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A note on objectivity of momentum sources in
porous materials

Krzysztof Wilma«ski, Bettina Albers

Summary

The note is devoted to the analysis of contributions of relative accelerations to partial momentum

balance equations of multicomponent models of porous materials. We show that such contributions

violate the principle of material objectivity. Even if we ignore this principle contributions of relative

accelerations are either undistinguishable from other contributions or yield unacceptable modes of

propagation of sound waves or both. Consequently we conclude that such contributions should be

ignored completely in the construction of macroscopical models of porous materials.

1 Introduction

In his classical work on twocomponent macroscopical models of porous materials

M.A. Biot [1] considered interactions of components described by a relative accel-

eration. This type of contributions are still being used in various applications of

Biot's model.

We argue in this note that such models violate the material objectivity under rather

natural assumptions concerning transformation properties of a continuous model.

In addition they do not seem to re�ect any essential microscopical properties which

should be transferred on the macroscopical level of description. In contrast to the-

ories of rari�ed gases (e.g. [2], p. 147) nonobjective macroscopical contributions

in theories of porous materials seem to be some orders of magnitude smaller than

many other e�ects not appearing at all on the macroscopical level of description

or appearing solely in a very crude manner. A typical example is an in�uence of

microscopical vortices in �ows of a �uid component which yields an essential con-

tribution to a form of macroscopical boundary conditions on permeable boundaries,

and should be incorporated by an additional macroscopical �eld of - say - a tortu-

osity.
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It is known that interactions between a �ow of �uid, and an obstacle are in�uenced

much stronger by vortices than by time dependent relative velocities (compare the

classical problem of Euler - d'Alembert paradox). The latter lead in the classical

�uid dynamics to an explicit solution and to the notion of added mass, and con-

sequently, to speculations on a macroscopical dependence on relative accelerations

in theories of porous materials. This sort of argument does not hold water not

only due to the fact that vortices and similar e�ects are ignored. In addition in

the process of averaging microscopical properties to obtain a macroscopical model

of porous materials microscopical interactions through contact surfaces are replaced

by an extension of the set of constitutive variables and this does not require explicit

solutions of any microscopical boundary value problems which are never available

anyway.

In the second Section of this note we present some classical transformation properties

of continuum mechanics related to the form of momentum balance equations in non-

inertial frames of reference. In the third Section we discuss the form of momentum

sources under the assumption of material objectivity. We show that in such a model

a contribution of relative accelerations cannot appear. The fourth Section contains

an example of a model in which the dependence on relative accelerations is incor-

porated in a way similar to this of M. A. Biot. By means of a solution for a simple

steady state �ow we show that the in�uence of this contribution is so small that it

cannot be observed in any experiment on a porous material which can be described

by a classical continuum model. Finally in the �fth Section we present propagation

conditions for sound waves within such a model. It is shown that corrections due

to relative accelerations cannot be distinguished from those of constitutive relations

for partial stresses, and, in addition, the transversal wave contains a contribution of

a �uid component which is assumed to be ideal. This does not seem to be plausible,

and it is, certainly, not observable.

The general conclusion of this note is that contributions of relative accelerations in

continuum models of porous materials should not appear at all.

2 Transformation properties of momentum balance

We check invariance properties of partial momentum balance equations under Eucli-

dean transformation. This type of invariance follows in the classical mechanics from

the assumption that the space of con�guration is isometric, and the time space is

homogeneous (see: e.g. [3]). The latter is of no interest for our purposes. This

transformation has the form

x� = O (t)x+ d (t) ; OT = O�1; x�;x 2 <3; O 2Orth; d 2V 3; (2.1)

where x�, x denote points of the space of con�guration, t is time, Orth is the group

of orthogonal transformations, and V 3 denotes the space of 3D vectors.
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A scalar ', a vector $, a second order tensor � are called objective if they satisfy

the following transformation rules

8O 2Orth : '� = '; $� = O$; �� = O�OT
: (2.2)

It is assumed that mass densities of continuum mechanics are objective scalars, and

contact forces are objective vectors. The latter together with the transformation rule

for unit vectors perpendicular to material surfaces yields the objectivity of Cauchy

stress tensors.

On the other hand kinematic quantities of continuum mechanics are not objective.

