =

1Z
0

[�; �]

�
l

h

�
dt

= �
1Z

0

[�; �](t)

tZ
0

W (t)W�1(s)

�
f1(s)

f2(s)

�
ds dt

= �
1Z

0

tZ
0

�
f1(s); f2(s)

�
W (s)W�1(t)

�
�(t)

�(t)

�
ds dt ;

due to the orthogonality of the matrix W (t) and to (2.2), (2.3). Fubini's theorem

and (2.14) imply the result. 2

Remark 2.3 It is possible to prove Theorem 2.1 via Theorem 2.2. These results

show that the problem (P
"
) provides a notion of weak solution for the arch problem

which is a natural extension of the classical one. This will be further justi�ed below

in Theorem 3.1 and Remark 3.4, via an approximation argument.

We introduce now the mappings w1; w2 2 H
2(0; 1) \H

1
0 (0; 1) given by

w
00

1(s) = sin �(s); a.e. in (0; 1) : (2.15)

w
00

2(s) = � cos �(s); a.e. in (0; 1) : (2.16)

Then, relation (2.6) may be rewritten as

1

"

1Z
0

" cos �(s)�(s) ds +

1Z
0

w
0

1(s) �
0(s) ds = 0 ; (2.17)

1

"

1Z
0

" sin �(s)�(s) ds +

1Z
0

w
0

2(s) �
0(s) ds = 0 : (2.18)

From the de�nition of S using the modi�ed scalar product from (2.7) it follows that

the (linearly independent) vectors [" cos �(�); w1(�)] and [" sin �(�); w2(�)] provide a
basis of the two-dimensional space S

?

"
.

Besides, from relations (2.5) and (2.6), we can infer that [u
"
+ g1 ; z" + g2] 2 S .

Consequently, relation (2.7) gives that

[u
"
; z

"
] = � proj

S
?

"

[g1; g2] ; (2.19)

where the projection is computed in the norm generated by the modi�ed scalar

product from (2.7).

6



Then, (2.17) to (2.19) yield that

[u
"
; z

"
] = �

"

1 [" cos � ; w1] + �
"

2 [" sin � ; w2] ; (2:19)0

for some �
"

1; �
"

2 2 IR . By virtue of the de�nition of the projection operator, and

owing to (2.19), (2.19)0, we see that (�"1 ; �
"

2) is the unique minimizer of the uncon-

strained optimization problem

(D
"
) Min

�1;�22IR

8<
: 1

2"

1Z
0

�
�1 " cos �(s) + �2 " sin �(s) + " l(s)

�2
ds

+
1

2

1Z
0

h
(�1w1 + �2w2 + g2)

0

i2
ds

9=
; :

Problem (D
"
) can be solved explicitly using the system of necessary optimality

conditions, which is a linear algebraic system with a strictly positive determinant (by

the Cauchy-Schwarz inequality and the structure of the basis of S?
"
). We indicate

the system for subsequent use:

" �1

1Z
0

cos2 �(s) ds + �1

��w1

��2
H
1
0
(0;1)

+ " �2

1Z
0

cos �(s) sin �(s) ds

+ �2

1Z
0

w
0

1(s)w
0

2(s) ds + "

1Z
0

l(s) cos �(s) ds +

1Z
0

g
0

2(s)w
0

1(s) ds = 0 ;

" �1

1Z
0

cos �(s) sin �(s) ds + �1

1Z
0

w
0

1(s)w
0

2(s) ds + " �2

1Z
0

sin2 �(s) ds

+ �2

��w2

��2
H
1
0
(0;1)

+ "

1Z
0

l(s) sin �(s) ds +

1Z
0

g
0

2(s)w
0

2(s) ds = 0 :

(2.20)

We have proved the following result.

Theorem 2.3 The solution of (1.1) (or of (P
"
), if � 2 L

1(0; 1) ) is given by (2.19)0

and (2.4), with (�"1 ; �
"

2) being the unique solution of (D
"
), and with w1; w2, g1; g2

de�ned by (2.2), (2.3), (2.15), (2.16).

Remark 2.4 In optimization theory, (D
"
) is the dual problem of (P

"
). Its complete

solution is possible since the constraints from (P
"
) are a�ne and �nite dimensional.

In simple examples of mappings �; f1; f2 , explicit formulas can be derived for the

deformation [v1; v2] . In the general situation, numerical approximation is needed

just to evaluate the occurring integrals. See Section 5, for examples. In particular,

7



Theorem 2.3 provides a complete solution of the �locking� problem discussed by

Chenais and Paumier [9], in dimension one.

Remark 2.5 We also notice that, if ~' : [a; b] ! IR
2 is an absolutely contin-

uous Jordan arc of length one such that ~'0 6= 0 a.e. in (a; b) , then, by the

usual reparametrization via the arc length function s : [a; b] ! [0; 1], s(0) = 0,

s
0(�) =

�� ~'0(�)��
IR

2
, we get that '(t) = ~'(s�1(t)) satis�es

��'0(t)��
IR

2
= 1 for a.e.

t 2 (0; 1) , i.e. it is Lipschitzian, and our results still apply.

Remark 2.6 If � 2 L
1(0; 1) , then v

"

1 ; v
"

2 as de�ned by Theorem 2.3 (see (2.4))

belong to L
1(0; 1) . However, their global cartesian representation is

W (t)�1
�
v
"

1

v
"

2

�
(t)

and belongs to (W 1;2(0; 1))2 . This means that the lack of smoothness is due to the

local coordinates ( � is de�ned a.e. and may have jumps), and that the constructed

deformation is continuous.

The next result gives a characterization of the solution of the problem (P
"
) (or,

equivalently, of the problem (D
"
)) as a system of �rst order di�erential equations

which will be used frequently in the sequel. Implicitly, it provides a nonstandard

decomposition of equation (1.1) in the case of nonsmooth coe�cients. Basically, this

is given by the �rst order necessary conditions for (P
"
), but the form is di�erent

from the classical Pontryagin principle.

Theorem 2.4 The optimality system for the problem (P
"
) is given by

�
v
"

1

v"2

�
(t) =

tZ
0

W (t)W�1(s)

�
u
"
(s) + g1(s)

z
"
(s) + g2(s)

�
ds ; for a.e. t 2 (0; 1) ; (2.21)

1Z
0

W
�1(s)

�
u
"
(s) + g1(s)

z
"
(s) + g2(s)

�
ds =

�
0

0

�
; (2.22)

�
p
"

q
"

�
(t) = W (t)

�
�
"

1

�"2

�
; for a.e. t 2 (0; 1) ; (2.23)

u
"
= " p

"
a.e. in (0; 1) ; (2.24)

z
00

"
= � q

"
a.e. in (0; 1) ; z

"
(0) = z

"
(1) = 0 : (2.25)

Proof. Assume �rst that u
"
; z

"
satisfy (2.21)�(2.25) with some �

"

1; �
"

2 2 IR ,

p
"
; q

"
; v

"

1 ; v
"

2 2 L
1(0; 1) . Then clearly, [u

"
+ g1 ; z" + g2] 2 S , i.e. [u

"
; z

"
] is

admissible for (P
"
). Using (2.23)�(2.25), the de�nition of S , and the orthogonality

8



of W (t) , we �nd that for any [�; �] 2 S it holds

1

"

1Z
0

u
"
� ds +

1Z
0

z
0

"
�
0
ds =

1Z
0

p
"
� ds +

1Z
0

q
"
� ds =

1Z
0

[�; �]W (s)

�
�
"

1

�
"

2

�
ds

= [�"1; �
"

2]

1Z
0

W (s)�1
�
�

�

�
(s) ds = 0 :

Consequently, [u
"
; z

"
] 2 S

?

"
. Together with the admissibility of [u

"
; z

"
] , noticed

above, this gives immediately that [u
"
; z

"
] is the unique minimizer of (P

"
).

Conversely, we remark that (2.23)�(2.25) give a complete description of the two-

dimensional space S
?

"
, when �1; �2 2 IR are arbitrary. By (2.6), we know that

the optimal control [u
"
; z

"
] belongs to S

?

"
. Hence, there are �

"

1; �
"

2 2 IR such that

[u
"
; z

"
] can be represented via (2.23)�(2.25) (this is, in fact, the same representation

as in (2.19)0). Moreover, [u
"
; z

"
] also satisfy (2.21), (2.22) by their admissibility for

(P
"
). This ends the proof. 2

As a �rst application of Theorem 2.4, we study the behaviour for " ! 0 of

the problem (P
"
). Since arches are special cases of cylindrical shells, after passing

to the limit a ��exural� model will be obtained, Ciarlet [13]. The treatment that

we indicate below is valid under the weak regularity condition � 2 L
1(0; 1) . We

shall also assume that � is nonconstant in [0; 1] , i.e. the arch is not a bar. Also for

constant � the results remain valid, but some adaption of the argument is necessary,

since the dimension of S?
"

reduces to one in this case.

