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ABSTRACT. For the solid torus V = S1 X fil2 and a C 1 embedding f : V ~ V 
given by 

f(t, 2:i, 2:2) = (cp(t), Al(t) · 2:1 + z1(t), A2(t) · 2:2 + z2(t)) 
with 1lf- > 1, 0 < Ai(t) < 1 the attractor A= n:o f (V) is a solenoid, and for 
each disk D(t) = {t} x fil2 (t E 8 1 ) the intersection A(t) =An D(t) is a Cantor 
set. It is the aim of 'the paper to find conditions under which the Hausdorff 
dimension of A( t) is independent of t and determined by 

(0.1) 

where the real numbers Pi are characterized by the condition that the pressure of 
the function log Afi : 8 1 ~ JR with respect to the expanding mapping cp : 8 1 ~ 8 1 
becomes zero. (There are two further characterizations of these numbers.) 
It is proved that (0.1) holds provided Ai, A2 are sufficiently small and A satisfies 
a condition called intrinsic transverseness. Then it is shown that iq the space of 
all embeddings f with sup Ai < e-2 (0 the mapping degree of cp) the subset of 
those f which have an intrinsically transverse attractor A is open and dense with 
respect to the C 1 topology. 

1 

6 

9 

23 

29 





1. RESULTS AND SOME PROBLEMS 

Let S1 = JR (modulo 1) be the unit circle, and let ])2 be the unit disk in JR 2. 

Then V = S 1 x ])2 is a solid torus, and A= S1 x IT (IT= [-1,1]) is an annulus. 
The natural projections 7r : V ~ S1, pi, p2 : V ~ A are defined by 7r( t, x, y) == 
t, P1 ( t, x, y) == ( t, x), P2 ( t, x, y) == ( t, y), and the disks { t} x 1I)2 == 7r-1 ( t) ( t E S1) 

will be denoted by D(t). In this paper we consider 0 1 embeddings f : V ~ V which 
have the form 

f(t, x, y) = (cp(t), A1(t)x + z1(t), A2(t)y + z2(t)), 

where 
cp: 31 ~ 31, A1, A2 : S1 ~ (0, 1), z1, Z2 : 31 ~ (-1, 1) 

are 0 1 mappings, and cp is expanding in the sense that 

. dcp 
cp==a:t>l. 

(1.1) 

This last condition implies that the mapping degree 8 of cp is at least 2 and that 
f stretches the torus V in the direction of 31 • Since 0 < .\1 , ,\ 2 < 1 the disks D( t) 
are contracted. So the image f (V) is thinner but longer than V, and it is wrapped 
around in V exactly 8 times. For each t E 3 1 the intersection f (V) n D( t) consists 
of 8 mutually disjoint ellipses. The set 

j=O 

is the attractor off. This attractor has a relatively simple structure: it is a solenoid 
and its local structure can be described as follows. For each t 0 E 3 1 the intersection 
A(t0 ) ==An D(t0 ) is a Cantor set, and for any arc Bin 3 1 containing t 0 there is a 
homeomorphismus 

h : B x A (to) ~ A n 7r - l ( B) == A n ( B x D2 ) 
which can be chosen so that 

7rh(t,x)=t, h(t0 ,x)=x (t EB, x E A(to)). 
For each x E A( t0 ) the embedding hx = h( ·, x) : B ~ V is of class 01, and hx 
depends, with respect to the 0 1 topology, continuously on x. 

In this paper we show how in some cases the Hausdorff dimension dimH A( t) of the 
sets A(t) is determined by the mappings cp : 3 1 ~ 3 1 and .\1 , ,\2 : 3 1 ~ (0, 1). (In 
these cases this dimension will not depend on z1 and z2 .) Besides dimH A( t) we shall 
consider the dimensions dimH p1(A(t)), dimH p2(A(t)). The following proposition 
defines numbers p1 , p2 which will be related to the dimensions in question. 

Proposition 1.1. For i == 1, 2 there is exactly one real number Pi for which the 
functional equation 
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I: .xi(t')Pie(t') = e(t) (1.2) 
t'Ecp-1 (t) 

has a positive continuous solution e : S1 ~ JR. 

Remark 1. 2 Using elementary properties of the pressure P( 'lj;) of functions 'lj; : 
S1 ~IR with respect to the mapping cp : S1 ~ S1 (see e.g.[1] or [4]) it is not hard 
to see that Pi is the unique number satisfying P(pi log Ai) = 0. 

Remark 1.3 Lemma 2.2 in Section 2 shows that the number Pi can be obtained 
as the limit 

Pi= lim p(k), 
k-+oo 

where the numbers p( k) · ( k = 1, 2, ... ) are defined for an arbitrary point t E S1 

by 

k L [Il Ai('Pj-l(t'))]p(k) = 1. 
t'Eip-k(t) j=l 

We note that the product in brackets equals the length of the axis of the ellips 
Jk(D(t')) which points in the direction of the i-th coordinate in D(t). 

The space of all C1 embeddings f : V ~ V as described above equipped with 
the 0 1 topology will be denoted by F. It is easily proved (see Section 2), that for 
f E F, i = 1, 2 the inequalities 

dimH Pi(A(t)) ::; Pi (1.3) 

dimH A( t) ::; max(p1, P2) (1.4) 

hold for all t E S1 . Our aim is to find conditions under which we get equality i:h 
(1.3) and in (1.4). The following subsets F/, Ff, Ff' of F i = 1, 2 will be 
crucial. 

Definition 1.1. For i = 1, 2 F/ is the set of all f E F which have the following 
property: For any arc Bin S 1 and any two components B1 , B 2 of An7r-1 (B) the arcs 
Pi(B1), Pi(B2) are transverse in A at each point of Pi( Bi) n Pi(B2). The attractors 
of the mappings f E F/ will be called intrinsically transverse with respect to Pi· 

As easily seen, a mapping f E F belongs to :fix provided for any two arcs B1 , B 2 

as in the definition above which lie in different components of 7r-1 (B) n f(V) the 
projection Pi(B1), Pi(B2) are transverse. This implies that F/ is open in F. 

The set Ff, Ff' are defined by 
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:FI'= {f E :Fl sup Ai< inf cp sup c;,-4loginf ,\i/logsup,\i}. 

Obviously :Ff, :Ff' are open in :F, and :Ff' C :Ff. 

Now we state the main results. 

Theorem A. If i = 1, 2 and f belongs to :F/ n :Ff' and t E 8 1, then 

dimH Pi(A(t)) =Pi (1.5) 

Theorem B. The set :F/ n :Ff is open and dense in :Ff. 

Corollary. :F/ n :Ff' is open and dense .in :Ff', and (1.5) holds generic.9'llY in :Ff'. 

Let H denote the set of all f E :F for which cp = 8 and Ai are constant functions 
on 81. We define for i = 1, 2 

Hf= :F/ nH, 'H~ = :F~ n H H~' = :FJ' n H. i i ) • • 

Then 

H~' = {f E HIAi < e-3
} 

Theorem C. Hf n 'H~ is open and dense in 'H~. 

Corollary. Hf n H~' is open and dense in 'H~', and (1.5) holds generically in 'H~'. 
In this case Pi = - log e I log Ai. 

Theorem D. If Pio = max(p1, P2), then for any f E :Fi~ n :Ff~ and each t E 81 

dimH A(t) =Pio· (1.6) 

Corollary: If Pio= max(p1,p2) then (1.6) holds generically in :Ff~ and in H~~· 

The following questions remain open. 

Question A. Theorem B states that any er mapping f in :Ff ( ~ 2::: 1) can be C1 
approximated by C1 mappings and even by C 00 mappings in :Ff which have an 
intrinsically transverse attractor. Can f be er approximated by such mappings? 

Question B. Let f be a mapping in :Ff and let U be a neighbourhood of f in 
:Ff (i = 1, 2). Is there always a mapping g EU n :F/ which is defined by the same 
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mappings cp, .X 1 , .X 2 , Zit, ( i' =/:- i) as f; i.e. can A be made intrinsically transverse with 
respect to Pi by a small perturbation of Zi without changing cp, A 1 , .X2 , Zit? 