In the case of a single component body B we have in the so-called Lagrangian

description

x = f (X; t) =) f� (X;t) = Of (X;t) + d;

@f�

@t
(X; t) = O

@f

@t
(X; t) + _Of (X; t) + _d; _O :=

dO

dt
; _d :=

dd

dt
;

@2f�

@t2
(X; t) = O

@2f

@t2
(X; t) + 2 _O

@f

@t
(X; t) + �Of (X; t) + �d;

�O : =
d2O

dt2
; �d :=

d2d

dt2
;

Gradf� (X; t) = OGradf (X; t) ;

where X denotes a material point of the continuous body B, and f is a function of

motion in the Lagrangian description of motion of the body B. The latter satis�es

usual smoothness assumptions. After transformation to the Eulerian description we

obtain from the above relations the following transformation rules for the velocity

�eld v, the acceleration �eld a, and for the right Cauchy-Green deformation tensor

C := (Gradf)
T
(Gradf)

v� (x�; t) = Ov (x; t) + _Ox+ _d; x
�
= Ox+ d;

a� (x�; t) = Oa (x; t) + 2 _Ov (x; t) + �Ox+ �d; C
�
= C: (2.3)

Hence the deformation tensor C is not objective, but its components behave as they

were objective scalars in relation to transformations in the space of con�gurations.

The velocity v, and the acceleration a are not objective as well but their transfor-

mation rules are more complicated because their components are directly related to

reference systems in the space of con�guration.

We proceed to investigate partial balance equations of a two-component porous

body. We rely on Eulerian description, i.e. �elds are functions of the space point x

and time t.

We assume that there is no mass exchange between components

@�F

@t
+ div

�
�
FvF

�
= 0;

@�S

@t
+ div

�
�
SvS

�
= 0: (2.4)

3



where �F ; �S denote the partial mass densities, vF ;vS are velocities of components.

This assumption solely simpli�es arguments, and can be ignored, if needed, without

much additional e�ort.

For the �uid component, and for the skeleton, respectively, momentum balance

equations have the following form in an inertial reference system

�FaF = divTF + p̂F + �FbF ; (2.5)

�SaS = divTS + p̂S + �SbS;

p̂F + p̂S = 0; (2.6)

where TF ;TS are the partial Cauchy stress tensors, p̂F ; p̂S are the momentum

sources, and bF ;bS denote partial body forces. After the transformation to a non-

inertial �-system the above balance equations have the form

�F
�
OaF + 2 _Ov

F
+ �Ox + �d

�
= O

�
divTF

�
+ p̂F� + �FbF�;

�S
�
OaS + 2 _Ov

S
+ �Ox + �d

�
= O

�
divTS

�
+ p̂S� + �SbS�; (2.7)

p̂F� + p̂S� = 0;

where the following relations have been used

div �TF� = O
�
divTF

�
; grad � (� � �) = OT grad (� � �) ; (2.8)

and similarily for the skeleton.

Bearing these relations in mind we obtain the following identities

�F
h
bF� � iF� �ObF

i
= �

�
p̂F� �Op̂F

�
;

�S
h
bS� � iS� �ObS

i
= p̂F� �Op̂F ;

iF� : = 2W
�
vF� � _d

�
�W2 (x� � d) + _W (x� � d) + �d; (2.9)

iS� : = 2W
�
vS� � _d

�
�W2 (x� � d) + _W (x� � d) + �d; W := _OO

T
;

where the contributions on the right hand side of (2.9)3;4 correspond to the Corio-

lis acceleration, centrifugal acceleration, Euler acceleration and the relative transla-

tional acceleration in both components, respectively. W denotes the skew-symmetric

tensor of angular velocities of two reference systems.

In mechanics of single component systems the right hand side of relations (2.9)1;2 is

identically zero (conservation of momentum!). If we make a similar assumption for

the system of two components we obtain the rules of transformation for body forces

bF� � iF� = ObF ; bS� � iS� = ObS: (2.10)

4



i.e. the combinations on the left hand sides (the so-called apparent body forces) are

objective. However in mechanics of multicomponent systems there is no argument

based on a conservation law which would eliminate contributions from sources. The

main aim of this work is to show that such contributions are not plausible. It means

we claim that the momentum sources are objective vectors, i.e.

p̂F� = Op̂F : (2.11)

In the next Section we show simple consequences of this assumption. In Section 4

we present an example of a model in which the relation (2.11) is not assumed to

hold. Such is the case in the Biot's model [1] in which momentum sources depend

on the relative acceleration of components.

3 Objective sources of momentum

We consider a simple case of a poroelastic material undergoing isothermal processes.

A larger class of materials can be considered in a similar manner but calculations

are more tedious. In a chosen inertial frame constitutive laws for momentum sources

are assumed to have the following form

p̂F � �p̂S = p
�
�F ;CS;w; a

�
; (3.1)

where

w := vF � vS; a := aF � aS ; (3.2)

and CS is the right Cauchy-Green deformation tensor of the skeleton.