Theorem 2.5 As " & 0 , the mappings v
"

1 ; v
"

2 ; p" ; q" are bounded in L
1(0; 1) ,

�
"

1 ; �
"

2 are bounded in IR , z
"
is bounded in H

2(0; 1) , and u
"
strongly converges to

0 in L
1(0; 1) . If we denote without " their weak or weak� limits (on a subsequence)

in the corresponding spaces, then these satisfy the conditions

�
v1

v2

�
(t) =

tZ
0

W (t)W�1(s)

�
0

z(s) + g2(s)

�
ds ;

1Z
0

W
�1(s)

�
0

z(s) + g2(s)

�
ds =

�
0

0

�
;

�
p

q

�
(t) = W (t)

�
�1

�2

�
;

z
00 = �q ; z(0) = z(1) = 0 :

Proof. The explicit calculus indicated in Theorem 2.3, (2.20), shows directly that

�
"

1 ; �
"

2 are bounded in IR for " ! 0 . It is here that the assumption that � is

9



nonconstant is necessary, since for " = 0 and � constant the vectors used in (2.19)0

become proportional (in this case only one parameter � is necessary and a simpler

argument works).

Thus, by (2.23), p
"
and q

"
are bounded in L

1(0; 1) . Relation (2.24) gives u
"
! 0

strongly in L
1(0; 1) , and (2.25) shows that z

"
is bounded in H

2(0; 1) , for instance.

By (2.21), we see that v
"

1 ; v
"

2 are bounded in L
1(0; 1) , as well. De�nition (2.2)

gives that g1 depends on " (and has the strong limit 0 in L
1(0; 1) ), while g2 is

independent of " .

Finally, we can pass to the limit in (2.21)�(2.25) on a subsequence, and we obtain

the desired conclusion. 2

Remark 2.7 The system obtained by Theorem 2.5 characterizes, in the sense of

Theorem 2.4, the following constrained optimal control problem:

Min

�
1

2

��z��2
H
1
0
(0;1)

�
;

subject to z 2 H
1
0 (0; 1) , such that the mappings

�
v1

v2

�
(t) =

tZ
0

W (t)W�1(s)

�
0

z(s) + g2(s)

�
ds

satisfy v1(1) = v2(1) = 0 in the sense that

1Z
0

W
�1(s)

�
0

z(s) + g2(s)

�
ds =

�
0

0

�
:

The structure of this problem is very similar to (P
"
), and the proof follows closely

that of Theorem 2.4, by considering the subspace Z � H
1
0 (0; 1) , de�ned by

1Z
0

W
�1(s)

�
0

�(s)

�
ds =

�
0

0

�
;

and its orthogonal subspace Z
? . If � 2 L

1(0; 1) is not constant, Z? has dimension

two, and we can argue as above.

Remark 2.8 If � 2 W
2;1(0; 1) , then one can show, as in Theorem 2.1, that

v1 ; v2 de�ned in Remark 2.7 satisfy the ��exural� arch model:

1Z
0

(v02 + cv1)
0 (u02 + c u1)

0
ds =

1Z
0

(f1 u1 + f2 u2) ds

8 (u1; u2) 2 V
F

=
n
(u1; u2) 2 H

1
0 (0; 1) � H

2
0 (0; 1) ; u

0

1 � c u2 = 0
o
;

(v1; v2) 2 V
F
:

10



Such asymptotic properties have been discussed in detail by Ciarlet [13] for the case

of shells. Theorem 2.5 shows that they remain valid for nonsmooth arches under

our variational formulation via optimal control theory.

3 Optimization of nonsmooth arches

One advantage of the method presented in the previous section is that in the study

of related optimization problems, a large class of nonsmooth arches may be taken

into consideration. Let K � L
1(0; 1) be a closed subset. We shall study the model

problem:

(Q) Min
�2K

8<
:1

2

1Z
0

v
2
2 ds

9=
; ;

subject to

�
v1

v2

�
(t) =

tZ
0

W
�
(t)W�1

�
(s)

�
u(s) + g1(s)

z(s) + g2(s)

�
ds ; for a.e. t 2 (0; 1) ; (3.1)

1Z
0

W
�1
�

(s)

�
u(s) + g1(s)

z(s) + g2(s)

�
ds =

�
0

0

�
; (3.2)

�
p

q

�
(t) = W

�
(t)

�
�
"

1

�"2

�
; for a.e. t 2 (0; 1) ; (3.3)

u = " p ; a.e. in (0; 1) ; (3.4)

z
00 = � q ; a.e. in (0; 1) ; z(0) = z(1) = 0 : (3.5)

The matrix W
�
is given by (2.1), and the new notation just puts into evidence

the dependence on the arch (characterized by � ). The state system (3.1)�(3.5) is

exactly the decomposition of the Kirchho�-Love model provided by Theorem 2.4.

It should be noted that all the quantities appearing in it (including the data g1 ; g2

de�ned by (2.2), (2.3)) depend on � . This is due to W
�
and to the fact that [f1; f2]

(the load) depends on � by the local choice of the coordinates system. In the sequel,

we shall write v1(�) ; v2(�) ; �1(�) ; �2(�) , etc. ( " is �xed now).

Remark 3.1 The shape optimization problem (Q) is a nonconvex control-into-

coe�cients problem. In the given subset K , the arch that minimizes the normal

de�ection (in the L2-norm) is sought. This is a natural safety requirement. Various

other cost functionals may be studied as well.

Theorem 3.1 If �
n
! � in L

1(0; 1) and f
i
(�

n
)! f

i
(�) in L

1(0; 1); i = 1; 2 , then

W
�n
! W

�
in (L1(0; 1))4 , �1(�n) ! �1(�) , �2(�n) ! �2(�) , g1(�n) ! g1(�) ,

11



h(�
n
) ! h(�) and l(�

n
) ! l(�) in L

1(0; 1) ; g2(�n) ! g2(�) in W
2;1(0; 1) ,

p(�
n
) ! p(�) , u(�

n
) ! u(�) and q(�

n
) ! q(�) in L

1(0; 1) , z(�
n
) ! z(�) in

W
2;1(0; 1) , and v1(�n) ! v1(�) , v2(�n) ! v2(�) in L

1(0; 1) . If �
n
! � in

C[0; 1] , then the above convergences are also valid in C[0; 1] and C
2[0; 1] , respec-

tively.

Proof. If �
n
! � in L

1(0; 1) , then cos �
n
! cos � and sin �

n
! sin � in L

1(0; 1) .

Consequently, W
�n
! W

�
, W

�1
�n

! W
�1
�

, strongly in (L1(0; 1))4 . Moreover,

(2.15), (2.16) show that w1(�n) ! w1(�) and w2(�n) ! w2(�) in W
2;1(0; 1) . If

�(�
n
) is the determinant associated with the system (2.20) (written for �

n
), a direct

calculus gives that �(�
n
)! �(�) .

From the relation (2.3) we infer that for a.e. t 2 (0; 1) it holds�����
�
l(�

n
)

h(�
n
)

�
(t) �

�
l(�)

h(�)

�
(t)

�����
IR

2

�
���W�n

� W
�

���
(L1(0;1))4

���W�1
�n

���
(L1(0;1))4

�����
�
f1(�n)

f2(�n)

� �����
(L1(0;1))2

+

���W�

���
(L1(0;1))4

���W�1
�n

� W
�1
�

���
(L1(0;1))4

�����
�
f1(�n)

f2(�n)

� �����
(L1(0;1))2

+

���W�

���
(L1(0;1))4

���W�1
�

���
(L1(0;1))4

�����
�
f1(�n)

f2(�n)

�
�
�
f1(�)

f2(�)

� �����
(L1(0;1))2

:

(3.6)

It follows that l(�
n
) ! l(�) , h(�

n
) ! h(�) , strongly in L

1(0; 1) . By (2.2), the

same is valid for g1(�n) ! g1(�) , while g2(�n) ! g2(�) strongly in W
2;1(0; 1) .

Then, one obtains �1(�n)! �1(�) and �2(�n)! �2(�) from (2.20).

The equations (3.3)�(3.5) give the assertion for p(�
n
) , q(�

n
) , u(�

n
) , z(�

n
) . The ar-

gument for the convergence v1(�n)! v1(�) , v2(�n)! v2(�) , strongly in L
1(0; 1) ,

is similar to that in the inequality (3.6). If �
n
! � in C[0; 1] , the proof follows the

same lines, with minor modi�cations. 2

Corollary 3.2 The shape optimization problem (Q) has at least one solution if K
is compact in L

1(0; 1).