The main results are contained in Theorem A and Theorem B. Their proofs are 
carried out in Section 3 and Section 4, respectively. Since there is no distinction 
between the cases i = 1 and i = 2 it is sufficient to consider one fixed index i, 
and we shall write Ai = .X, Pi = p, Pi =pin these sections. The proofs of the 
following facts are collected in Section 2: 1. Proposition 1.1; 2. two lemmas which 
will be used later and the second of which implies Remark 1.3; 3. the easy parts 
dimH Pi(A(t)) ::; Pi (i = 1, 2), dimH A(t) ::; Pio of Theorem A and Theorem D. 
The remaining part of Theorem D is an immediate consequence of Theorem A, 
Theorem B and the fact that the projection Pio being Lipschtz continuous, can not 
raise the Hausdorff dimension of A(t). The proof of Theorem C follows easily from 
the proof of Theorem B in Section 4. 

Let us mention that the corollary to Theorem D may possibly be helpful to solve a 
problem concerning the Hausdorff dimension of a class of 1-dimensional hyperbolic 
attractors and so to generalize a result of McCluskey and Mannings [3] about 
the Hausdorff dimension of basic sets in surfaces to certain attractors in higher 
dimensional manifolds. To describe this class and to formulate the problem we 
need the following definitions. 

Let f : M ---1- M be a er diffeomorphism of an m-dimensional compact manifold 
M without boundary (r ~ 1, m ~ 2). We say that a compact subset A of M is a 
hyperbolic attractor off if it has the following properties. 
(1) there is a neighborhood U of A in M such that f(U) CU and 

i=O 

(2) A is topologically transitive in the sense that there is a dense orbit in A. 
(3) For the restriction TA of the tangent bundle of M to A there is a splitting 
TA = rs EB ru in two continuous df-invariant sub bundles rs' Tu such that with 
suitably chosen numbers 0 < A < 1, c > 0 we have 

(vETs, k=l,2, ... ), 

( w E Tu, k = 1, 2, ... ) . 

(Here Iv I denotes the length of v with respect to an arbitrarily chosen Riemannian 
metric in M. Whether A is a hyperbolic attractor or not does not depend on his 
metric.) 

Under these conditions for each x E A the sets 
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w: = {y E Ml lim d(fk(y), l(x)) = O} 
k-+-00 

are the images of one-to-one immersions w~ : Rn' --t M, w; : Rn --t M of class er, 
where n', n are the dimensions of the fibres in Ts', Tu, respectively. Therefore the 
sets w;, w; called the stable or unstable manifold of x. Since A is an attractor, the 
unstable manifolds are contained in A, i.e. A is the union of its unstable manifolds. 

We assume that the topological dimension of A is 1. This implies that the unstable 
manifolds are 1-dimensional and that the intersection of A with a stable mani-
fold w; is totally disconnected. Even more: for each x E A there is an ( m - 1 )-
dimensional compact manifold Q (with boundary) in w;, a Cantor set C in IntQ 
and a homeomorphism h of Q x Il (Il = [-1, 1]) onto a neighborhood V of x in M 
such that 

V n A = h( C x Il) 
and for c E C, t E Il, y = h( c, t) E A the manifolds h( { c} x Il), h( Q x { t}) are 
pieces of the unstable and stable manifolds of y, respectively. The set h( C x { t}) 
is a neighbourhood of y in w; n A wit~. respect to the intrinsic topology of w;, 
i.e. the topology in w; which is defined by the topology of Rrn-l via the mapping 
W s . JTl>rn-1 --)- ws 

y. m. y· 

We are interested in the Hausdorff dimensions of the Cantor sets h(C x {t} ). Since 
it is not clear that these dimensions do not depend on t. and Q we define the 
local transverse Hausdorff dimension of A at a point x E A to be infimum of the 
Hausdorff dimensions of all Cantor sets which are neighbourhoods of x in w; n A . 
with respect to the intrinsic topology in w;. If these dimensions are independent 
of x their common value will be called the transverse Hausdorff dimension of A. 

To determine these dimensions seems to be a hard problem. Therefore we restrict 
this problem to a class to attractors A which are related to the attractors consid-
ered in the theorems above. This means that we are interested in 1-dimensional 
hyperbolic attractors A whose stable bundle has a splitting rs = rws EB rss in 
two continuous df-invariant subbundles, where rws (the bundles of weakest at-
traction) is 1-dimensional and for v E Tw 11

, w E T; 11
, lvl = lwl = 1 we have 

ldxf(v)I > ldxf(w)I. In this case we say that A is an attractor with a bundle of 
weakest attraction. For these attractors we define a function ,\ : A --t R by 

Then there is a unique number PA such that the topological pressure P(pA ·log,\) 
of the function PA ·log,\ is 0. Now we pose our problem as follows: Find a condi-
tion under which 1-dimensional hyperbolic attractors A with a bundle of weakest 
attraction generalically have the transverse Hausdorff dimension PA· 

To explain the meaning of the word "generalically" in this context some definitions 
are necessary. Let M be a compact Riemannian manifold and let A be the set of 
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all pairs(!, A), where f: M--+ Mis a C1 diffeomorphism and A is a I-dimensional 
hyperbolic attractor of f with a bundle of weakest attraction. We defj.ne a distance 
between elements (f, A),(!', A') of A by 

d((f, A),(!', A'))= max(d(f, J'), d(A, A')), 
where d(f, f') denotes the C1 distance between f and f' (with respect to an em-
bedding of M in a high dimensional space JRN) and d(A, A') is the infimum of all 
numbers e for which there is a conjugating homeomorphism h : A --+ A' satisfying 
d( h( x ), x) ~ e for all x E A. (If no such homeomorphism exists then d( A, A') = oo.) 
By the stability theorem for hyperbolic sets [2] the natural projection (!,A) --+ f 
is a finite-to-one local homeomorphism of A into Diff1 (M). 

Now our problem can be formulated as follows: Find a condition for I-dimensional 
hyperbolic attractors A with a bundle of weakest attraction which defines an open 
set A" of A such that the set of all (f, A) E A for which the transverse Hausdorff 
dimension of A exists and equals PA contains an open and dense subset of A". 

2. PRELIMINARIES 

PROOF OF PROPOSITION 1.1. Let ;\ : 81 --+ JR be a positive C1 function, and let 
L be the Banach space of all continuous functions e : 8 1 --+ JR with the maximum 
norm. For e E L we define the functions e' : 81 --+ [O, oo], e E L by 

t(t) = limsup le(t + 5) - e(t)I I 151, 
0-+0 

[(t) = I: e(t'). 
t'Eip-1(t) 

Moreover, A.\ : L --+ L will denote the operator which is defined by 

A.\e = ;\~ = I: -A(t')e(t'). 
t'Eip-1(t) 

The first step in the proof is to find a strictly positive e E L such that A.\e = µe 
holds for some real µ > 0. To this aim we define a convex cone K in L (i.e. a non-
empty convex subset K of L such that e E K, s > 0 implies se E K) which satisfies 
A.\K C K and has a compact base B (i.e. B has to be a compact .intersection of K 
with a hyperplane in L such that for each e E K there is a positives E JR such that se E B). Then by a well known generalization of the Perron-Frobenius theorem 
for positive matrices (see [5] p. 267) there is an eigenfunction e of A.\ in K with an 
eigenvalue µ 2:: 0. Since our cone K will only contain functions e 2:: 0, e "¥=- 0, this 
together with ;\ > 0 implies µ > 0, and, using the fact that cp is expanding, it is 
easy to see that the eigenfunction e is strictly positive. ~ 
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To define K we choose a positive real a such that 

)..' :::; a((3 - 1 )).., 

where (3 = inf~· (Since).. is a 0 1 function,)..' is the absolute value of its derivative.) 
Then 

K = {e E LI e ~ 0, e t 0, e :::; ae} 
is obviously a convex cone and 

51 

is a base of K. 
To prove A.\K C K it is sufficient to show that ( A.\e)' :::; aA.\e holds for all e E K. 