We assume the material objectivity, i.e. in any other frame obtained by an orthog-

onal transformation the constitutive relation must have the form

p̂F� = p
�
�F�;CS�;w�; a�

�
; (3.3)

with the transformation rules

CS� = CS; w� = Ow; a� = Oa+2 _Ow: (3.4)

The latter two follow easily from (2.3) and de�nitions (3.2). Now the substitution

in (2.11) yields

8O 2Orth : Op
�
�F ;CS;w; a

�
= p

�
�F ;CS;Ow;Oa+ 2 _Ow

�
: (3.5)

Let us choose a particular instant of time in which O = 1, and _O is arbitrary. Then

p
�
�F ;CS;w; a

�
= p

�
�F ;CS;w; a+ 2 _Ow

�
: (3.6)
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Certainly, this relation can hold solely if the source is independent of a. Then the

relation (3.5) reduces to the following condition

8O 2Orth : Op
�
�F ;CS;w

�
= p

�
�F ;CS;Ow

�
; (3.7)

which means that the function p should be isotropic with respect to the relative

velocity w. Consequently

p̂F = ��
�
�F ;CS; jwj

�
w; (3.8)

where the minus sign has been introduced for historical reasons, and � is a scalar

function not limited any further by objectivity arguments.

4 Linear dependence on the relative acceleration

We ignore now the assumption (2.11) and consider a constitutive law for the mo-

mentum source which in the inertial frame of reference is linear and isotropic with

respect to the relative velocity w and the relative acceleration a, i.e.

p̂F = ��w + ba; (4.1)

where the coe�cients �, and b for poroelastic materials may be functions of �F , and

CS. In an arbitrary �-frame we have

p̂F� = ��w� + ba� = Op̂F + 2b _Ow; (4.2)

because the mass density �F , and CS do not change under this transformation, and,

consequently the coe�cients �, and b remain unchanged as well. According to the

relations (2.9) the transformation of body forces yields in this case the following

relations

�F
h
bF� � iF� �ObF

i
= �2b _Ow;

�S
h
bS� � iS� �ObS

i
= 2b _Ow:

In the explicit form

bF� � 2W

 
vF� � _d� b

�F
w�
!
�W2 (x� � d) + _W (x� � d) + �d = ObF ; (4.3)

bS� � 2W

 
vS� � _d+

b

�S
w�
!
�W2 (x� � d) + _W (x� � d) + �d = ObS;

where the second relation follows easily from condition (2.6).

Hence, in contrast to the classical nonobjective contributions to body forces the

constitutive relation (4.1) leads to body forces in noninertial systems which depend
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on material properties of the system. This does not seem to be very plausible.

However such a contribution can be relatively easy veri�ed experimentally if it is

essential at all.

In order to discuss this point in some details we consider a simple example of sta-

tionary �ow through a cylinder. The geometry of the system is shown in Figure 1.

It is assumed that a �uid �ows into the porous material at the surface r = ri, and

it �ows out at the surface r = re. Deformations of the skeleton are assumed to be

small which means that the radii of the cylinder approximately do not change. The

cylinder rotates with a constant angular velocity ! as shown in Fig.1.

Figure 1: Geometry of the �ow through the cylinder

Under the assumption of a constant porosity, and a constant mass density of the �uid

�F (it corresponds to the incompressibility of a real �uid) the problem is described

by the following �elds n
pF ; vFr ; v

F
� ; u

S
r ; u

S
�

o
(4.4)

where pF denotes the partial pressure of the �uid, vFr ; v
F
� are the radial and cir-

cumferential physical components of the velocity of �uid, respectively, and uSr ; u
S
�

describe the physical components of displacement of the skeleton. We use the non-

inertial cylindrical frame of reference rotating together with the cylinder with the

angular velocity !. To simplify the notation we leave out the asterics indicating the

noninertial character of the reference system. All above listed �elds are functions

of the radius r alone. Consequently the velocity of skeleton vS and the acceleration

aS are identically zero, and solely convective contributions to the acceleration aF

remain.

The �eld equations in the noninertial frame have the form
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- mass conservation of the �uid component

d
�
rvFr

�
dr

= 0; (4.5)

- momentum balance for the �uid component

�
�F � b

� 1
2

dvF2r

dr
� vF2�

r

!
= �dp

F

dr
� �vFr + 2

�
�F � b

�
!vF� � !2r;

�
�F � b

�
vFr

1

r

d

dr

�
rvF�

�
+ �vF� = �2!vFr ; (4.6)

and the momentum balance equation for the skeleton which is immaterial for our

present argument.

We can easily construct solutions for components of the partial velocity of the �uid.

From equation (4.5) we obtain

vFr =
C

r
; C = const: (4.7)

Equation (4.6)2 yields then

C

r2

d

dr

�
rvF�

�
+

�

�F � b
vF� = �2!C

r
: (4.8)

Hence we obtain

vF� =
1

r

 
�2!