Proof. This is a direct consequence of Theorem 3.1, by noticing that it is pos-

sible to pass to the limit in (3.2) and in the cost functional, if �
n
! � strongly in

L
1(0; 1). 2

Remark 3.2 In completion to Remark 2.6, we notice that the convergence of the

global cartesian representation of the displacement

W
�1
�n

(t)

�
v1(�n)

v2(�n)

�
(t)

12



is valid in (W 1;1(0; 1))2 . Here, we also use the fact that by (3.4) the solution [u; z]

of the problem (P
"
) belongs to (L1(0; 1))2 .

Remark 3.3 If the curvature c corresponding to the arches associated with � 2 K
is bounded in some L

r(0; 1) ; r > 1 , then K is compact in C[0; 1] . This shows that

the compactness assumption from the Theorem 3.1 and Corollary 3.2 is very

weak in comparison with the existing literature.

Remark 3.4 For any � 2 L
1(0; 1) , we may de�ne a smooth sequence �

n
converg-

ing to � in L
r(0; 1); 8 r � 1 , by a regularization process with a Friedrichs molli�er.

Then, keeping [f1; f2] 2 (L2(0; 1))2 �xed, it is possible to modify (3.6) and the other

arguments in the proof ofTheorem 3.1 to show that for the corresponding solutions

we have v
1
n
! v

1, v
2
n
! v

2 in L
r(0; 1); 8 r � 1 . If � is continuous, the obtained

convergences are uniform. We also note that the global cartesian representation

W
�1
�n

(t)

�
v
1
n

v2
n

�
(t)

is convergent in (W 1;r(0; 1))2; 8 r � 1 . As for �
n
the corresponding solution of

(P
"
) then coincides with the solution of (1.1) (by Theorem 2.1), we see that for

any � 2 L
1(0; 1) the optimal state of (P

"
) can be approximated by usual solutions

of (1.1).

The remainder of this section is devoted to the sensitivity analysis of the Kirchho�-

Love model. We proceed in two steps. First, we assume that c 2 L
1(0; 1) and that,

consequently, � 2 W
1;1(0; 1) , and we compute the gradient of the cost in this case.

Then, we use an approximation argument to reduce the general case � 2 L
1(0; 1)

to the previous one.

Under the assumption c 2 L
1(0; 1) the state system (3.1)�(3.5) for the problem (Q)

can be written in di�erential form, namely

v
0

1 � c v2 = u + g1 ; (3.7)

v
0

2 + c v1 = z + g2 ; (3.8)

v1(0) = v2(0) = 0 ; (3.9)

v1(1) = v2(1) = 0 ; (3.10)

p
0 � c q = 0 ; (3.11)

q
0 + c p = 0 ; (3.12)

p(0) = �1 ; q(0) = �2 ; (3.13)

u = " p ; (3.14)

z
00 = � q ; (3.15)

z(0) = z(1) = 0 : (3.16)

We shall denote by v1(c) ; v2(c) ; : : : the dependence of the solution of (3.7)�(3.16)

on c 2 L
1(0; 1) , which is now considered instead of the related dependence on � .
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We study its Gâteaux di�erentiability, and we take variations of the form c + Æ d

with d 2 L
1(0; 1) ; Æ 2 IR �small�.

The de�nitions of g1 ; g2 ; given in (2.2) and (2.3), can also be rewritten in di�erential

form:

g1 = " l ; (3.17)

g
00

2 = � h ; (3.18)

g2(0) = g2(1) = 0 ; (3.19)

l
0 � c h = � f1 ; (3.20)

h
0 + c l = � f2 ; (3.21)

l(0) = h(0) = 0 : (3.22)

We have

l(c + Æ d)0 � l(c)0

Æ
� (c + Æ d)

h(c + Æ d) � h(c)

Æ
= d h(c) � f1(c + Æ d) � f1(c)

Æ
;

(3.23)

l(c + Æ d)0 � h(c)0

Æ
+ (c + Æ d)

l(c + Æ d) � l(c)

Æ
= � d l(c) � f2(c + Æ d) � f2(c)

Æ
:

(3.24)

We interpret f1; f2 : L
1(0; 1)! L

1(0; 1) as nonlinear operators, and we assume that

they are Gâteaux di�erentiable. Multiplying (3.23), (3.24) by

�
l(c + Æ d)� l(c)

Æ
;

h(c + Æ d)� h(c)

Æ

�
, and integrating over [0; t] , we �nd that

1

2

��������

2
664

l(c + Æ d) � l(c)

Æ

h(c + Æ d) � h(c)

Æ

3
775 (t)

��������

2

IR
2

�
tZ

0

*
d h(c) � f1(c + Æ d) � f1(c)

Æ

� d l(c) � f2(c + Æ d) � f2(c)

Æ

;

l(c + Æ d) � l(c)

Æ

h(c + Æ d) � h(c)

Æ

+
IR

2

ds (3.25)

with obvious notations for the norm and the scalar product in IR
2 .

The Brezis [7] variant of Gronwall's lemma and (3.25) imply that

�
l(c+ Æ d)� l(c)

Æ

�
,�

h(c + Æ d)� h(c)

Æ

�
are bounded in L

1(0; 1) for Æ ! 0 . From (3.23), (3.24), we

see that the boundedness is even valid in W
1;1(0; 1) , and we also have equi-uniform

14



continuity due to the equi-absolute integrability of

�
f
i
(c+ Æ d)� f

i
(c)

Æ

�
; i = 1; 2 .

Consequently, by taking a subsequence, we get convergence and the Gâteaux dif-

ferentiability of l(c) ; h(c) in L
2(0; 1) , for instance. Relations (3.17)�(3.19) then

show that g1(�) : L1(0; 1)! L
2(0; 1) ; g2(�) : L1(0; 1)! W

2;2(0; 1) are also Gâteaux

di�erentiable.

The auxiliary mappings w1 ; w2 de�ned in (2.15), (2.16), are clearly Gâteaux dif-

ferentiable, and if �w1 ; �w2 denote the directional derivatives at c in the direction

d , we see that

�w001 =

0
@ tZ

0

d(s) ds

1
A cos

0
@ tZ

0

c(s) ds

1
A ; �w1(0) = �w1(1) = 0 ; (3.26)

�w002 =

0
@ tZ

0

d(s) ds

1
A sin

0
@ tZ

0

c(s) ds

1
A ; �w2(0) = �w2(1) = 0 : (3.27)

The choice �(t) =

tZ
0

c(s) ds in (3.26), (3.27) just means that the global coordinates

system is such that �(0) = 0 . Other choices are possible as well. Next, we recall,

by (2.20), that �1(c) ; �2(c) are solutions of an a�ne system with �(c) > 0 and

coe�cients which are Gâteaux di�erentiable, by (3.26), (3.27). Then, �1(c) ; �2(c)

are as well Gâteaux di�erentiable from L
1(0; 1) into IR . Moreover, (3.12), (3.13)

imply the Gâteaux di�erentiability of p; q : L1(0; 1) ! L
2(0; 1) , for instance. It

follows immediately that u : L1(0; 1) ! L
2(0; 1) and z : L1(0; 1) ! W

2;2(0; 1) are

Gâteaux di�erentiable. Finally, applying arguments similar to (3.23)�(3.25) to (3.7)�

(3.9), we obtain that also v1; v2 : L
1(0; 1)! L

2(0; 1) are Gâteaux di�erentiable.

We denote by �v1 ; �v2 ; : : : the directional derivatives of the mappings de�ned by

(3.7)�(3.16) with respect to c 2 L
1(0; 1) and in the direction d 2 L

1(0; 1) .

We thus have established the following result.

Theorem 3.3 The mappings de�ned in (3.7)�(3.16) are Gâteaux di�erentiable, and

the directional derivatives satisfy the system

�v01 � c �v2 = d v2(c) + �u + �g1 ; (3.28)

�v02 + c �v1 = � d v1(c) + �z + �g2 ; (3.29)

�v1(0) = �v2(0) = 0 ; (3.30)

�v1(1) = �v2(1) = 0 ; (3.31)

�p0 � c �q = d q(c) ; (3.32)
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�q0 + c �p = � d p(c) ; (3.33)

�p(0) = ��1 ; �q(0) = ��2 ; (3.34)

�u = " �p ; (3.35)

�z00 = � �q ; (3.36)

�z(0) = �z(1) = 0 : (3.37)

Remark 3.5 The system (3.28)�(3.37) admits a unique solution, since its homo-

geneous variant may be reformulated in the language of the control problem (P
"
).