(A.\ey = >.( :::; f3-1~:::; f3-1Ne + >.e 
:::; (3-1 a((3 - 1 )>.e + a>.e :::; a>.e = aA,\e. 

It remains to prove that Bis compact. Let { t1 , t 2 , ••• } be a countable dense subset 
of S1 . If 6, 6, ... is any sequence in B, then by a diagonal selection process it is 
not hard to find a subsequence which converges on each ti. Since t' :::; ae we see 
that this subsequence convergens with respect to the maximum norm. 

Now let >.1, >.2 : S1 ---+ (0, 1) be positive 0 1 functions and let µ1 , ei, µ2, 6 be positive 
eigenvalues and positive eigenfunctions of A.\1 , A.\2 , respectively. If )..1 < >.2, then 
µ1 < µ2. (To see this let{}= 6/6. Then 

-- -- -1-->.1e1iJ < >.2e1iJ = µ2el{} = µ2µ1 >.1e1iJ 
and if t E S1 is chosen so that iJ( t) = inf{} we get 

>.1fra ~ >.1e1iJ(t) 
and therefore µ2µ11 > 1.) This monotone dependence of µ from ).. easily implies 
that µ = µ()..) is uniquely determined by ).. and that µ()..) depends continuously on 
>.. For a fixed 0 1 function ).. : S1 ---+ (0, 1) we have 

lim µ()..P) > 1, lim µ(>.P) = 0 p-o p-oo 

so that there is a unique p > 0 with µ()..P) = 1, and the proposition is proved. 1111111 

The following lemma will be applied several times in this paper. Its proof is easy 
and can be left to the reader. 

Lemma 2.1. Let µm,j (m = 1, 2, ... ; i = 1, ... ,j(m)) be positive real numbers 
such that 

lim sup µm,j = 0. 
m-oo l~j~j(m) 

If the numbers p* ( m) are determined by 
j(m) 
~ µp*(~) = 1 L...J m,3 
j=l 
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and if p** ( m) are numbers such that 

j(m) p**(m) 
C1 < L µm,j < C1' 

j=l 

where 0 < c1 < c2 and c1, c2 do not depend on m, then 

lim (p*(m) - p**(m)) = 0. 
m-oo 

Now we prove a lemma which is a generalization of Remark 1.3. 

II 

Lemma 2.2. If for i = 1, 2 and an arbitrary chosen sequence si, s2, ... of points 
in 8 1 the numbers qi(l), qi(2), ... are defined by 

k L II Ai('Pj-l(t'))qi(k) = 1, 
t'Ecp-k(s.ie) j=l 

then 

where Pi is defined by Proposition 1.1. 
PROOF: By repeated application of the defining equation (J.2) for Pi we see that 

k 

L: . II .xi('Pi-1(t')re(t') = e(sk) 
t1Ecp-k(s1c) j=l 

holds for k = 1, 2, .... Since 

inf e :<:; L TI >.,( 'Pj-1 ( t'))P' :<:; ~up e, 
sup e t' -le( ) ·-1 mf e Ecp SJc 3-

we merely have to apply Lemma 2.1. 

The following lemmas prove the easy parts of Theorem A and Theorem D. 

Lemma 2.3. If t E 81 , then 

dimH Pi(A(t)) ~Pi (i = 1,2). 

PROOF: Fork~ 1 the sets Pi(A(t)) is covered by the intervals pifk(t') (t' E cp-k(t)) 
whose lengths are 2 rr;=1 .Xi( cpi-1(t')). 

Lemma 2.4. If t E 81, Pio = max(p1,p2), then 

dimH A( t) ~Pio. 
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PROOF: We define fort' E <.p-k(t) 
k k 

µi(t') =II A1(<.pi-1(t')), µ2(t') =II A2(<.pi-1(t')) 
j=l j=l 

µ(t') = ~diamfk(D(t')) = max(µ1(t1),µ2(t1
)). 

If the numbers q1 ( k), q2 ( k), p( k) are defined by 

I: µi(t')q1(k) = I: µ2(t')q2(k) = I: µ(t')ii(k) = i, 
t'Ecp-lc(t) t 1Erp-lc(t) t'Ecp-lc(t) 

then we have 
dimH A(t) ~ liminf p(k), k--.oo 

and Lemma 2.2. implies · 

Pi = lim qi ( k) ( i = 1, 2). k--.oo . 
If we assume 

Pio < lim inf P( k ), k--.oo 
then we get 

lim L µi(t')P(k)=O (i=l,2), k--.oo 
t'Ecp-lc(t) 

lim L µ(t')ii(k) ~ lim L (µ1(t')ii(k) + µ2(t')ii(k)) = 0 k--.oo k--.oo 
t 1Ecp-lc(t) t 1Ecp-lc(t) 

which contradicts the definition of p( k ). 
II 

3. PROOF OF THEOREM A 

We fix an index i E {O, 1} and consider a mapping f E :Ft n :Ff'. As announced in 
the introduction instead of Ai, Pi, Pi we shall write A, p, p, respectively. Moreover 
we shall use the following notations: 

A= inf.:\ , .X =sup.:\, 

(i =inf cp , ~=sup cp. 
The proof consists,:oftwo parts. The first one in 3.A. is devoted to proving the 
following lemma. 
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Lemma 3.A. For each sufficiently large integer m there is a Cantor set C' = C'( m) 
in S1 and a subset A'= A'(m) of 7r-1 (C'(m)) n A such that 

lim inf dimH p(A'(m) n D(t')) 2 p. 
m-00 t'EC'(m) 

Moreover, the restriction of p to any set A'(t') is one-to-one. 

In the second part 3.B. for an integer m to which this lemma applies we consider 
two arbitrary points t' E C'(m), t E 81 and an arc B C 81 with end points t', t. 
Then for each x E A'(t') = A'(m) n D(t') there is a unique arc Bx CA with one 
end point x and 7r(Bx) = B. If the second end point of Bx is denoted by h(x), we 
get the mapping h : A'( t') -t A( t ). By Lemma 3.A the projection p is one-to-one 
on A'(t'), and we can define the mapping 

h = php-1 : p(A'(t')) -t p(A(t)). 

The following lemma will be proved in 3.B. 

Lemma 3.B. There is a finite partition p( A'( t')) = E 1 U · · · U Er in disjoint 
compact subsets such that the restrictions hlEi (i = 1, ... , r) are one-to-one and 
have Lipschitz continuous inverses. 

These two lemmas prove Theorem A: Let c > 0 and t E 8 1 be given. By the first 
lemma we can choose an integer m such that fort' E C'(m) we have 

dimH A'(t') 2 p - c. 

If p(A'(t')) = E 1 U · · · U Er is a partion with the properties mentioned in the 
second lemma we have dimH Ei 2 p - e for at least one set Ei. Since the Lipschitz 
mapping (hlEJ-1 can not raise the Hausdorff dimension we get dimH h(Ei) 2 p-c, 
and then h(Ei) C p(A(t)) together with the fact that c > 0 is.arbitrary implies 
dimH p(A(t)) 2 p. The opposite inequality has been proved in Lemma 2.3. 

3.A. Proof of Lemma 3.A. 

The proof is divided in four steps 3.A.l. - 3.A.4. (see also Corollary 3.3.). The 
remaining parts 3.A.5. - 3.A.8. contain proofs of lemmas which are applied in the 
main proof. 
Since f E Ff' we have 

X < (}_ 73-4log'>./log>. 

or, equivalently, 
2 log 73 log A -----<--

log~ - log~ 2 lg~' 

and we get the subinterval 

J _ ( 2 log 73 log X ) 
- log~ - log~' 2log~ 

(3.0) 
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of (0, ~) which frequently will be used during the proof. 