�
C
�
�F � b

�
+ A exp

 
� �

2C (�F � b)
r2

!!
; A = const: (4.9)

We need boundary conditions in order to �nd constants A and C. One of them is

obvious - the circumferential velocity vF� should be zero for r = ri because the �uid

is assumed to enter the cylinder in the normal direction. A condition for the velocity

vFr at this surface should follow from a condition of the third kind (e.g. see: [4])

which we shall not quote here. It describes an amount of �uid mass which �ows into

the cylinder per unit time and unit surface. We need solely an order of magnitude

of this quantity. The value of the partial velocity corresponding to this condition is

denoted by vFri. After easy manipulations we obtain

vF�

vFr
= �

!
�
�F � b

�
�

"
1� exp

 
� �ri

2vFri (�
F � b)

 
r2

rF2i

� 1

!!#
: (4.10)

For typical values of the mass density �F103 kg

m3 , and permeability coe�cient �108 kg

m3s

we have to rotate the system with the angular speed !105 1
s
in order to be able to

observe an in�uence of the relative acceleration on the �ow in the cylinder. Cer-

tainly this is not reasonable in the case of classical porous and granular materials.

Consequently even if we accepted the lack of material objectivity its in�uence could

not be observed in steady state experiments. In the next Section we check dynamical

e�ects of such contributions.
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5 In�uence of nonobjectivity on the propagation of

sound waves

Additional contributions of accelerations to momentum balance equations in�uence

not only steady-state �ows but primarily dynamical processes such as the propaga-

tion of sound waves. We check the propagation condition for such waves in the case

of poroelastic materials. Propagation conditions determine speeds of propagation of

wave fronts and amplitudes of waves on these fronts.

Sound waves are also called weak discontinuity waves because their fronts are char-

acterized by discontinuity of derivatives of �elds but not of �elds themselves. It

means in our casehh
�F
ii

= 0;
hh
�S
ii

= 0;
hh
vF
ii

= 0;
hh
vS
ii

= 0;
hh
eS
ii

= 0; (5.1)

[[� � �]] : = (� � �)+ � (� � �)� ;

where

eS := symgraduS; (5.2)

uS denotes the displacement of the skeleton, and the values (� � �)+, (� � �)� are esti-

mated on the positive and negative side of the front, respectively. Time derivatives

of the �elds do not have to be continuous, and we introduce the following notation

RF : =

""
@�F

@t

##
; RS :=

""
@�S

@t

##
; (5.3)

AF
: =

""
@vF

@t

##
; AS

:=

""
@vS

@t

##
:

These quantities are called the amplitudes of sound wave.

If we denote by c the speed of propagation of the front then we have the following

Hadamard kinematical compatibility conditions (e.g. [5])

c
hh
grad�F

ii
= �RFn; c

hh
grad�S

ii
= �RSn;

c
hh
gradvF

ii
= �AF 
 n; c

hh
gradvS

ii
= �AS 
 n;

c
hh
gradeS

ii
= �

""
@eS

@t

##

 n: (5.4)

In these relations n denotes the unit vector normal to the surface of the front, and

its orientation de�nes the positive side of the surface.

We proceed to investigate conditions following from �eld equations. In order to

simplify arguments we consider the linear model in which stress tensors appearing

in balance equations (2.5) are given by the following constitutive relations

TF
= �

h
p
F
0 + �

�
�
F � �

F
0

�i
1; TS

= TS
0 + �

S
treS1+ 2�SeS; (5.5)
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where the material parameters ; �S; �S are assumed to be constant, and TS
0 ; p

F
0 ; �

F
0

denote constant reference values of the partial stress tensor in the skeleton, the par-

tial pressure, and the partial mass density, respectively. Hence the �uid component

is ideal (no contributions of the velocity gradient), and the skeleton is elastic. Such

porous materials are called linear poroelastic.

After substitution of the above constitutive relations as well as of the relation (4.1)

in momentum balance equations we obtain �eld equations provided we account for

the following integrability condition

@eS

@t
= symgradvS: (5.6)

This relation leads to the following condition on the wave front

c2
hh
gradeS

ii
=

1

2

�
AS 
 n
 n+ n
AS 
 n

�
: (5.7)

We construct the limits of mass, and momentum balance equations on the wave

front. This yields immediately the following set of algebraic relations for amplitudes

RF
�
c� vF � n

�
= �FAF � n; (5.8)

RS
�
c� vS � n

�
= �SAS � n;

�
�F � b

� �
c� vF � n

�
AF + b

�
c� vS � n

�
AS = RFn; (5.9)

bc
�
c� vF � n

�
AF +

�
�S � b

�
c
�
c� vS � n

�
AS =

�
�S + �S

�
AS � nn+�SAS:

It is a homogeneous set of equations for amplitudes RF ; RS;AF ;AS: Consequently

its determinant must vanish, and this yields the so called propagation condition

determining speeds of propagation, and some relations between components of am-

plitudes. We consider solutions of this condition under the assumption that the

speed of propagation c is much larger than normal velocities vF �n, and vS �n. Then
we obtain easily h�

�F � b
�
c21��F�n
 n

i
AF + bc2AS = 0; (5.10)

bc
2AF

+
h�
�
S � b

�
c
21�

�
�
S
+ �

S
�
n
 n� �

S1
i
AS

= 0:

To see the structure of solutions it is convenient to split the amplitudes AF ;AS into

normal and tangential components

AF = AF � nn +AF
?; AS = AS � nn+AS

?; AF
? � n �0; AS

? � n �0: (5.11)

The set of two scalar equations for normal components AF �n;AS �n has nontrivial

solutions if the following condition is satis�edh�
�
F � b

�
c
2��F�

i h�
�
S � b

�
c
2�

�
�
S
+ 2�

S
�i
� b

2
c
4
= 0: (5.12)
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Consequently we obtain two modes of propagation - the so-called P1-, and P2-wave

which propagate with speeds �cP1 and �cP2 being solutions of the above biquadratic
equation for c. For these speeds to be real one has to ful�l a condition on material

coe�cients which we do not need to present here.

This is the usual result for twocomponent porous materials [5]. However in the

present case the speeds of propagation depend on the value of coe�cient b and they

di�er from the following classical results

b � 0 =) c
2

P1 =
�S + 2�S

�S
; c

2

P2 = �: (5.13)

Corrections predicted by the relation (5.12) would be still acceptable due to the fact

that speeds depend on multiplicative combinations of elastic properties of compo-

nents with mass densities and the coupling coe�cient b: This means that measure-

ments of speeds do not yield any information on the coupling coe�cient alone, and

we can obtain good �tting by correcting material coe�cients in (5.13) particularily

by a low accuracy of measurements of these speeds for porous materials. This �tting

by means of the coupling coe�cient is extensively discussed in the works [6,7]. We

return to these papers in the last Section.

In contrast to the above modes of propagation the result for the transversal mode

seems to contradict all available experimental observations. Namely we obtain the

following solution of the propagation condition

AF
? = � b

�F � b
AS
?; c2

"�
�S � b

�
� b2

�F � b

#
= �S: (5.14)

Consequently for b 6= 0 the speed of propagation of transversal waves would be

dependent on the mass density of the �uid component in contrast to the classical

result c2 =
�S

�S
, and, in addition, there would exist a transversal component of the

amplitude AF
? of the wave carried by an ideal �uid. Such e�ects are very unlikely

and they have never been reported by experimentalists.

6 Some heuristic remarks

The Biot's correction of interactions in momentum balance equations is recently mo-

tivated by results for �ows through obstacles and dynamical e�ects in suspensions.

In these �elds of research the notion of an added mass which should support the

Biot's corrections is well established and justi�ed by reasonable physical arguments

(see: [8], p. 134�; in this book an extensive literature on the subject is quoted).

However in contrast to multicomponent theories of porous materials solutions of

those �ow problems are constructed, from the viewpoint of multicomponent the-

ories, on a microscopical level of observation. Interactions through the pressure

on surfaces of obstacles are eliminated by means of explicit solutions of mass and
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momentum conservation equations for the �uid. In this way one can construct an

explicit momentum balance equation for obstacles where, as result of elimination of

surface interactions, corrections to the mass appear. Certainly, this is not the case

in macroscopical theories of porous materials where microscopical interactions are

smeared out by averaging. They contribute on the macroscopical level through the

correction of the set of constitutive variables. Such corrections are re�ected both

by a simultaneous appearance of constitutive variables of all components in all con-

stitutive relations, and by additional microstructural variables such as porosity or

tortuosity.

It seems to be justi�ed to assume that the tortuosity should be this microstructural

variable which replaces an added mass in macroscopical models. However the way

in which it is introduced by Gajo and others [6,7] contradicts the classical de�nition

of this notion (see: [9], Sec. 4.8.). According to such a de�nition the tortuosity

describes a geometrical property additional to the volume fraction of voids described

by the porosity. Consequently it cannot be related to the porosity by any algebraic

relation as it is claimed in these and some other papers.

The tortuosity as an additional �eld seems to be a natural candidate on the macro-

scopical level to describe e�ects of dynamical interactions of �ows of the �uid com-

ponent through complex channels of the skeleton without contradicting the principle

of objectivity.