Here, homogeneous means that �g1 = 0 ; �g2 = 0 ; d = 0 , and the corresponding solu-

tion of (P
"
) is in this situation clearly identically zero in [0; 1] . Consequently, the

limits de�ning �v1 ; �v2 ; : : : are valid without taking subsequences; we have conver-

gence of the entire sequences.

Next, we introduce the adjoint system associated with (3.28)�(3.37):

P
0

1 � c P2 = 0 ; (3.38)

P
0

2 + c P1 = � v2(c) ; (3.39)

P
0

3 � c P4 = R ; (3.40)

P
0

4 + c P3 = Q ; (3.41)

Q
00 = �P2 ; (3.42)

R = " P1 ; (3.43)

Q(0) = Q(1) = P3(0) = P3(1) = P4(0) = P4(1) = 0 : (3.44)

Proposition 3.4 The system (3.38)�(3.44) has a unique solution such that P1 ; P2 ;

P3 ; P4 ; R 2 W
1;1(0; 1) and Q 2 W

2;1(0; 1) .

Proof. Let �1 ; �2 2 IR
2 be some arbitrary initial conditions for the equations

(3.38), (3.39). Then �
P1

P2

�
(t) = W

c
(t)

�
�1

�2

�
+

�
1(t)

2(t)

�
;

where �
1(t)

2(t)

�
=

tZ
0

W
c
(t)W�1

c
(s)

�
0

� v2(c)

�
(s) ds ;

and P1; P2 2 W
1;1(0; 1) if c 2 L

1(0; 1) . Here, W
c
is a new notation for the matrix

W that puts into evidence its dependence on c .
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Consequently, R(t) = "P1 and Q(t) depend in an a�ne manner on �1 ; �2 and

belong to W
1;1(0; 1) andW 2;1(0; 1) , respectively. Then,

�
P3

P4

�
(t) = �

1Z
t

W
c
(t)W�1

c
(s)

�
R(s)

Q(s)

�
ds

belongs to (W 1;1(0; 1))2 . We have used the �nal null conditions. Notice that the

constraint
1Z

0

W
�1
c

(s)

�
R(s)

Q(s)

�
ds =

�
0

0

�
(3.45)

should be ful�lled to obtain the initial null conditions (3.44) for P3 ; P4 . By writing

(3.45) explicitly, we obtain a linear system as (2.20) for �1 ; �2 . Since its determi-

nant is positive, it has a unique solution, and the proof is �nished. 2

Theorem 3.5 The directional derivative of the cost functional in the problem (Q)

at the point c 2 L
1(0; 1) and in the direction d 2 L

1(0; 1) is given by

1Z
0

d

�
P1 v2(c) � P2 v1(c) + g

0

1(c)
�
P1 + g

0

2(c)
�
P2 � P3 q(c) + P4 p(c)

�
ds : (3.46)

Here, g
0

i
(c) ; i = 1; 2 , denote the Gâteaux derivative of g

i
at c 2 L

1(0; 1) , and

g
0

i
(c)� : L2(0; 1)! L

1(0; 1) is the adjoint operator.

Proof. We have (by (3.38), (3.39), partial integration, etc.) that

lim
Æ!0

1

2Æ

2
4 1Z

0

(v2(c + Æ d))
2
ds �

1Z
0

(v2(c))
2
ds

3
5 =

1Z
0

v2(c) �v2 ds

= �
1Z

0

(P 02 + c P1)�v2 ds �
1Z

0

(P 01 � c P2) �v1 ds

=

1Z
0

P1(�v
0

1 � c �v2) ds +

1Z
0

P2(�v
0

2 + c �v1) ds

=

1Z
0

d(P1 v2(c) � P2 v1(c)) ds +

1Z
0

P1(�u + �g1) ds +

1Z
0

P2(�z + �g2) ds ;

owing to (3.28), (3.29). Now recall that

�g1 = g
0

1(c) d ; �g2 = g
0

2(c) d :

17



Hence, using (3.40) and (3.41), we can write

1Z
0

v2(c) �v2 ds =

1Z
0

d(P1 v2(c) � P2 v1(c) + g
0

1(c)
�
P1 + g

0

2(c)
�
P2) ds

+

1Z
0

"
�1

R �u ds�
1Z

0

Q
00 �z ds =

1Z
0

d(: : :) ds +

1Z
0

R �p ds +

1Z
0

Q �q ds

=

1Z
0

d(: : :) ds +

1Z
0

�p(P 03 � c P4) ds +

1Z
0

�q(P 04 + c P3) ds :

From this, again using partial integration together with (3.32), (3.33), we obtain

(3.46), and the proof is �nished. 2

Next, we shall study the di�erentiability properties of (Q) in the general case � 2
L
1(0; 1) . We consider variations of the form � + Æ � ; � 2 L

1(0; 1); Æ 2 IR small.

We assume that f
i
: L1(0; 1) ! L

2(0; 1); i = 1; 2 , depend directly on � and are

Gâteaux di�erentiable. A direct calculus starting from (2.3) and taking into account

the dependence of W (t) on � , leads to

�
�l
�h

�
(t) = �

tZ
0

W
�
(t)W�1

�
(s)

�
�f1(s)
�f2(s)

�
ds �

�
0

��(t)
�(t)

0

��
l(�)

h(�)

�
(t)

+

tZ
0

�
0

��(s)
�(s)

0

�
W

�
(t)W�1

�
(s)

�
f1(�)

f2(�)

�
(s) ds : (3.47)

By (2.2), it holds

�g1 = " �l ; � �g002 = �h ; �g2(0) = �g2(1) = 0 : (3.48)

Comparing (3.47) with (3.20)�(3.22), we see that the integral formulation is more

di�cult to handle.

For the auxiliary mappings w1 ; w2 de�ned in (2.15), (2.16), we easily obtain that

�w001 = � cos � ; �w002 = � sin � ;

�w
i
(0) = �w

i
(1) = 0 ; i = 1; 2 : (3.49)

Relations (3.47)�(3.49) also show the continuous dependence in L
2(0; 1) of �g

i
; �w

i
;

i = 1; 2 ; and �l ; �h with respect to regularizations of � and � , if the same is assumed

for f
i
; �f

i
; i = 1; 2 . For �w

i
; i = 1; 2; and �g2 , this is valid even in H

2(0; 1) . An

elementary calculus, starting from (2.20), shows that the same continuity property

remains valid for ��1 ; ��2 .

From relation (3.3), we obtain that�
�p

�q

�
(t) =

�
0

��(t)
�(t)

0

�
W

�
(t)

�
�1(�)

�2(�)

�
+ W

�
(t)

�
��1
��2

�
; (3.50)
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with the same continuity property in (L2(0; 1))2 with respect to regularizations of

� and � . By (3.4), (3.5), this property is preserved by �u ; �z , and we have

�u = " �p ; �z00 = � �q ; �z(0) = �z(1) = 0 : (3.51)

Finally, equation (3.1) gives

�
�v1

�v2

�
(t) =

tZ
0

W
�
(t)W�1

�
(s)

�
�u(s) + �g1(s)

�z(s) + �g2(s)

�
ds +

�
0

��(t)
�(t)

0

��
v1(�)

v2(�)

�
(t)

�
tZ

0

�
0

��(s)
�(s)

0

�
W

�
(t)W�1

�
(s)

�
u(�) + g1(�)

z(�) + g2(�)

�
(s) ds (3.52)

with the same conclusion on the continuous dependence on �; � . Let us now intro-

duce explicitly the regularizations of � and � ,

�
Æ
(t) =

Z
R

�(t � Æ y) �(y) dy ; �
Æ
(t) =

Z
R

�(t � Æ y) �(y) dy ; (3.53)

where � and y are extended by 0 outside the interval [0; 1]; Æ > 0 , and where

� 2 C
1

0 (IR) is a Friedrichs molli�er. We also denote d
Æ
= �

0

Æ
; c

Æ
= �

0

Æ
which exist

in L
1(0; 1) , but have no good convergence properties for Æ ! 0 . Then, the systems

(3.7)�(3.16), (3.28)�(3.37) and (3.38)�(3.44) can be solved for the data c
Æ
; d

Æ
. Let

us denote the corresponding solutions with an index or an exponent Æ . Then we

can prove the following result.

Theorem 3.6 The gradient of the cost functional of the problem (Q) at the point

� 2 L
1(0; 1) and in the direction � 2 L

1(0; 1) is given by

1Z
0

v2(�) �v2 ds =

1Z
0

�

h
g
0

1(�)
�
P1 + g

0

2(�)
�
P2 � v1(�) v2(�)

� P1(�) (z(�) + g2(�)) + P2(�) (u(�) + g1(�)) + q(�)R(�)� p(�)Q(�)
i
ds : (3.54)

Here, v1(�) ; v2(�) ; u(�) ; z(�) ; p(�) ; q(�) are obtained by (3.1)�(3.5) with

g1(�) ; g2(�) given by (2.2), (2.3), and P1 ; P2 ; P3 ; P4 ; R ; Q are computed via

(3.38)�(3.44) rewritten in integral form (which is obvious).