3.A.1.SOME COMBINATORIAL CONCEPTS. For n == 1, 2, ... or n == oo let En be the 
set of almost all sequences~== (e1 , e2 , ••. ) of length n, where ei E {O, ... , 8 - 1} 
( 8 is degree of the mapping cp : S1 ---7 S1 ). Here "almost" means that the infinite 
sequences ( ei, e2, ... 'ej, e - 1, e - 1, ... ) with ei == e - 1 for almost all i are 
excluded from E00 .We say that a sequence ~ == ( e1 , e2 , ••• ) E Em appears in a 
sequence e' == (e~, e~, ... ) E En, if n ~ m and if for some k E {O, ... , n - m} we 
have e~+i == ei ( i == 1, ... , m ). The projections 

11" m : LJ En ---7 Em, a : En ---7 En-1 
m~n~oo 

are defined by 

Since cj; > 1, the mapping cp : S1 
---7 S1 is expanding, and there is a homeomorphism 

h: S1 ---7 S1 such that h-1cph(t) ==et. We define the mapping T: Eoo ---7 S1 by 

00 

r(~) == h(L eie-i) (~ == ( ei, e2, ... )). 
i=l 

This mapping satisfies r( E00 ) == S1 and 

cp(r(~)) == r(a(~)). 

For ~ E En ( 1 :::; n < oo) the set 

T~ ==, {r(i)I~' E Eoo, 11"n(~') == d 
is an arc in S1 with the upper end point missing. The closure of T: will be denoted 
by T~_. If n is fixed, then the family Tn of all arcs T~ (~ E En) is ~ partition of S1 

in arcs which have at most end points in common. The lengths l of these arcs are 
bounded by (sup cj;)-n:::; l:::; (inf <Ptn. If~ E En, 1 < n < oo, then cp(T~) ==Tu(~), 
and for 1 :::; m < n < oo, ~ E Em the arc T!l is the union of all arcs T~,, where 
~1 E En, 11"m(~') == ~· 

3.A.2. THE GEOMETRIC LEMMA The aim of this lemma is, roughly speaking, 
to find large compact subsets S of S1 and small integers k > 1 such that for 
any t E S1 and any two different components D1 , D2 of f(V) n D(t) the sets 
Jk(Vs) n D 1 , Jk(Vs) n D2 are mapped by p to separate subsets of the interval 
p(D( t)) == tx [-1, 1] in A== S1 x[-1,1], where Vs denotes the parts 7l"-1 (S) == Sx1Dl2 
of V. This property of S, k is equivalent to the fact that for any t 1 , t 2 E S satisfying 
cpk-1(t1 ) # cpk-1(t2), cpk(t1 ) == cpk(t2) we have p(Jk(Dt1 )) n p(fk(Dt2 )) == 0. 

Lemma 3.1. GEOMETRIC LEMMA Let 

( 
2log~ ) r E , 1 

log~ - log.:\ 
(3.1) 
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be given. (Obviously the interval in (3.1) contains the interval J of (3.0).) Then 
to each sufficiently large integer n we can find an integer k satisfyi_ng 1 < k < ~ 
and a proper compact subset 8 of 8 1 which is the union of at least en - e1n 
arcs belonging to Tn such that for any two points t1 , t 2 E 8 satisfying <pk-l ( t1 ) f:. 
<pk-1(t2), cpk(t1) = cpk(t2) we have 

(3.2) 

The last condition can be expressed by saying that for each t E 8 1 and any two 
components D 1 , D 2 of J(V) n D(t) we have 

(3.3) 

Since 8 is compact there is a 5 > 0 (depending on k and 8) such that (3.2) and 
(3.3) can be replaced by 

(3.4) 

(3.5) 

respectively. 

PROOF. Let B be a closed subarc of 8 1 and let for some j > 1 two components of 
Ji(V)n7r-1(B) be denoted by Z1 , Z2 • We say that the pair Z1 , Z2 is an overcrossing 
of Ji(V) if Z1 , Z2 lie in different components of J(V)n7r-1(B) and the set pZ1 npZ2 
is a curve-linear quadrangle in A (as shown in Fig. 1), whose projection to 8 1 is B 
and whose four edges 

Fig.l 
are smooth arcs with transverse intersection at the end points. It is assumed that 
p(Z1 ) really crosses p(Z2 ) in the sense that opposite edges of p(Z1 ) n p(Z2 ) lie in 
opposite edges of one of the quadrangles p(Z1 ), p(Z2 ) (i.e. that the intersection of 
p(Z1 ) and p(Z2 ) is not as shown in Fig.2. 
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The arc B will be called the 7r-projection of the overcrossing. 

Fig.2 
Since A is intrinsically transverse with respect to p, for each a > X there is a 
positive integer k0 > 1 with the following three properties: 

(1) If k ~ k0 and D1 , D2 are components of Jk(V) n D(t) (t any p-oint in 8 1 ), 

which lie in different components of f(V) n D(t) and for which p(D1 ) n 
p(D2 ) # 0, then there is an overcrossing Z1 , Z2 in Jk(V) with.D1 C Z1 , 

D2 C Z2. 
(2) If k ~ k0 , then the length of the 7r-projection of any overcrossing in fk(V) 

is at most ak-ko. (This is implied by the fact that for points p, q E A n D( t) 
which lie in different components of f (V) n D( t) and have same p-image 
p(p) = p( q), there is a positive lower bound for the angle at p(p) between 
the p-images of the fibres of A passing through p and q, respectively.) 

(3) If k ~ k0 , then the number of overcrossings in Jk(V) is exactly 8 2(k-ko)c 
where c denotes the number of overcrossings in Jko (V). (This holds since 
each overcrossing in Jko (V) contains exactly e2<k-ko) overcrossings of Jk(V).) 

Now we choose a real a > X which is so close to X that r > 2 log /3 /(log /3-log a) and 
fix an integer k0 satisfying (1), (2), (3). For an integer k ~ k0 the arcsin 8 1 , which 
are 7r-projections of overcrossings in Jk(V), will be denoted by B1 , ... , B 8 • Then 
s = 8 2k' c, where k' = k - k0 • For each arc Bi (1 ~ i ~ s) we choose a component 
Bl of <.p-k(Bi) for which fk(7r- 1(Bi)) belongs to the overcrossing corresponding to 
Bi. The union B; U · · · U B; will be denoted by B*. The construction of B* implies 
that for any t E S1 the parts of Jk( 7r-1( S1 \B*)) lying in the 8 components of 
J(V) n 7r-1(t) have disjoint p-images. 
The total length of B* is at most 

and the number of components of B* does not exceed s = 8 2k' c. If n > 1 is an 
integer, then there are at most p§_-kc(82a)k' arcs in Tn1 which lie in B*, and at 
most 282/c' c arcs in Tn, which intersect B*, but are not contained in B*. Since Tn 
consists of en arcs, the number of arcs in Tn, which do not intersect B*, is at least 
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If S denotes the union of these arcs, then (3.3) holds for any t E S1 and any two 
components D1, D 2 of f(V)n7r-1(t). Therefore, to prove the lemma it is sufficient to 
show that for each sufficiently large integer n we can find an integer k = k0 + k' ~ k0 
such that k < ~ and 

7I' §_-ko c( 92 §_-1 a )k' + 2e2k' c < en"'Y. 