Bearing in mind the above analysis we have to accept the consequence that the

relative accelerations cannot contribute to momentum balance equations.
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A note on two-component model for Terzaghi
Gedankenexperiment

K.Wilma«ski

Summary

K. von Terzaghi and O. K. Froehlich [1] have proposed a simple Gedankenexperiment

in which the question of �ow of the �uid through a permeable boundary of a porous

medium during a consolidation process was addressed. It was shown that an amount

of mass transported per unit surface and in unit time depends on a jump of pore

pressure. In this note we �nd an analytic solution of a 1D problem with such a

boundary condition. The model under investigations stems from the work [4]. The

main purpose of this solution is the construction of a bench-mark problem for both

parameter analysis within this model as well as a numerical investigation of various

2D problems.

1 Introduction

In the classical book on consolidation problems [1] K. von Terzaghi and O. K. Fröh-

lich presented a Gedankenexperiment which indicates a natural form of boundary

condition for permeable boundaries of porous media. By means of this example

one can show that an amount of �uid which �ows through an interface should be

proportional to the jump of real pore pressure. Such a condition was incorporated

for the �rst time in a continuous multicomponent model of porous materials by H.

Deresiewicz [2], and its slightly modi�ed form has been used in the dissertation of

K. Runesson [3]. The model applied in the present work with this type of boundary

condition has been presented in [4].

This boundary condition, typical for porous and granular materials, has a particular

bearing in the theory of surface waves [5], and it is responsible for the existence of

additional modes of propagation observed experimentally.

In this note we present an analytical solution of a one-dimensional quasistatic prob-

lem corresponding to the Gedankenexperiment of von Terzaghi and Fröhlich. The

main purpose of this solution is to construct a bench-mark problem for various two-

and threedimensional numerical problems of the multicomponent theory of porous

materials. A simple form of this solution enables an arbitrary variation of material

parameters, and, consequently, checking of the sensitivity of solution on changes of

material properties such as bulk and surface permeabilies.
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2 The model

We consider a semiin�nite porous medium loaded in the plane x = 0 by a constant

loading pa+q0 in the direction perpendicular to the boundary. The �rst contribution

- atmospheric pressure pa - determines a condition for the �ow of �uid through the

boundary. The second contribution is an external loading applied at the time t = 0,

and acting simultaneously on both components of the porous medium.

The model is based on assumptions of small deformations of the skeleton and small

changes of mass density of the �uid component. In the one-dimensional case under

considerations it means ���eS���� 1;

������
F � �F0

�F0

������ 1; (2.1)

where eS denotes the extension in the x-direction (direction of loading), �F is the

current partial mass density of the �uid, and �F0 - its reference value. In such a case

the mass density of the skeleton is constant �S = const:

We seek the following �elds of the model

(x; t) 7�!
n
�F ; vF ; uS

o
2 <3; 0 � x <1; 0 � t <1; (2.2)

where vF ; uS denote the velocity of the �uid and the displacement of the skeleton,

respectively, both in the x-direction. The porosity appearing in the general model

is assumed to be constant. This seems to be well justi�ed in the case of the linear

model of quasistatic processes. We have the following �eld equations at disposal

- partial mass conservation of the �uid component

@�F

@t
+ �Fin

@vF

@x
= 0; (2.3)

- partial momentum balance equations supplemented with linear constitutive laws

@pF

@x
+ �

�
v
F � v

S
�
= 0; p

F
= p

F
in + �

�
�
F � �

F
in

�
; v

S
:=

@uS

@t
;

@�S

@x
+ �

�
vF � vS

�
= 0; �S = �Sin +

�
�S + 2�S

�
eS; eS :=

@uS

@x
; (2.4)

where � denotes the e�ective coe�cient of compressibility, �S; �S are e�ective Lamé

constants and �Fin; p
F
in; �

S
in are initial mass density, initial pressure and initial normal

stress in the skeleton, respectively. Let us mention that e�ective material parameters

depend on the porosity. These relations do not have to be speci�ed for the present

example.
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For the quasistatic Terzaghi problem the initial values of partial stresses are de-

termined by assuming that the consolidation begins after an instantaneous elastic

deformation1.