Proof. By (3.52), (3.53), we can write:

1Z
0

v2(�) �v2 ds = lim
Æ!0

1Z
0

v
Æ

2 �v
Æ

2 ds : (3.55)

From Theorem 3.5, we obtain that

1Z
0

v
Æ

2 �v
Æ

2 ds =

1Z
0

d
Æ

�
P

Æ

1 v
Æ

2 � P
Æ

2 v
Æ

1 � P
Æ

3 q
Æ + P

Æ

4 p
Æ + P

Æ

1 �gÆ1 + P
Æ

2 �gÆ2
�
ds :
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Using the boundary conditions and the di�erentiability properties, we �rst compute

1Z
0

d
Æ

�
P

Æ

1 v
Æ

2 � P
Æ

2 v
Æ

1 � P
Æ

3 q
Æ + P

Æ

4 p
Æ

�
ds

= �
1Z

0

tZ
0

d
Æ

�
(P Æ

1 )
0
v
Æ

2 + P
Æ

1 (v
Æ

2)
0 + : : : + (P Æ

4 )
0
p
Æ + P

Æ

4 (p
Æ)0
�
ds

= �
1Z

0

�
Æ

�
v
Æ

1 v
Æ

2 + P
Æ

1 (z
Æ + g

Æ

2) � P
Æ

2 (u
Æ + g

Æ

1) � q
Æ

R
Æ + p

Æ

Q
Æ

�
ds : (3.56)

We indicate only a partial calculation on how the last equality in (3.56) is established:

(P Æ

4 )
0
p
Æ + P

Æ

4 (p
Æ)0 � (P Æ

3 )
0
q
Æ � P

Æ

3 (q
Æ)0

= (P Æ

4 )
0
p
Æ + P

Æ

4 cÆ q
Æ � (P Æ

3 )
0
q
Æ + P

Æ

3 cÆ p
Æ

= q
Æ(� (P Æ

3 )
0 + c

Æ
P

Æ

4 ) + p
Æ((P Æ

4 )
0 + c

Æ
P

Æ

3 )

= � q
Æ

R
Æ + p

Æ

Q
Æ

;

by (3.11), (3.12), and (3.40), (3.41).

We also consider the term:

1Z
0

�
P

Æ

1 �gÆ1 + P
Æ

2 �gÆ2
�
ds =

1Z
0

�
P

Æ

1 g
0

1(�Æ) �Æ + P
Æ

2 g
0

2(�Æ)�Æ
�
ds

=

1Z
0

�
Æ

�
(gÆ1)

0(�
Æ
)�P Æ

1 + (gÆ2)
0(�

Æ
)�P Æ

2

�
ds : (3.57)

The derivatives of g1 ; g2 may be taken directly with respect to � . This can be

clearly seen from (3.23)�(3.25), where f
i
may depend on � , without modifying the

argument.

We combine (3.55)�(3.57), and we pass to the limit as Æ ! 0 . The continuity

properties with respect to both �
Æ
and �

Æ
have been explained in (3.47)�(3.52). We

remark that the continuous dependence on Æ ! 0 is valid for P
Æ

1 ; P
Æ

2 ; P
Æ

3 ; P
Æ

4 ; R
Æ

; Q
Æ

since the system (3.38)�(3.44) can be put into integral (mild) form as well. 2

Remark 3.6 The gradient provided by Theorem 3.6 will be used in Section 5 in

the computation of numerical examples of shape optimization. It is also possible to

write the �rst order optimality conditions for the problem (Q) by imposing (3.54)

to be positive in the admissible directions of variation.
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4 The nonhomogeneous clamped plate

In this section, we study the nonhomogeneous fourth-order boundary value problem

�(u3�y) = f in 
 ; (4.1)

y = z on @
 ; (4.2)

@y

@n
=

@z

@n
on @
 ; (4.3)

where 
 is a smooth domain in IR
N

; u 2 L
1(
); 0 < � � u(x) � � a.e. in


; f 2 L
2(
) , and z (giving the boundary conditions) is in H

2(
) . In dimension

two, (4.1)�(4.3) is a simpli�ed model of a clamped plate with variable thickness u

and with load f , Bendsoe [4].

We show that the method used in Section 2 can also be applied in this case. We

also study optimization problems associated to (4.1)�(4.3) as in Section 3. In this

way, one can see that our methods have a large range of applications.

We formulate the optimal control problem:

Min
h2L

2(
)

8<
:1

2

Z



l h
2
dx

9=
; ; (4.4)

subject to

�y = l h + l g in 
 ; (4.5)

y = z on @
 ; (4.6)

and to the state constraints

@y

@n
=

@z

@n
on @
 : (4.7)

Here g 2 H
2(
) \H

1
0(
) is the solution of

�g = f in 
 ; (4.8)

g = 0 on @
 ; (4.9)

and l 2 L
1(
) is given by

l = u
�3 2 [��3; ��3] a.e. in 
 : (4.10)

It is clear that y = z ; h = u
3(�z � lg) is an admissible pair for the problem (4.4)�

(4.7). By the coercivity of the cost, due to (4.10), and by its strict convexity, we

obtain the existence of a unique optimal pair [y�; h�] 2 H
2(
)� L

2(
) .
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It is obvious that y � z 2 H
2
0 (
) for any admissible state y , and thus�

h 2 l
�1�

�
H

2
0 (
)

�
+ l

�1�z � g
	
� L

2(
) (4.11)

provides a complete description of the admissible control set.

By (4.11), the control problem (4.4)�(4.7) can be reformulated as a mathematical

programming problem, namely

Min
s2l

�1�[H2
0
(
)]

n1
2

Z



l(s + l
�1�z � g)2 dx

o
: (4.12)

We introduce the new unknown � = l
1

2 s 2 l
�
1

2�[H2
0
)] . Then a simple transforma-

tion yields the solution of (4.12),

s
� = l

�
1

2 �
�
; �

� = proj
l
�
1
2�[H2

0
(
)]

�
l
1

2 g � l
�
1

2 �z

�
; (4.13)

where the projection onto the closed linear subspace Z = l
�
1

2�[H2
0 (
)] � L

2(
) is

to be computed in the L
2(
)-norm.

From (4.13) it follows that

h
� = s

� + l
�1�z � g = l

�
1

2proj
Z
?

n
l
�
1

2�z � l
1

2 g

o
; (4.14)

with the orthogonal complement of Z de�ned with respect to the inner product in

L
2(
) .

Theorem 4.1 h
� is the optimal state of the unconstrained boundary control prob-

lem

Min
�2H

�
1
2 (@
)

8<
:1

2

Z



l(h + g � l
�1�z)2 dx

9=
; ; (4.15)

�h = 0 in 
 ; (4.16)

h = � on @
 : (4.17)

Proof. It is a simple exercise to verify that

Z
? = l

1

2

�
�[H2

0 (
)]
	
?

;

�
�H

2
0 (
)

	
?

=
�
w 2 L

2(
) ; �w = 0 in D0(
)
	
: (4.18)

The form (4.14) of h� shows that h
� solves

Min
h2[�H

2
0
]?

8<
:1

2

Z



l(h + g � l
�1�z)2 dx

9=
; : (4.19)
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Relations (4.18), (4.19) may be reformulated as (4.15)�(4.17), and the proof is �n-

ished. 2

Remark 4.1 The problem (4.15)�(4.17) may be interpreted as the dual of the

problem (4.4)�(4.7). Its advantage is that it has no constraints. The solution of

(4.16), (4.17) should be understood in the transposition sense. Relations (4.14) and

(4.5) provide an explicit reduction of (4.1)�(4.3) to second order elliptic equations.

Theorem 4.2 The problem (4.15)�(4.17) or, equivalently, the problem (4.4)-(4.7),

solve the equation (4.1)�(4.3).

