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Abstract

The main features of the orbit behavior for a Hamiltonian system in a

neighborhood of homoclinic orbit to a saddle-focus equilibrium or a contour

made up of two saddle-foci and two heteroclinic orbits to them are presented.

These features includes description of hyperbolic subsets and main bifurca-

tions when varying a value of the Hamiltonian. The proofs of results about

bifurcations are given.

1 Introduction

The goal of this paper is to present results about dynamical behavior, especially

bifurcations, in a two-degrees-of-freedom Hamiltonian system in a neighborhood

of a homoclinic orbit to saddle-focus equilibrium. Such the study allows one to

comprehend deeper the structure of a Hamiltonian system in the large being in the

same time more tractable technically. First results in this direction were obtained

by Devaney [1] who carried over the impressive and unexpected results by Shilnikov

[2] from general systems to Hamiltonian ones that required of a special (symplectic)

tool. The main task in [1] was to distinguish a hyperbolic subset in a neighborhood

of a transverse (in a level of the saddle-focus p) homoclinic orbit to p. Namely, it

was proved that a hyperbolic subset exists such that on a cross-section to orbits

of this set the related Poincaré map was conjugated to the Bernoulli shift of 2

symbols. Since in [1] the system examined in the level H = H(p), a bifurcational

nature of the problem was not displayed. Bifurcations in this and similar problems

involving homoclinic orbits to equilibria, not to periodic orbits, appear naturally

when changing the internal parameter of any Hamiltonian system - the value of its

Hamiltonian. In the problem under consideration a rich bifurcational structure was

indicated in [3]. Though proofs of these results were absent there, all principal points

to carry out the proofs were presented. For an interested reader we point out that

the proofs of results concerning hyperbolic behavior and related symbolic dynamics,

in particular, the description of homo- and heteroclinic orbits to the saddle-focus

and nearby periodic orbits have been given in [4]. Here we present proofs about

bifurcations following the lines given in [3]. Namely, we show that as c ! H(p)

countably many times parabolic periodic orbits emerge, they break up into elliptic

and hyperbolic ones, then the elliptic orbit goes through doubling, giving rise to the

beginning of the doubling cascade which ends with the enlargement of the hyperbolic

set (the related Bernoulli shift acquires two new states). In addition, we point out

the boundary points of intervals in c where bifurcations related with changing the

hyperbolic set take place.
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Another problem intimately connected with the just mentioned is the structure of a

Hamiltonian system near a heteroclinic connection with two saddle-foci p1; p2 which

was studied in [4]. Naturally, such the connection can appear only if saddle-foci

belong to the same level of the Hamiltonian. Under a perturbation p1; p2 generically

diverse to di�erent levels and connection breaks up. Thus, such the problem should

be studied in at least one-parameter family of Hamiltonian systems. In such the

setting the problem contains two parameters, the value of the Hamiltonian c and

the external (governing) parameter �. It has to expect a possibility of more complex

degeneracies in such the system. For instance, we have shown in [4] that, in contrast

to the case of a transverse homoclinic orbit to a saddle-focus, where all nearby

homoclinic orbits are transverse, here two in�nite sequences �
(i)
k ; i = 1; 2, exist such

that the system at � = �
(i)
k , has a nontransverse homoclinic orbit to pi with the

quadratic tangency.

One more important reason of the interest to such the homoclinic phenomena is a

possibility to understand scenaria of appearance, the existence and the structure of

localized (pulses and fronts) traveling waves and stationary patterns to parabolic

gradient-like 1D PDEs. Such the solutions can be temporally stable [5].

There is one circumstance why Hamiltonian systems with saddle-foci are not too

known in mechanics, where usually so-called classical systems are studied. These

systems have Hamiltonians which can be written in the form �kinetic energy plus

potential energy� with a positive de�nite quadratic form (depending on a point of

a con�guration manifold) as the kinetic energy. For such the case the following

Lemma holds.

Lemma 1 Let H(p; q) = T (p; q)+V (q); T (p; q) = 1
2

Pn
i;j=1 aij(q)pipj =

1
2
(A(q)p; p)

with positively de�ned symmetric matrix A(q) and inner product (�; �). If a point q�
is a critical point V , dV (q�) = 0, then complex eigenvalues of a linear system being

a linearization of a Hamiltonian system with a Hamilton function H at the point

p = 0; q = q�, if they exist, are pure imaginary.

Proof. Indeed, as the matrix A(q) is nondegenerate, then singular points of the

system

_p = �Hq = �V
0(q)�

1

2
(A0(q)p; p); _q = Hp = A(q)p

are found from the system p = 0; V 0(q) = 0. If q = q� is a solution of this system

then the linearized system takes the form

_� = �B� = �V
00(q�)�; _� = A(q�)� = A�;

with positively de�ned A. In particular, there exists a positive de�nite matrix A1=2.