This last inequality holds if 

I en")' (3ko 
( 0 2(3-1 a)k < _ 

- 2pc' 
e n"'Y e2k1 <-4c 

or, since by our choice above a is so small that e 2§_-1a < 1, 

(3.6) 

1log8 - log~ log(§_k0 /2c) k' / log( 4c) 
n + < < n- - . (3. 7) 

log(e2~-1 a) log(e2~-1 a) 2 2 loge 

Once more using our choice of a we get 

1 log 8 - log~ ! 
~~~~~- < -. 
log(82§_-1a) 2 

Therefore, if n is sufficiently large the right-hand side of (3. 7) exceeds the left-hand 
side by more than 1, and we can find an integer k' satisfying (3. 7) and therefore 
(3.6) too. With k = k0 + k' the second inequality in (3. 7) can be written as 

k n n(l -1) log(4c) k 
< 2 - 2 - 2 log e + 0 

and, since I < 1, we get k < ~, provided n is sufficiently large. II 

3.A.3.THE SETS £~m' C'(m), A'(m). let/ E :T be fixed (see (3.0)). In this section 
we shall define for each sufficiently large integer ma subset e:n of £m which consists 
of r == r(m) elements, where 

em - 8 2"'Ym < r < em' r ~ 2. (3.8) 

(Since/ E J we have 2/ < 1.) For u = 1, 2, ... we consider the subsets £~m of £um 
which are given by 

£~m = e:n x ... x e:n ( u factors), 

where £um == £m X · · · X £m in the obvious sense and their limit 

£~m == {g_ E £ooJ7rum(g_ E £~m for U == 1, 2, ... }. 

Then, as easily seen, 
00 

C' = C'(m) = n LJ T~ = r(~oo,m) 
u=l ~EE~un 
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is a Cantor set, and cpm(C') = C'. Morover, <pm : C' ~ C' is a r-to-1 map. We 
define 

V' = V'(m) = C'(m) x ]J]2 = 7r-1 (C'(m)). 
By cpm( C') = C' we have fm(V') C V', and we define 

00 

A'= A'(m) = n jum(V'). 
u=l 

This set A' is a subset of An V', and for each t E C' 

A'(t) = A'(m, t) = A'(m) n D(t) 

is a Cantor set. 

Later in this section we shall prove the following lemma. 

Lemma 3.2. There is a positive 6' = 6'(m) with the following property. If t1 , t 2 are 
points in C'(m) such that cpm(t1) =/- cpm(t2), cp2m(t1) = cp2m(t2), then the subinter-
vals pj2m(D(t1)), pj2m(D(t2 )) of p(D( cp2m(t1)) = p(D( cp2m(t2)) are disjoint, and 
their distance is at least 6'( m ). 
This lemma implies the following Corollaries. 

Corollary 3.3. If t~ =f. t~ belong to C' and cpm(tD = cpm(t~), then the distance 
between p(fm(A'(tD) and p(hm(A'(t~)) is at least 6' and if t E C', then PIA'(t') is 
one-to-one. 

Lett== r(§.1) E C'(m) be fixed(~' E £00 ), and let for any~ E £~m the subinterval 
1~ of p(D(t)) be defined by 

1~ == pjum(D( T(§., ~'))). (3.9) 

Obviously 

00 

p(A'(m) n D(t)) = n LJ 1~, (3.10) 
u=l ~Et.:,_'fn 

and Lemma 3.2. states that for ~1 , ~2 E &2m satisfying am(~1 ) =/- a(§.2) the distance 
between le and le is at least 6'. This implies the following corollary. 

-1 -2 

Corollary 3.4. If ~1 ,~2 E &um (u ~ 2) and if 

a(j-l)m(~1) =/- a(j-l)m(~2), aim(§.1) = aj(m)(~2) 

holds for some j E {2, ... , u}, then 
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DEFINITION of E:n. Let 1' E :J be smaller than 1, and let m be so large that the 
Geometric Lemma 3.1. applies to 1' and n == 2m - 1. Then by this lemma we get 
k == k(m), S == S(m) and E == E(m). Since 1' < I the conclusion of this lemma 
holds also for I, n, k, S, E. We consider the elements g1 , ... , gs of En for which the 
arcs Te , ... , Te of In do not belong to S. The number s of these arcs is bounded 

-1 -· by 

We define 

E:n = {g E Em lg -:/- ( e - 1, ... , e - 1), g does not appear in any gi ( i = 1, ... , s)}. 
The number r = r( m) of elements in E:n satisfies 

em - ms - 1 :::; r < em. 

If m is sufficiently large, then ms + 1 :::; me'Y'(2m-l) + 1 :::; e 2'Ym, and therefore 

em - e 2-ym < r < eo 

The following crucial fact is easy to prove: If g E E~m then none of the sequences 
g1 , ... , gs can appear in g and therefore 

<pj (CI ( m)) C s (j ~ Q) • (3.11) 

PROOF OF LEMMA 3.2. Let j be the minimal exponent such that 

cpi(t"1) = cpi(t2). 
Then m < j :::; 2m. Since k < m the points 

t~ = cpj-k(t1), t; == cpj-k(t2) 
are defined, and by (3.11) tr, t; belong to S. If we apply the Geometric Lemma to 
these points we get 

E < dist(pfk(D(tr)), pfk(D(t2))) 

:::; dist(pfi(D(ti)), pji(D(t2 ))) 

:=:; ~-(2m-j)dist(pj2m(D(t1)), pj2m(D(t2))). 
Therefore 8' = E~m has the property required in the lemma. 

II 

3.A.4.PROOF OF THE MAIN PART OF LEMMA 3.A. For each integer m which is 
sufficiently large the constructions in 3.A.3. yield sets E~m ( u = 1, 2, ... , oo ), a 
Cantor set C' = C'(m) in S1 and a set A'= A'(m) in 7r-1(C'(m)) n A such that 
Lemma 3.2. holds for these sets. In each C'( m) we fix an arbitrarily chosen point 
tm. The corresponding sequence in E~m will be denoted by g~, i.e. tm = T(g~). 
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Now for each integer l ~ 1 we consider the piecewise constant function )l : S 1 ~ JR 
which on each arc r: (g E El) has the constant value inftETe -X(t). (As defined in 
3.A.l. T~ is T~ minus-the upper end point.) -

If l 2:: 1 and m > l is so large that C'(m) is defined and tm, ~ are fixed we 
consider for each g E Em the sequence (g, ~) E E00 and define 

(3.12) 

Jtm,l(g) == m~1l )l(ai-l(g,g:n))] · l. 
These definitions obviously imply 

(3.13) 

and the following remark is a simple consequence of j ~ A and that fact that for 
g1,g2 E Eoo satisfying 7rl(g1) == 7rl(g2) we have )(T(g1)) == )(T(g2)). 

Remark 3.5 If !i1 E E00 , fi = 7rm(!i'), t = T(~'), then 

Jtm,l(!i) ~ .\(t) · .\(cp(t)) ... .\(cpm-l(t)). 

The positive numbers p(m,l), p(m,l), p(m,l), p'(m,l) are defined by 

L µm(!l)P(m) = 1 
~Eem 

L P,m,l(g)i'(m,l) = 1 
~Eem 

L Jtm,l(g)i'(m,l) = 1 
~Eem 

L Jtm,l(g)P'(m,l) = 1 
~Ee:n 

Then (3.13) and E:n C Em imply 

fl(m,l) ~ p(m,l) ~ p(m,l) ~ p(m), 

and Lemma 2.2 implies 

lim p(m) = p. 
m-+oo 
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Since the points tm were arbitrarily chosen in the sets C'( m ), to verify the main 
part 

lim inf dimH p(A'(m) n D(t')) ~ p m-+oo t'EC'(m) 
of Lemma 3.A. it is sufficient to prove 

lim dimH p(A'(m) n D(tm)) ~ p m-+oo 
This inequality is a consequence of (3.16) and the following four lemmas which will 
be proved in 3.A.5. - 3.A.8. 

Lemma 3.6. If l > 0 and if m ~ l is so large that C'( m ), tm are defined, then 

dimH p(A'(m) n D(tm)) ~ f/(m,£). 

Lemma 3. 7. If l > 0 is fixed, then 

lim (p(m, l) - p'(m, l)) = 0. m-+oo 

Lemma 3.8. If l > 0 is fixed, then 