Proof. We know already the equivalence of the problems (4.15)�(4.17) and (4.4)�

(4.7) in the sense of Theorem 4.1. Take any k 2 L
2(
) satisfying (4.18) and

consider variations of the form h
� + � k ; � 2 IR . ThenZ




l(h� + g � l
�1�z)k dx = 0 ; 8 k 2 [�H

2
0 (
)]

?
: (4.20)

We de�ne the adjoint system for the problem (4.15)�(4.17) by

�p
� = l(h� + g � l

�1�z) in 
 ; (4.21)

p
� = 0 on @
 : (4.22)

Clearly p
� 2 H

2(
) \H
1
0 (
) , and

0 =

Z



k�p
�
dx =

Z
@


v
@p

�

@n
; (4.23)

by the de�nition of the transposition solution, and with v 2 H
�
1

2 (@
) being the

�trace� of k on @
 , in the sense of Lions [17, � 4.2]. Then, (4.23) gives (as v is

arbitrary in H
�
1

2 (@
) ):
@p

�

@n
= 0 on @
 : (4.24)

A simple calculus based on the de�nition of l ; g ; z shows that p
� + z is exactly

the solution of (4.1)�(4.3) and the proof is �nished. 2

Remark 4.2 Related arguments, using also the penalization of (4.7) (or, equiv-

alently, of (4.3)) were employed by Sprekels and Tiba [19], [21] and by Arn utu,

Langmach, Sprekels and Tiba [2]. Comparing with Section 2, we see that the con-

straint (4.7) in the problem (4.4)�(4.6) is a�ne, but no longer �nite dimensional.

Therefore, the dual problem (4.15)�(4.17) cannot be solved explicitly, since it re-

mains in�nite dimensional.

We shall now discuss shape optimization problems associated to (4.1)�(4.3). As a

�rst step, we analyze the continuity and the di�erentiability of the mapping l! y ,

de�ned by (4.4)�(4.7). Notice that, although (4.10) gives a very simple relation
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between u and l , no continuity properties are valid in the weak� topology of L1(
) ,

for instance. The reformulations (4.4)�(4.7) or (4.15)�(4.17) have the advantage to

introduce l as the main unknown and to remove the inconvenience caused by (4.10).

For shape optimization problems it is enough to analyze the behaviour with respect

to l 2 L
1(
) and to transpose just the result into the language of u 2 L

1(
) , the

thickness of the plate.

Theorem 4.3 If l
n
! l weakly� in L

1(
) , then the solutions of (4.4)�(4.7) asso-

ciated to l
n
; l , satisfy y

n
= y(l

n
)! y = y(l) weakly in H

2(
) .

Proof. Denote by h
n
= h(l

n
) ; p

n
= p(l

n
) the other unknown mappings appearing

in (4.4)�(4.7) and in (4.21), (4.22). By (4.10) and (4.4), we see that fh
n
g is bounded

in L
2(
) , and (4.5), (4.6) give that fy

n
g is bounded in H

2(
) . By (4.16), we have

�h
n
= 0 in D0(
) . Then, if h

n
! h weakly in L

2(
) on a subsequence, it follows

that h
n
(x) ! h(x) for any x 2 
 due to the mean value property of harmonic

functions. The Vitali theorem shows that h
n
! h strongly in L

s(
) , for any

s 2 [1; 2[ . Then, clearly l
n
h
n
! l h weakly in L

2(
) , the identi�cation of the limit

being possible due to the strong convergence of h
n
established above.

Finally, it is possible to pass to the limit in (4.5)�(4.7) and in (4.21)�(4.24). As we

noticed before, this is the optimality system for the control problem (4.4), and its

unique solution [y ; h ; p] , associated to l after passing to the limit, provides the

optimal pair [y; h] and the adjoint state p for the control problem (4.4) de�ned by

l . 2

Remark 4.3 A variant of Theorem 4.3 was proved by Sprekels and Tiba [21].

Remark 4.4 By (4.5)�(4.7) and (4.16), one immediately recovers (4.1)�(4.3) and

conversely. We shall study the di�erentiability properties of the mapping l ! y(l)

in this system formulation.

Theorem 4.4 The mappings l ! y and l ! h are Gâteaux di�erentiable from

L
1(
) to H

2(
) and L
2(
) , respectively, and the directional derivatives at l in

the direction v satisfy

��y = l �h + v(h + g) in 
 ; (4.25)

�y =
@�y

@n
= 0 on @
 ; (4.26)

��h = 0 in 
 : (4.27)

The solution [�y ; �h] is unique in H
2
0 (
)� L

2(
) .

Proof. Let v 2 L
1(
) ; � 2 IR �small�, and l 2 L

1(
) satisfy (4.10). Then, we

may assume that

l + � v � 1

2
�
�3

> 0 a.e. in 
 :
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Denote by y
�
; h

�
the mappings associated to l + � v by the system (4.5)�(4.7),

(4.16). We can write:

�
y
�
� y

�
= (l + � v)

h
�
� h

�
+ v(h + g) a.e. in 
 ;

y
�
� y

�
= 0 ;

@

@n

�
y
�
� y

�

�
= 0 on @
 ;

�
h
�
� h

�
= 0 in D0(
) :

Relation (4.18) yields that �
�1(h

�
� h) 2 [�H

2
0 (
)]

? , while, from above, we get

�
�1(y

�
� y) 2 H

2
0 (
) . This shows thatZ




�
y
�
� y

�

h
�
� h

�
dx = 0 :

Multiplying by
h
�
� h

�
in the equation of

y
�
� y

�
, we infer that

�
h
�
� h

�

�
is

bounded in L
2(
) : ����h� � h

�

����
L
2(
)

� 2

�3
jvj

L
1(
) jh + gj

L
2(
) :

The equation for
y
�
� y

�
shows, consequently, that

�
y
�
� y

�

�
is bounded in H

2
0 (
) .

The passage to the limit is obvious, and the proof of (4.25)�(4.27) is �nished. If the

homogeneous variant of (4.25)�(4.27) is considered, i.e. with v(h + g) replaced by

zero, it may be rewritten as

�(u3��y) = 0 in 


and has the unique null solution by (4.26). This proves the uniqueness of the solution

�y ; �h as well. 2

Remark 4.5 Equations (4.25), (4.27) may be, formally, rewritten as a fourth order

equation

�(u3��y) = �(u3 v(h + g)) in 


with boundary conditions (4.26). It should be noted that the right-hand side is

nonsmooth due to u 2 L
1(
) ; v 2 L

1(
) .

Next we study some optimal shape design problems in which the minimization pa-

rameter is the thickness u 2 L
1(
) , or equivalently, l 2 L

1(
) :

(R) Min
l2K

8<
:1

2

Z



y
2(x) dx

9=
; ;
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K =
�
l 2 L

1(
) ; 0 < �
�3 � l(x) � �

�3 a.e. in 

	
; (4.28)

subject to (4.5)�(4.7), (4.16).

The existence of at least one optimal pair [y� ; l�] for problem (R) is a direct

consequence of Theorem 4.3.

Theorem 4.5 If f 6= 0 a.e. in 
 , then u
�(x) 2 f�; �g a.e. in 
 , where u

�(x) =

l
�(x)�

1

3 is the optimal thickness for the problem (R).

Proof. We introduce the adjoint system for p 2 L
2(
) ; q 2 H

2
0 (
) , namely

�p = y
� in 
 ;

�q = l
�
p in 
 ;

q =
@q

@n
= 0 on @
 :

Taking admissible variations v for l
� and using Theorem 4.4, we �nd that

0 �
Z



y
� �y dx =

Z



�p �y dx =

Z



p��y dx =

Z



p l
� �hdx

+

Z



p v(h� + g) dx =

Z



�q �h dx +

Z



p v(h� + g) dx =

Z



p v(h� + g) dx ;

as �h is orthogonal to �[H2
0 (
)] in L

2(
) .

The Pontryagin maximum principle for the problem (R) is therefore

0 �
Z



p(w � l
�) (h� + g) dx ; 8 w 2 K ;

or, equivalently,

� p(h� + g) 2 @IK(l
�) a.e. in 
 ;

with @IK denoting the subdi�erential of the indicator function IK of K in L
1(
) .

As f 6= 0 a.e. in 
 and �(h� + g) = f , we have h
� + g 6= 0 a.e. in 
 by

the interior regularity properties of h� and the maximal regularity of g (see Brezis

[7, p. 195]). Then, (4.5) implies that �y
� 6= 0 a.e. in 
 , i.e. y

� 6= 0 a.e. 
 .

Similarly, �p 6= 0 a.e. in 
 and p 6= 0 a.e. in 
 , i.e. p(h� + g) 6= 0 a.e. in 
 .

The Pontryagin maximum principle and (4.28) give that l
�(x) 2 f��3 ; ��3g a.e.

in 
 ( @IK is di�erent from zero only in the endpoints of the constraints interval),

and the proof is �nished. 2

Remark 4.6 This is a bang-bang result for the problem (R). In the sequel, we

shall discuss a more realistic example involving pointwise state constraints, and we

shall establish a partial result of the same type.
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The problem is the minimization of the volume of the plate such that the de�ection

in a prescribed point ~x 2 
 , under the given load f , remains below a given limit.