We proceed in the following way. At the beginning of the process the boundary of

the skeleton is open and the system is in a state of static equilibrium (vS = vF �
0; �F = �F0 = const:). Then pF = npa; �

S = � (1� n) pa. Here pa denotes the

external (atmospheric) reference pressure and n is a constant porosity. Now we ap-

ply the external load q0 acting downwards. Instantaneously after the application of

the load the system deforms elastically. This deformation is described by the com-

pression (negative longitudinal deformation) of the skeleton �eSin
�
eSin > 0

�
. The

corresponding change of the mass density of the �uid component for small deforma-

tions is given by the relation �Fin = �F0

�
1 + eSin

�
. Now eSin can be easily found from

the equilibrium condition:

�Sin � pFin = �pa � q0: (2.5)

We have to use the constitutive relations (2.4) in which �Sin; p
F
in are replaced by

�S0 ; p
F
0 and eS = �eSin; �F = �Fin. We obtain

eSin =
q0

(�S + 2�S) + ��F0
; �Fin = �F0

 
1 +

q0

(�S + 2�S) + ��F0

!
: (2.6)

Consequently

pF0 = npa +
��F0

(�S + 2�S) + ��F0
q0; (2.7)

�S0 = � (1� n) pa �
�
�S + 2�S

�
(�S + 2�S) + ��F0

q0:

Now we can return to the consolidation problem. We choose the above described

state as the initial state of the problem. For the �eld equations (2.3-4) we have the

boundary conditions

�S � pF = �pa � q0; for x = 0; (2.8)

��Fin
�
vF � vS

�
= �

�
pF � npa

�
; for x = 0;

and the Sommerfeld conditions for x �! 1.2 The material parameter � is the

so-called surface permeability. The sign on the left-hand side of (2.8)2 follows from

1in the case of full dynamic description the external load is taken over from the boundary by

the acceleration which means that we do not have to introduce any instantaneous deformations

(see: W. Kempa [Arch.Mech., 1997]) and need not be included in initial stresses. In the classical

soil mechanics, however, it is done in the way presented above (e.g. see: H.-J. Lang, J. Huder, P.

Amann [Bodenmechanik und Grundbau, Springer, 1996]).
2The boundary conditions in in�nity are introduced to simplify the derivation of the solution of

the problem. However the solution can be also constructed for the �nite domain 0 � x � l. In this

case v
F
= 0 and u

S
= 0 for x = l. The solution by means of the Laplace transform (see: further

in this note) has then the form of an in�nite series rather than a closed form. This is due to the

in�nite number of poles.
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the negative orientation of the normal vector n to the boundary (n �
�
vF � vS

�
=

�
�
vF � vS

�
).

Initial conditions are assumed to have the form

�F = �Fin; eS = 0; vF = 0; vS = 0 for t = 0: (2.9)

We solve the above problem reducing the system to a single equation for the mass

density �F . As we see this yields a simplest linear parabolic equation of the second

order with boundary conditions of the third kind. The latter is a typical feature of

almost all problems of porous materials with di�usion.

3 Governing equation for �
F

Let us notice that the combination of equations (2.4)1 and (2.4)2 and the boundary

condition (2.8)1 yield

�S � pF = �pa � q0 = const: (3.1)

Simultaneously it follows from (2.4)2

@2pF

@x2
+ �

 
@vF

@x
� @eS

@t

!
=

@2pF

@x2
+ �

 
@vF

@x
� 1

�S + 2�S

@�S

@t

!
=

=
@2pF

@x2
+ �

 
@vF

@x
� 1

�S + 2�S

@pF

@t

!
=

= �
@2�F

@x2
+ �

 
� 1

�Fin

@�F

@t
� �

�S + 2�S

@�F

@t

!
= 0:

Hence we obtain the equation

@�F

@t
�D

@2�F

@x2
= 0; D :=

��Fin

�

 
1 +

��Fin

�S + 2�S

!�1
> 0: (3.2)

The boundary condition for x = 0 follows from the substitution of the equation

(2.4)1 into the condition (2.8)2

v
F � v

S
= ��

�

@�F

@x
=) (3.3)

��Fin

�

@�F

@x
= �

"
��F0

(�S + 2�S) + ��F0
q0 + �

�
�F � �Fin

�#
� ��

�
�F � �F0

�
(3.4)

for x = 0

and

�
F
= �

F
in for x �!1; �

F
= �

F
in for t = 0: (3.5)

Consequently we have to solve the linear parabolic equation with the boundary

condition of the third kind.
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4 Dimensionless form and values of material para-

meters

To solve the above problem we use the following dimensionless variables

w :=
�F � �Fin

�Fin
; t �! t

�
; x �! xp

D�
; (4.1)

where � is a positive constant remaining arbitrary in a semiin�nite problem. In

the case of the �nite length l of the domain we can identify this constant with, for

instance, l2

D
. The problem has now the form

@w

@t
� @2w

@x2
= 0; x > 0; t > 0; (4.2)



@w

@x
� w = w1; x = 0; t > 0;

w = 0; x!1; t > 0;

w = 0; x > 0; t = 0;

where


 :=
�F0

��
p
D�

; w1 :=
q0

��F0 + (�S + 2�S)
: (4.3)

We construct further a numerical example in which we use data for the material

parameters typical for soil mechanics (e.g. [6]):

Table

�F0 = 2:5� 102
kg

m3 �S = 3� 103
kg

m3 n = 0:25 � = 10�3s
�S+2�S

�S
= (3� 103)2m

2

s2
� = 106m

2

s2
� = 104

kg

m3s
� = 10�4 s

m

The characteristic time � has been chosen in such a way that the value of the

di�usion coe�cient D = 25� 103m
2

s
, which follows from the above data would lead

the length of the �nite domain l = 5m. It follows that the coe�cient 
 appearing

in the boundary condition (4.2)2 has the value 50.