lim (p(m,l) - p(m,l)) = 0. m-+oo 

Lemma 3.9. 

lim lim sup(p( m) -, p( m, £)) = 0. 
l-+oo m-+oo 

3.A.5.PROOF OF LEMMA 3.6. The proof will use some elementary facts concerning 
the Hausdorff dimension of certain Cantor sets which are defined as follows. 
Let I be an interval, and let Tu ( u = 1, 2, ... ) be the set of all sequences i = 
(i1 , ... , iu) of integers i; E {1, ... , r} (r > 1 fixed). We assume that for each 
i E Iu a subinterval h = Ii1, ... ,iu of I is defined and that these subintervals together 
with positive numbers fi, 1 , •.• , ftr satisfying ft1 + · · · + ftr < 1 have the following 
properties: 

( 1) Ji1 , ... 1iu+1 C Ji1 , ... ,iu' 
(2) diamli1, ... ,iu ~ diam]· f1j=1 fti; · 
(3) liIIlu-+oo(max!Eiu diamlu) = 0. 

We do not require that for i f- i' in Iu the intervals h, It, are disjoint. What 
we do assume is the following weaker condition. 

( 4) There is a positive real 6' with the following property: If for two sequences 
i = (ii, ... , iu), i' = ( i~, ... , i~) E Tu ( u ~ 2) the maximal index j for 
which (i1 , ... ,i;) = (i~, ... ,ij), is at most u - 2, then hn J!' = 0 and 

dist( h, J!') ~ 6' · diamJif, ... ,i;. 
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Under these conditions we get the Cantor set 

00 

C= n LJ h 
ti=l !Eiu. 

Sublemma 3.10. If the real number pis determined by M + · · · + M = 1, then 

PROOF OF THE SUBLEMMA Let J 1 , ... , Jr be disjoint subintervals of ], where 
diamJi = fti · diam!. For each Ji the increasing affine mapping of I to Ji will be 
denoted by ai, and for i. = ( i1, ... , iti) E Iti we define 

Then 

00 

C* = n LJ Ji 

is a Cantor set, and methods already used by Hausdorff to determine dimH Co for 
the classical Cantor discontinuum C0 , it can be shown that dimH C* = p. Since 
Lipschitz continuous mappings do not raise the Hausdorff dimension to prove the 
sublemma it is sufficient to find a Lipschitz continuousmapping- h of C onto C*. 

For each point c E C there is a unique infinite sequence i 1 , i 2 , ••• such that c E 
Ii1 , •.• ,iu. ( u = 1, 2, ... ). Then we define h( c) to be the unique point in n:=1 Ji1 , ... ,iv.. 
If c -=J c' are points in C and if u is the maximal index for which h( c), h( c') lie in 
the same interval Ji1 , ... ,iv., then 

and by (d) 

ti 
dist( h( c ), h( c')) ~ diam I· II fti; 

j=l 

ti 
dist( c, c') ~ 5' · diam Ii1 , ... ,iu. ~ 5' · diam· II µi;-

i=l 

Therefore 5'-1 is a Lipschitz number for h. 

PROOF OF LEMMA 3.6. Let ~1 , ... , ~r be the elements in E:n, and let for 

II 

i. = (i1, ... ,iti) E {1, ... ,r}ti and~= (~ii' ... ,~J E E~m the interval It;_ in (3.9) 
with t = tm, ~' = ~~ be denoted by h Then it is easy to see that these intervals 
have the properties (1) and (3) mentioned above and that (2) holds with µi = 
ftm,l(~ii, ... , ~iJ as defined in (3.12). Condition ( 4) is a consequence of Corollary 
3.4. Then, together with (3.10) and the fourth equation in (3.14) the sublemma 
implies Lemma 3.6. 
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3.A.6.PROOF OF LEMMA 3.7. Sincep(m,l) ?..fl(m,l) (see (3.15)), it is sufficient 
to show that the assumption 

lim sup(p( m, l) - p' ( m, l) > 0 
m-oo 

leads to a contradiction. By Lemma 2.1. this assumption implies 

and therefore by (3.14) 

lim inf ~ fl,(~)fi(m,L) = 0 
m-oo L..J 

~Ef:n_ 

lim sup L fl,(~yP(m,L) = 1. 
m-oo ~Efm \e:n_ 

(3.17) 

Since by (3.8) the set Em \E:n contains at most 0 2m"Y elements and fl,(~) ::; A, we 
get 

1. o2m"YT771P(m,L) > 1 1msupo "' _ 
m-oo 

1. . f "( 0 ) log 0 1m m p m, {, ::; 2, .:\. 
m-oo -log 

This together with the fact that r was chosen in the interval.:! of (3.0) and therefore 
less than log X/(2 log A) implies 

1. . f "( 0 ) log 0 
~1~ pm,{, < -logA (3.18) 

On the other hand, since £:n contains at least em - e 2m"Y elements (see (3.8)) and 
since fl,(~)?.. Am we get by the definition (3.14) of p'(m,l) 

fl(m,l) > log(em-92='1) 
-mlog~ 

loge log(l-em.( 2..,-1)) 

-log~ + -mlog~ ' 

1. . f "'( 0 ) log 0 Im Ill p m, {. ?_ l , . 
m-oo - og~ 

Looking at (3.19) and p(m,l)?.. p'(m,l) we see the contradiction to (3.18). 

(3.19) 

II 

3.A. 7.PROOF OF LEMMA 3.8. Sinceµ::; ~m and since Sm consists of em elements, 
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em """\"'ffiP( m,l) l 
" 2: 

p(m,l) < loge_ 
- -log,\· 

Moreover (3.12) implies fo each~ E Em 

and by (3.14) we get 

_(3.20) 

By (3.20) the factor (~).P(m,l)·l is bounded with respect tom (£fixed), and therefore 

lim inf L µ(~).P(m,l) > 0. 
m--+oo 

!iEe= 

Now a straight forward application of Lemma 2.1. proves Lemma 3.8. 
Ill 

3.A.8.PROOF OF LEMMA 3.9. If the lemma would be false we could find a positive 
e and arbitrarily large integers l for each of which there are integers m 2: l such 
that 

p(m) - p(m, l) 2: e. 

To lead this assumption to a contradiction we define for l 2: 1 

.:\( t) 
'T/l =sup---. 

tES1 Al( t) 
Then for m 2: l satisfying (3.21) we have 

1 = L µ(~)p(m) ::; TJ7:p(m) L jj,(~)p(m) 
!iEe= ~Ee= 

::; TJ7:p(m) L jj,(~).P(m,l)+e 
~Ee= 

= (ryf(m)xer. 

(3.21) 

Since .:\ is continuous we have liml__.00 'T/t = 1. This together with Xe < 1 and 
p( m) ::; - loge/ log X shows that the last inequality is impossible for large £. 

II 

3.B. Proof of Lemma 3.B. 
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Let m, t' E C'(m), t E S1 and B be as in this lemma. By the proof of 
Lemma 3.A. we know that cpm(C'(m)) = C'(m), and by Corollary 3.3. there is a 
positive 51 such that for any t* E C'(m) and any two points x, y E A'(t*) satisfying 
7r(f-m(x))-/= 7r(f-m(y)) we have 

d(p(W6:(x)), p(W6:(y))) ~ 61, (3.22) 

where W~ ( x) is the arc in A containing x whose projection 7r(W~ ( x)) is the closed 
51-neighbourhood of 7r( x) in S1 , and W8u (y) is defined in the same way. (We assume 

1 l 
61 < 2·) 

Let k1 be a positive integer which is so large that each of the ekim components of 
cp-kim(B) has length at most 51 . Then, if t~, ... , t~ are the points in cp-kim(t') n 
C'(m), we define 

E(= p(fk1 m(A'(t~'))) (i = 1, ... ,r). 
Since by Lemma 3.A. the restriction of p to A'(t') is one-to-one, E1, ... , Er is a 
partition of p( A'( t')) in disjoint subsets. 

Now we choose two different points x', y' E p(A'(t')) which· belong to the same set 