We assume that 
 � IR
3 , so that, consequently, H2(
) � C(�
) . We consider the

problem

(S) Min

8<
:
Z



l
�
1

3 (x) dx =

Z



u(x) dx

9=
;

subject to (4.5)�(4.7), (4.16), (4.22) and

y(~x) � � Æ (4.29)

with Æ > 0 �xed. (S) has at least one solution [y� ; l�] 2 H
2(
) � K under

admissibility hypotheses.

Remark 4.7 If the optimal state satis�es

y
�(~x) + Æ > 0

(inactive constraint), then for any w 2 K and for � 2 IR small enough, l�+�(w�l�)
is admissible for (S) since, by Theorem 4.3 and embedding properties, we get the

corresponding state y
�
(~x) > �Æ .

Introducing these variations into the cost, one obtains easily that

0 �
Z



l
�
�
4
3
(w � l

�) dx ; 8 w 2 K ;

that is, l� = �
�3 and u

� = � a.e. in 
 , and the solution is explicit.

In the sequel, we shall assume that the state constraint is active: y
�(~x) + Æ = 0 .

We de�ne the adjoint system corresponding to the problem (S):

�p = Æ~x in 
 ; (4.30)

�q = p l
� in 
 ; (4.31)

q = 0 ;
@q

@n
= 0 on @
 ; (4.32)

where Æ~x denotes the Dirac distribution concentrated at ~x 2 
 . Since H
2
0 (
) �

C(�
) by 
 � IR
3 , we have Æ~x 2 H

�2(
) , and the existence of a unique weak

solution p 2 L
2(
) ; q 2 H

2
0 (
) to (4.30)�(4.32) follows by classical variational

arguments.

Theorem 4.6 If w 2 L
1(
) is an admissible variation of (S) around l

� 2 K ,

then Z



p(w � l
�) (h� + g) dx � 0 : (4.33)
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Conversely, if w satis�es (4.33) with strict inequality sign, it de�nes an admissible

variation around l
� . If 
1 = fx 2 
 ; p(x)(h�+g)(x) > 0 a.e. g , then l

�(x) = �
�3

and u
�(x) = � a.e. in 
1 .

Proof. For admissible variations l
� + �(w � l

�) ; w 2 K , we have that the corre-

sponding states y
�
satisfy y

�
(~x) + Æ � 0 . By Theorem 4.4 and the embedding

H
2(
) � C(�
) , for 
 2 IR

3 , we get that

�y(~x) = lim
�!0

y
�
(~x) � y

�(~x)

�
� 0 :

We write this as follows:

0 � �y(~x) =

Z



�y(x) Æ~x =

Z



�y�p =

Z



p��y dx =

Z



p(w � l
�) (h� + g) dx ;

as in the proof of Theorem 4.5. This shows (4.33).

Conversely, the above calculus shows that this assumption implies that �y(~x) > 0 ,

that is, y
�
(~x) > �Æ for � small, and the admissibility of the variation l

�+�(w� l
�)

follows.

For any w 2 K such that l
� + �(w � l

�) is admissible, a computation similar to

Remark 4.7 gives

0 �
Z



l
�
�
4
3
(w � l

�) dx : (4.34)

If l
�(x) 6= �

�3 on a subset of positive measure of 
1 , we choose w(x) = �
�3 in

this set and w(x) = l
�(x) otherwise. The above observation and the converse of

(4.33) show that such a w will generate an admissible variation around l
� . But

this clearly contradicts (4.34). 2

Remark 4.8 Property (4.33) and its converse are valid for any l 2 K which is

admissible for (S) with active state constraint. That is, Theorem 4.6 reexpresses

the state constraint (4.29) in the language of the admissible control variations, and

this is valid in the di�cult case of active constraints.

5 Numerical experiments

We have computed several examples using the methods developed in this paper.

We have studied in detail the case of arches, including their shape optimization.

Numerical examples concerning plates and beams have been reported in the works

of Arn utu, Langmach, Sprekels and Tiba [2], Sprekels and Tiba [23], where di�erent

(but related) approaches have been used.

In Figures 1�4, deformations of various arches (roman, gothic, closed) with di�er-

ent thicknesses " > 0 and under certain square integrable loads [f1 ; f2] are shown.

28



The algorithm is based on Theorem 2.3 with explicit solutions of (2.20) obtained

via MAPLE. The integrals appearing in the coe�cients of (2.20) or else can be com-

puted explicitly in the case of simple arches and simple forces (purely tangential or

purely normal, etc.). Otherwise, standard numerical integration procedures on the

real line should be applied.

The parametric representation of an arch associated to some function � on a pre-

scribed interval, is given by ['1 ; '2] with '
0

1 = cos � ; '02 = sin � , and with null

initial conditions. Notice that in Figure 1, � is discontinuous, and ' = ['1 ; '2]

is just Lipschitz, which shows the importance of relaxing the regularity assumptions

in (1.1) as is done in the problem (P
"
) in Section 2. Figures 2 and 4 show the

same type of arch with similar loading. The di�erence in the shape of the obtained

deformations is due to the fact that the �rst arch is clamped at both ends, while the

closed arch is clamped only in the point (0; 0) . Figure 3 refers to the ��exural�

model brie�y explained in Theorem 2.5 and Remark 2.8. The constant E is the

Young modulus of the material, while S = "
3=2 gives the in�uence of the thickness

" > 0 . We indicate, as a short example, the explicit form of the deformation [v1 ; v2]

corresponding to the situation described in Figure 2:

v1(t) = (6 " sin t + 4 sin t + 2 � " sin t + � "
2
t sin t � 4 " t cos t � 2 "2 sin t

� 2 " t2 sin t � "
2
t
2 sin t + � t sin t � 4 t cos t � t

2 sin t � 2 � � 2 " �

+2 � cos t + 2 � " cos t)=4 "3=2(" + 1) ;

v2(t) = (" + 1) (2 t sin t + � t cos t � � sin t � t
2 cos t)=4 "3=2 :

The Figures 5�9 and the Tables 1, 2 concern optimization procedures for arches,

according to the theory developed in Section 3. For the computation of the gradient

of the cost functional, as given in (3.54), it is necessary to obtain the numerical

solution of the state system (3.1)�(3.5), of the adjoint system (3.38)�(3.44), and the

approximation of the mappings [g01(�)]
�
P1 and [g02(�)]

�
P2 . It obvious that by the

nature of the data an explicit calculation is not possible in the optimization routine.

We have considered an equidistant division of the interval of de�nition, denoted here

by [0; L] , into N0 (a natural number) subintervals [t
i
; t

i+1] , with t
i
= i h ; h =

L

N0

.

The mapping � 2 L
1(0; L) is approximated, in di�erent examples, by piecewise lin-

ear splines or by piecewise constant functions. The integrals are computed accord-

ingly by standard quadrature formulas, and the solution of the ordinary di�erential

system is obtained via linear �nite elements. The scalars �
"

1 ; �
"

2 from (3.3) are

found from the algebraic system (2.20). Similarly, the unknown initial conditions

�1 ; �2 for the equations (3.38), (3.39) satisfy a system of the same type as (2.20)

with the mappings l ; g2 replaced by 1 ;  with 
00 = �2 ; (0) = (L) = 0 (see

Proposition 3.4 and its proof). The functions [g01(�)]
�
P1 and [g02(�)]

�
P2 have been
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approximated in the following way:

[g0
k
(�)]�P

k
(t
i
) ' 1

h

ti+1Z
ti

[g0
k
(�)]

�

P
k
(s) ds

=
1

h

LZ
0

P
k
(s)

�
�g
k
�[ti;ti+1]

�
(s) ds ; k = 1; 2 ; i = 0; N � 1 ;

[g0
k
(�)]�P

k
(L) ' 0 ; k = 1; 2 :

For the determination of �g
k
the relation (3.48) is used, and �[ti;ti+1] is the charac-

teristic function of [t
i
; t

i+1] .

Although the studied optimization problems are nonconvex, adaptations of Rosen's

and Uzawa's gradient algorithms with projection, Gruver and Sachs [16], Arn utu

[1], have been used. A maximal number of iterations (between 200 and 300) have

been prescribed, and the solution has been chosen as the one which gives the best

value of the cost. The algorithm stops as well if the value of the gradient or of the

cost is zero.