5 Solution

We construct the solution of the problem (4.2) by means of the Laplace transform.

We have
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d2 �w

dx2
� s �w = 0; �w :=

Z 1
0

we
�st

dt; x > 0;



d �w

dx
� �w =

w1

s
; x = 0; (5.1)

�w = 0; x �!1:

It follows

�w = �w1
1



e�
p
sx

s
�p

s+ 1




� : (5.2)

Inverse transform has the following closed form (e.g. [7], Tabl. 8.4-1)

w

w1
= exp(

t+ 
x


2
)erfc

 
x

2
p
t
+

p
t




!
� erfc

 
x

2
p
t

!
: (5.3)

Below we present graphs following from this solution.

In Figure 1 we show the function (5.3). It represents a long time behavior of this

function. In Figure 2 we show the behaviour of the same function for short times. An

artefact following from the incompatibility of the initial condition and the boundary

condition at t = 0; x = 0 can be seen in this Figure.

Figure 1: Normalized changes of the partial mass density w

w1
as a function of

time t � t

�
and depth x � xp

D�
.
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Figure 2: The behaviour of w

w1
for short times.

The function w possesses the following asymptotic properties:

1.

lim
t!1

w

w1
= lim

t!1

erfc
�

x

2
p
t
+
p
t




�
exp(� t+
x


2
)

+ lim
t!1

 
�erfc

 
x

2
p
t

!!
=

= lim
t!1

 
2
2p
�

! � 1

2

p
t
� x

4t
p
t

�
exp

�
�
�p

t



+ x

2
p
t

�2�

exp
�
� t+
x


2

� � 1 = �1: (5.4)

2.

lim

!1

w

w1
� lim

�!0

w

w1
= 0; (5.5)

which means that the impermeable boundary (� = 0) admits solely the solution

identical with the (constant) initial state. This is natural because of the choice of

the reference con�guration.

Substitution of the result (5.4) in the constitutive relation for the partial pressure

yields

lim
t!1

pF = npa: (5.6)

This is the result which one expects in von Terzaghi Gedankenexperiment.

For the construction of the most representative �gure for the partial pressure pF

we have chosen pa = 0:1MPa and q0 = 50MPa. This corresponds to app. 0:2%

deformation of the skeleton.

In the Figure 3 we see the behavior of the partial pressure pF in MPa. The length

and time are dimensionless. The shape of this curve is qualitatively identical with

those following from the original model of Terzaghi (e.g.: [8]).
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Figure 3: Partial pressure pF as a function of time t � t

�
and depth x � xp

D�
.

In order to see better the character of this distribution we present below the time

behavior of the pressure in the cross-sections x � xp
D�

= 0:25; 0:5; 1. The uppermost

curve correspons to x = 1.

Figure 4: Partial pressure pF as a function of time t � t

�
in cross-sections

x � xp
D�

= 1 (uppermost), xp
D�

= 0:5, and xp
D�

= 0:25.

In soil mechanics it is customary to work with the so-called hydraulic gradient wich

is de�ned as

g :=
@pF

@x
: (5.7)

Its behavior is shown in the Figure 5.
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Figure 5: Hydraulic gradient g as a function of time t � t

�
; and depth x � xp

D�
.

Again this corresponds qualitatively with the classical results (e.g. see: [8]; Fig.15.7]).

It should be mentioned that quantitative di�erences of the present model and these

of classical models of soil mechanics are due to the presence of an additional mech-

anism of the �ow through the boundary. In particular cases typical for soil

mechanics the present model agrees also quantitatively with the classical results

and observations. This yields a particular range of the parameter � representative

for phenomena in soils.

Figure 6: Hydraulic gradient g =
@pF

@x

�
t
�

�
for various depth x � xp

D�
: 1

(uppermost), 10; 20; 30; 40; 50.

Figure 7: Hydraulic gradient for x � xp
D�

= 40.
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In Figure 7 we demonstrate a chosen hydraulic gradient in order to expose the exis-

tence of maximum. This is the property of all curves in Figure 6 but the maximum

is shifted to higher times for bigger depth.
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