Ei. There are unique points;', y' E A'(t') such that p(;') = x', p(y') = y'. Besides 
these four points we consider 

y = k(y'), 

x = p(x) = h(x'), Y. = p(y) = h(y'), 

Yi = 1-im(Y), (j = o, 1, 2, ... ) 

tj = 7r(xj) = 1r(Y'i), ti= 7r(xj) = 7r(Yi)· 
We shall show that 

d(x', y') ~ : Jfo + ,>,_-1 z~-mi)d(x, y) 
1 j=l 

where l is a Lipschitz constant of A. (Since f3 > 1 the product is convergent.) This 
will prove that hlEi is one-to-one with Lips~hitz continuous inverse. 

Let k be the maximal integer for which 7r 1-km( ;') = 7r 1-km(y'). Since x', y' be-
long to the same set Ei we have k ~ k1 , and this implies d( t~, tk) ::; 51, xk E 
W~ ( ;'k), Yk E W~ (y' k)· Then by (3.22) 

and 

22 



k 

d(x,y) ~ s1 IT .x(tj)· 
j=l 

Similarly d( x~, y~) ~ 2 implies 

k 

d(x', y') ~ 2 II .x(tj), 
j=l 

( 
I ') 2 Ilk A ( tj) d x, y ~ -;- -;--( ·)d(x, y). 

01 j=l A t, 
Obviously d(tj, tj) ~ §_-mjd(t', t) ~§_-mi, and we get 

II 

4. PROOF OF THEOREM B AND THEOREM 0 
Here we prove Theorem B. How this proof covers Theorem C as well will be in-
dicated at the end of the section. As in the preceding section we assume that an 
index i E {1, 2} is fixed and write Pi = p, Ff == F', Ft == Fx. The natural 
projection of the annulus A= 5 1 x IT to 51 will be denoted by a: A --7 51 • 

Let g be the space of all C0 mappings g : A --7 A which can be wrjtten as 

g(t, x) = (?j;(t), K(t)x + v(t)), 
where'lj; = 'l/;9 : 51 

--7 51 , K = K,g: 51 
--7 (0,1), V = Vg: 5 1 

--7 (-1,1) 
for some finite decomposition of 5 1 in arcs B1 , ..• , Bm are C1 on each Bi, and . ~ . 'l/; = dt > 1 holds on each Bi. We assume that Bin Bi+l consists of a common end 
point of these arcs which will be denoted by ti while Bi n Bj = 0 for ji - j I > 1. 
(Indices are counted modulo m.) If 0 = 0 9 is the mapping degree of 'l/;, then the 
decomposition can, and will, be chosen so that m > e' e is a divisor of m and 
'l/;(Bi) = B(i-l)0+i U · · · U Bie· These partitions will be called Markov partitions of 
8 1 • Since the mappings in g are piecewise C1 we have the C1 topology in g, and 
the natural coordinates in A =:== 5 1 x IT (IT = (-1, 1]) define a C 1 distance in g. For 
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each point ti the functions 1/;, K, v have two derivatives (a left one and a right one) 
which will be denoted by ~-, ~+, K,-, K,+, -v-, iJ+, respectively. The value 

measures to what extent g differs from a C 1 mapping. In particular, g is of class 
C1 if and only if 6 = 0. The space of all C1 mappings in g will be denoted by gi. 

The projection p : V -+ A defines a continuous projection F -+ gt. The image of 
F' is 

g' = {g E gt I sup Kg < e;2}. ( 4.2) 

The set 

...... - ...... -'-' - '-'g -

k=O 

is the attractor of g. If g E gi is the projection off E F, then 3 9 = p(A1 ), where 
At is the attractor off in V. 
To characterize those arcs in 2 which are related to the dynamics in A we consider 
sequences B;, B;, ... of arcs in 5 1 satisfying 1/;(Bl) = Bi_1 (i = 1, 2, ... ). Then 
for each of these sequences the set 

00 

B = n l( BZ x rr) 
k=O 

is an arc in 2 which together with the defining sequence Bi will be called an 
admissible arc in 2. (It may happen that two admissible arcs differ only in their 
defining sequences!) 
If g E g is the projection of f E F, then each arc B in the attractor A1 of f 
which is short in the sense that 7r( B) =I 5 1 by B' = p( B), Bi = 7r(J-i( B)) 
defines ari admissible arc in 2, and all admissible arcs in 2 can be obtained in 
this way. If g E gt, then all admissible arcs in 2 are of class C 1 , and 3 9 will be 
called intrinsically transverse (abbreviated i. tr.) if any two different admissible 
arcs B, B' with defining sequences Bi, B 1

; satisfying B'~ = B~ are transverse at 
any point p E B n B'. The set of all g E gt with i.tr. 3 9 will be denoted by gx. 

Remark 4.3. As easily seen, 3 9 is i.tr. provided any two different admissible arcs 
B, B' with B; = B'~, B; =I B'~ are transverse. 

If g E g1 is the projection of f E :F, then 2 is i. tr. if and· only if A1 has this 
property; i.e. the projection F-+ g1 maps ;::x to gx. Therefore to prove Theorem 
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B it is sufficient to prove the following proposition. 

Proposition 4.1. The set gx is dense in Q'. 

In the proof piecewise projective mappings in Q will play a crucial role. 

Definition 4.2. A mapping g E Q is called piecewise projective if there is a Markov 
partition B1 , •.. , Em of S1 such that the restriction of g to any rectangle Qi = Bi x TI 
is a projective mapping to a quadrangle in the rectangle Qi = 'l/J9 (Bi) x TI. (Here 
the sets Qi, Qi are regarded, in the obvious way, as subsets of the plane JR. 2.) 

If g E Q is piecewise projective, then each admissible arc B in 3 9 with a( B) = 
,,P9 (Bi) (1 ~ i ~ m) is a straight segment in the rectangle Qi. 
For g E Q and a fixed corresponding Markov partition B 1, ... , Bm with partitioning 
points ti, . .. , tr such that Bi = [ti-l, ti] we denote K9( ti) by Ki and consider the set 

Z = Z9 {( Ui, ... ' Um) E IR m I [ Ui - Ki' Ui + Ki] E TI ( i = 1, ... ' m)} 
X ~1 [Ki - 1, 1 - Ki] . ( 4. 3) 

For each u = ( u1 , .•. , um) E Z there is a unique mapping 9u E Q which is piecewise 
projective with respect to our Markov partition and which satisfies 

( 4.4) 

We shall use homogeneous coordinates in Qi = Bi x TI and .in Q~ = ,,P(Bi) x TI = 
[te(i-I), tei] x TI which are determined by 

(ti-1,0) ~ ( ~) ,(t;,0) ~ ( ~) ,(t;-1,l) ~ ( ~) ,(t;,l) ~ ( ! ) 
in Qi and by 

(te(i-1),0) ~ ( ~) ,(te;,0) ~ ( ~), 

(te(i-1)11) ~ ( n '(te;, 1) ~ ( ~ ) 

in Qi. With respect to these coordinates the projective mapping 9ulQi correspon-
dents to the matrix 

( 
::Ui+ 1 - Ki+ 1 Ui ~il<i+i ~i+l U; ) . 
Ki - Ki+I 0 Ki+l 

Using some elementary facts from projective geometry we find that 9u can be 
written as 
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9u(t, x) = ('1/Ju(t), Ku(t)x + Vu(t)), 

where for t = ti + s( ti+l - ti) E Bi and t~ = '1/;u( ti) = '1f;9 ( ti) tei, t~+ 1 
'1/Ju( ti+l) = '1f;9 ( ti+l) = te(i+l) the mappings '1/Ju, Ku, Vu are given by 

Vu(t) = 

ltitl ui+s(ttiUitl -lti±l ui) 
tti+l +s( lti-lti+l) 

l_lemark 4.4. The first equation together with ~9 > 1 and '1/Ju(Bi) = 'lj;9 (Bi) implies 