For a given example, several tests have been performed with various values of the

parameters N0 ; � (the parameter from the Rosen algorithm) and with both al-

gorithms. In general, the Rosen algorithm gives better results than the Uzawa

algorithm. In the optimization problems, we have �xed " = 0:1 . A typical line

search procedure is to subdivide the open-closed interval ]0; 1] into N1 equal parts

and to give the line search parameter the values
i

N1

; i = 1; N1 . The one which

gives the best cost will generate the next iteration. We have avoided, with good

numerical results, the usual computation of the line search parameter by a one-

dimensional optimization problem, which may be very time-consuming. The used

procedure combines in an ad-hoc manner the gradient algorithm principle with a

global search. A projection on the admissible set has been performed in each itera-

tion. The optimization problem (Q) looks for the shape of the arch which ensures

the minimal normal deformation (in some integral sense) under the action of a pre-

scribed force. We have examined purely tangential ( f2 = 0 ) or normal ( f1 = 0 )

forces (since they give the basis in the local system of axes), as well as forces not

depending on the unknown arch. This last case is described in the local system of

coordinates by f1(t) = sin(�(t))=S and f2(t) = cos(�(t))=S (for the force of modu-

lus one and parallel to the vertical axis), and in converse order for forces parallel to

the horizontal axis. It should be noticed that the force is independent of the arch,

but its local representation is dependent via � .

The constraints for � were given by subintervals of [0; �] as indicated in the �g-

ures. This su�ces for many applications and avoids the self-intersection of arches.

However, some degenerate case is still possible, according to Figure 9.

In Figure 5, under the action of a tangential force, and starting with the initial
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iteration given by the roman arch, it is seen that the global solution is the beam,

which clearly has no normal de�ection under such a load. In our representation, two

global solutions (beams) are put into evidence, associated to � = 0 and to � = � .

The �gure shows some iterations produced by the algorithm and the corresponding

values of the cost. In this experiment, we have used N0 = 200 ; n1 = 10 ; � = 0; 75 ,

and the arch close to the beam was obtained in iteration I = 24 . We underline that

in this example, an in�nity of global solutions (beams of any slope) exists, and this

shows the di�culty of the numerical computations.

In Figure 6, the initial iteration is again the roman arch, but the force is of constant

modulus one and parallel to the vertical axis. The iterations that are represented

show how the routine �nds again the (unique if � is constrained in [0; �] ) global

solution which is given by a vertical beam characterized by � =
�

2
. In this con�g-

uration, the prescribed force becomes purely tangential to the arch, and the global

solution is a special case of the previous example (but not the problem as a whole).

We have used N0 = 200 ; N1 = 10 ; � = 1 , and the global optimum was obtained

at iteration I = 139 .

The numerical results from Figures 5, 6 match perfectly with the physical inter-

pretation. This gives a strong validation of the notion of weak solution that we are

using and shows the stability of our methods.

In Figures 8 and 9, the case of a purely normal load is discussed, the di�erence being

given by the constraints imposed on � :

�
�

6
;
5 �

6

�
, respectively [0; �] . In Figure 9,

the �optimal� found � is represented, not the arch as usual. As the solution is bang-

bang, � 2 f0; �g a.e. t 2 [0; �] ; then the arch degenerates and cannot be graphically

represented. Suggested by the bang-bang structure of the obtained solution (the

computations were made with N0 = 200 ; N1 = 20 ; � = 1; 5 ; I = 27 ), we have

simply generated a sequence �
N , by giving to the new parameter N the values listed

in Table 2 and to �
N the values 0 and � , alternatively on subsequent subintervals.

We have directly computed the costs J(�N ) associated to such oscillating arches and

listed them in Table 2. The conclusion is that the sequence �
N is a very e�cient

minimizing sequence for this problem, ensuring for N � 50 lower values of the

cost than the one computed by the complete numerical procedure (although this

provides a performant result as well). We stress that the oscillatory nature of the

minimizing sequence f�Ng is related to the noncompactness of the constraint set

f� 2 L
1(
) ; �(t) 2 [0; �] for a.e. t 2 (0; �)g in L

1(0; �) . This set is only bounded

and closed which is not enough to ensure the existence of the optimal � as discussed

in Theorem 3.1 and Corollary 3.2. This numerical example can be interpreted

as showing that the assumptions of Corollary 3.2 are sharp. We also underline

that such compactness comments apply to Figures 5 and 6 as well, although global

minimum points exist in these examples.

Figure 8 represents the initial (roman) arch and the obtained solution, in the same

problem as in Figure 9, with the constraints given by the set

�
�

6
;
5 �

6

�
in order to
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avoid degeneracy. The numerical test used N0 = 300 ; N1 = 10 ; � = 1; 5 , and the

obtained optimum corresponded to the iteration I = 160 . The bang-bang structure

of the solution is again clear (recall that � is the angle between the tangent to the

arch and the horizontal axis). However, Table 1 shows that the simple sequence

f�Ng constructed as in the previous example but with the values �=6 ; 5 �=6 , is

no more a minimizing sequence for this problem. The commuting points for the

bang-bang solution are no more equidistant in this example. Finally, in Figure 7, a

�realistic� example is studied: the construction of a most resistent roof subject to a

vertical constant load of modulus one. The reader should pay attention that in this

�gure we have interchanged the axes to make the representation look more �physical�.

To perform a more precise calculation, we have �xed N0 = 500 ; N1 = 100 ; � = 10 .

Two experiments are reported in Figure 7, one with the initial iteration given by a

fragment of roman arch, and another with the initial iteration given by two coupled

fragments of roman arch. In both cases, the numerical solutions were obtained in

the �rst iteration, I = 1 , and are very similar. In this example (as in Figure 8),

the theoretical optimal value is �far� from zero, and the computed values are very

good.

We close this presentation by underlining that working with low regularity assump-

tions was essential for the optimization applications in view of the bang-bang struc-

ture of the optimal � , as found in many examples. However, in Figure 6, the global

solution is not bang-bang and this property seems just to be related to the applied

force. That is why we did not study bang-bang properties in Section 3, although

such properties are known for plates, according to Section 4, or to Sprekels and

Tiba [21]. We also underline the nonlocal optimization character of our numerical

experiments as this is obvious from the reported results.
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 Figure 1 - θ(t) = t,  t ∈[0,π/3], θ(t) =  t+π/3,  t ∈[π/3,2π/3],   
                       f1(t) = 0,   f2(t) = 1/(S E),  E = 10 
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          Figure 2 - θ(t) = t,   t ∈[0,π] 
                                 f1(t) = sin(t) /S , f2(t) = cos(t) /S  
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    Figure 3 - θ(t) = t,  f1(t)= sin(t),   f2(t)=2 cos(t) ,   t ∈[0,π] 
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      Figure 4 - θ(t) = t,  f1(t) = sin(t)/(S E),    
      f2(t) = cos(t)/(S E) , t ∈[0,2π],  E=100  

 

34



-3.00 -1.00 1.00 3.00 -2.00 0.00 2.00 

-1.00 

1.00 

3.00 

0.00 

2.00 

Legend  

Jopt= 0 

J0= 0.587371 

J20=0.320098 

J2=0.280906 

J4=0.104342 

J6= 0.010420 

 
Figure 5 -  �(t) ∈ [0, �], f1(t) = 1/S  ,  f2(t) = 0 ,  
                      �0(t)= t,  t ∈ [0, �] 
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   Figure 6 – �(t)∈[0, �], f1(t)=sin(�(t))/S,  
                         f2(t) = cos(�(t))/S, �0(t)= t,  t ∈ [0, �]  
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       Figure 7 – �(t)∈[�/3, 2�/3] 
        f1(t) = cos(�(t))/S,  f2(t) = sin(�(t))/S , t∈ [0, �],  
        �01(t)= (2t + �)/3, t∈ [0, �/2), �01(t)= 2t/3 , t∈ [�/2, �] ,  
        �02(t)= (t + �)/3, t∈ [0, �] 
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Figure 8 – �(t) ∈ [�/6, 5�/6], f1(t) = 0  ,  f2(t) = 1/S ,  
                      �0(t)= t + �/3, t∈ [0, 2�/3],  
                      Jinit = 2.779911,  Jopt = 0.008977 
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Figure 9 – �(t) ∈ [0, �], f1(t) = 0,  f2(t) = 1/S ,  
                      �0(t)= t, t∈ [0, �]  
                     Jinit = 82.922993,  Jopt = 0.0024772 
 

 
 
 
 

N J(θN) 
30 0.0141367792 
50 0.0247750769 

100 0.0303698330 
200 0.0318697376 
300 0.0321519172 
500 0.0322969269 
800 0.0323467156 
1000 0.0323582113 

 
 
 
 
 
 
 
Table 1 - �(t) ∈ {�/6, 5�/6}, f1(t) = 0, f2(t) = 1/S, 
                   t ∈ [0, 2�/3] 
 
 
 
 
 
 
 
 
 
 
 

N J(θN) 
30 0.0095834975 
50 0.0012420426 

100 0.0000776279 
200 0.0000048517 
300 0.0000009584 
500 0.0000001242 
800 0.0000000190 
1000 0.0000000078 

 
 
 
 
 
 
 
 

                      Table 2 - �(t) ∈ {0, �}, f1(t) = 0, f2(t) = 1/S,  
                                             t ∈ [0, �] 
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