'1/Ju. > 1 and hence 9u E Q. 

Remark 4.5. The mappings '1/Ju and Ku do not depend on u, and if g E Q', then 

sup Ku~ sup Kg< e-2. 

Remark 4.6. If t E S1 is fixed, then vu( t) is a linear function of u and 

In Z9 we consider open subsets 

00 

z;,1 c z;,2 c ... , z; = U z;,k, ( 4.5) 
k=l 

where z;,k consists of all u E Z satisfying 

where 1 ~ i < i' ~ m, fu( ti) = '1/Ju( ti'). This definition implies that for any u E z; 
the attractor 3u of 9u is, in a certain sense, intrinsically transverse. The following 
remark states this fact precisely. 

Remark 4. 7. For each u E z;,k there is a positive a =::: au with the following two 
properties: 
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( 1) If 1 ~ i < i' ~ m and '1f;u (ti) = '1f;u (ti') then the distance between the two 
sets · 

is at least a. 
(2) If B, B' are admissible arcs of 2u such that u(B) =Bi,; u(B') = Bi' (1 ~ 

i < i' ~ m), u(gu(B)) = u(gu(B')) = '1f;u(Bi) = '1f;u(Bi1), then either 

d(gu( B), 9u( B')) 2:'.: a 

or 9u( B) n 9u( B') consists of a point and the angle between the straight 
segments 9u( B), 9u( B') is a least a. 

We shall prove the following three lemmas: 

Lemma 4.8. If g E Q' and e > 0 are given, then there is a corresponding Markov 
partition of 81 and an element u* of Z9 such that the C 1 distance between g and 
9u* is at most e. 

Lemma 4.9. For any g E Q' and any corresponding Markov partition of 8 1 the 
set z; is dense in Z9 (see ( 4.3), ( 4.5)) 

Lemma 4.10. For any u E z; there is a mapping g* E gx for which the C 1 

distance between 9u and g* is at most 59u (see ( 4.1)). 

Using these lemmas Proposition 4.1. is easily proved: Starting with a mapping 
g E Q' and e > 0 we find (by Lemma 4.8.) a Markov partition of 8 1 and an element 
u* E Z9 such that 9u* is e-close tog. Then applying Lemma 4.9. we get an element 
u E z; such that 9u is e-close to 9u• and hence 2e-close to g. Since 9u is 2e-close 
to the C 1 mapping g we have 59u ~ 4e, and by Lemma 4.10. there is a mapping 
g* E gx which is 4c:-close to 9u and, therefore, 6e-close tog. 

The proof of Lemma 4.8. is so easy that it can be omitted. 

PROOF OF LEMMA 4.9. Let g E Q' and a corresponding Markov partition 
B1, ... , Em with partitioning points ti, ... , tm be fixed. Since '1f;u ( u E Z9 ) is 
independent of u (see Remark 4.5.) for each t E 81 the point set '1f;-;; 1(t) also does 
not depend on u, and we denote its points by 0 ~ t(l) < t(2) < · · · < t(8) < 1. 
Moreover for j = (j1 , ... ,jk) E {1, ... , 8}k and 0 ~ £ < k we shall write )'- = 
(ji, ... ,Jk-l) ~d -

t(i) = t( ... ((t(j1))(h)) ... )(jk)· 

Then 'lj;~(t(i)) = t(l) and 

'1f;;; k ( t) = { t (i) 1 j_ E { 1, ... , e} k}. 
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For each point ti (1 :::; i :::; m) and k > 0 the set Jk( S1 x {O}) n a-1 ( ti) consists 
of the Gk points (ti, Xi(j_)) where i E {1, ... , m }k and Xi(j_) is given by 

Xi(i) = Ku( ti(l-l) )[Ku( ti(l-2
) )[. • • [Ku( ti(i1) )[Ku( ti(i) )vu( ti(i) )] + 

+vu(ti(i1))] ... ] + Vu(ti(l- 2
))] + Vu(ti(l- 1

)). ( 4.6) 

By Remark 4.6. each value vu( ti(jt)) is a linear function of u, and so for i, j fixed 
u ~ Xi (i) defines a linear functio~al -

Xi(i) : Rm~ JR. 
We are interested in the functionals 

L(i,i,i') = Xi(i) - Xi(i'): Rm~ JR (i = 1, ... ,m; i,i' E {1, ... ' e}k). 
Let £k be the set of all L(i8,i,i') (i = 1, ... ,m/8;i,i' E {1, ... , G}k) for which 
j1 = l-1 f:. j~ = i'k-l. If u E Z9 satisfies for each L E Lk the inequality 

IL(u)I > 2(sup Ku)\ 
then u E z;,k. 
Each- of the opposite inequalities 

IL(u)I:::; 2(supKu)k 

defines in Rm the complement of the 8L-neighbourhood SL.of a hyperplane, where 

(V L the gradient of L ), and 

z;,k :_) z9 \ U sL. (4.7) 
LEC1c 

Let L = L(iG,j,j') E Lk· Since i1 = t-1 f:. j~ = i'k-l we have for ti0(j1) = 
it, tie(jf) = it' - -

and therefore 

8vu( tie(/-1)) 8vu( tie(i'k-l)) _ 
------ = 1, - 0. 

aul aul 
By ( 4.6), Remark 4.5. and Remark 4.6. 

:~ ~ 1 - 2( SU p Ku + (SU p Ku )2 + ... ) 
> 1 - 2supKu = 1-3SUPKu. 
- 1-supKu 1-supx:u 

Then our assumptions sup Ku :::; sup Kg < e-2 and e ~<2 show that the right hand 
side is positive, and we get 
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I /\ LI 1 - 3 SUP Ku c < 2( )k 1 - SU p Ku 
Ll ~ , u L _ SU p Ku . 

1 - sup Ku 1 - 3 sup Ku 
Since Z9 is bounded there is a real K such that for each L E Lk the volume of 
SL n Z9 is at most K · (sup Ku)k. The set Lk contains less than m8 2k elements, and 
if we use once more sup Ku < e-2, we see that for k ---7 oo the volume of the set 

z9 n U SL 
LEC1c 

tends to 0, and the volume of ( 4. 7) converges to the volume of Z9 • This implies 
that z; is dense in Z9 • 

II 

PROOF OF LEMMA 4.9. We assume u E z;,k. Let Bi= [ti-l, ti] be the arcs of the 
corresponding Markov partition. Then for each positive T/ which is smaller than 
59u and smaller than half the minimal length of the arcs Bi we define C 1 functions 
'lj;TI : S1 ---7 S1 , KT/ : S1 ---7'(0,1 ), VT/ : S1 ---7 Il which have the following properties: 

(1) 'lf;Tl(ti) = 'l/;9u(ti) =tie (i = 0, ... , m - 1), and ~Tl > 1. 
(2) lv11 + K71I < 1 
( 3) 'lj;T/ = 'lj; gu, K11 = Kgu, v11 = v Yu on each arc [ti+ TJ, ti+l -TJ] ( i = 0, ... , m -1). 
( 4) l'Zf;T/ - 'l/;gJ < TJ, IK11 - Kgu I < TJ, lv11 - vgJ < T/ 

1~11 - ~gul < 59u' lkT/ - kgu I < 5gu, lv11 - vgul < 5gu 
on each arc [ti - TJ, ti+ TJ] (i = 1, ... , m). 

To these functions there corresponds a mapping gTI E Q1 such th.at 'lj;TI = 'l/;911 , KT/ = 
K,911' VT/ = VgTI. By T/ < 5gu the C1 distance between g-u and 911 is less than 5gu, and 
to prove the lemma it is sufficient to show that for T/ sufficiently small gTI belongs 
to gx. using Remark 4.7. this can be· done by a straightforward argument. 

II 

It remains to show how this proof can be modified to a proof of Theorem C. To 
this aim we consider the subset JC of Q which consists of all those g E g for which 
~9 and Kg are constant and define JC'= JC n Q', JCX =JC n gx. Then it is sufficient 
to prove Proposition 4.1. with Q1, gx replaced by JC1, JCX, respectively. Since for 
g E JC1 the mapping 9u belongs to JC the lemmas 4.8., 4.9., 4.10. hold with JC', JCX 
instead of Q', Q x, and the proof of Theorem C is complete. 
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