Let us change variables P = A
1=2
�; Q = A

�1=2
�. This transformation is linear

symplectic one and reduces the system to the form

_P = �A
1=2
BA

1=2
Q; _Q = P
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with symmetric matrix B̂ = �A1=2
BA

1=2. Therefore, squares of eigenvalues of this

latter systems are eigenvalues of B̂ which are real ones due to symmetricity of B̂.

Lemma is proved. Thus, systems with saddle-foci can appear in mechanics if related

equations contain hyroscopic terms, etc..

The paper is organized as follows. The next section contains the setting up and

statements of the main theorems. The necessary technical assertions are given in

Sec.3. Sec.4 is devoted to the proof of the theorem on bifurcations. Results of [4]

about hyperbolic behavior are essentially used in the paper.

2 The set up and main results

Let (M;
) be a smooth (analytic or C1) four-dimensional symplectic manifold with

symplectic form 
. Consider a Cr-smooth Hamiltonian vector �eld XH (necessary

smoothness will be speci�ed later on) with Hamiltonian H such that XH has a sin-

gular points p of saddle-focus type. The latter means the spectrum of a linearization

operator of XH at p consists of a quadruple of eigenvalues �� � i�; �� 6= 0. Such

the point p has two local smooth submanifolds, stable one W s and unstable W u,

lying both in the level H = H(p). This set, outside of singular points is a smooth

3-dimensional submanifold. In particular, stable and unstable manifolds of the same

or di�erent saddle points (if they belong to the same level) generically intersect each

other transversely.

2.1 Homoclinic connection

Main assumption. There is a homoclinic orbit � to p being transverse intersection

of W s
; W

u along � in the level H = H(p). Such the orbit is usually called the

transverse homoclinic orbit to p though, strictly speaking, this intersection is not

transverse in M .

A general problem is to describe the orbit behavior of nearby orbits in some neigh-

borhood U of �. It is worth emphasizing that we consider only those orbits of XH

which lie entirely in U for all t. It turns out that even this problem is too hard as

it will be clear from our results. Particular results in this direction are presented

below.

To describe orbit behavior near the homoclinic connection we need in some notions

of the symbolic dynamics (see, for instance, [6]). A symbolic system is constructed

by means of a compact topological space called the alphabetA, and some continuous

mapping T : A�A ! f0; 1g called a transition matrix. The symbolic system con-

sists of the space Y being a set of all two-sided sequences (: : : ; !�1; !0; !1; : : :) with

the �xed zero position (the topology is given by the Tichonov product structure)

such that any two symbols !i; !i+1 can follow one after another i� T (!i; !i+1) = 1,

and of a continuous map � : Y ! Y being a shift to the left for any symbolic
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sequence. This symbolic system denotes (Y; �). For our case we use the following

alphabets and transition matrices. Consider a compact countable space B consist-

ing of points �n�1; n 2 N n f0g complemented with the nonseparable two-point

space f0+; 0�g. This set has the discrete topology everywhere except for 0+; 0� ,

and neighborhoods of the point 0+ are the sets fn�1; n � k > 0g along with the

points 0+; 0�, the sets f�n�1; n � k > 0g along with the points 0�; 0+ are the

neighborhoods for 0�.

As an alphabet we take a set B, transitions are described as follows: i) after symbol

0+ can follow only 0+; ii) after any symbol of B, but not 0+, can follow any symbol

from B excepting for 0�; iii) only 0� can precede 0�. The corresponding symbolic

system is denoted (Y0; �). Another symbolic system we use is (Ym; �) (Bernoulli

shift), here the alphabet is f�n�1; n = 1; : : : ; mg and all transitions are admissible.

The orbit behavior in some neighborhood U of � is described via the description of

orbits of the related Poincaré map on some cross-section N to �. This section near

the trace of � is foliated by levels H = c of the Hamiltonian into two-dimensional

symplectic disks Nc with respect to the restriction of 2-form 
. Thus, one obtains a

one-parameter family of symplectic maps Pc : Nc ! Nc. The �rst theorem describes

hyperbolic subsets existing in any level Nc: Recall that we describe only those orbits

which lie in U for t 2 R:

Theorem 1 1. At c = 0 Poincaré map P0 on N0 is conjugated to the symbolic

system (Y0; �). 2. There is c0 > 0 such that for jcj � c0 in the level H = c an

invariant hyperbolic subset exists for which the related Poincaré map is conjugated

to symbolic system (Ym; �), where m = 2n(c), and function n(c) has the following

asymptotics as jcj ! 0 : n(c) � �
�

2��
lnjcj+ const. 3. In a segment [�c0; c0] there is

a countable set of accumulating zero disjoint intervals In; n 2 fZ n 0g, such that for

c 2 In the set of all orbits lying entirely in U \fH = cg coincides with the hyperbolic

subset of the item 2.

We call intervals of the item 3 hyperbolicity intervals. In accordance with the

construction, periodic orbits of XH correspond to periodic points of Poincaré map

P , moreover, �xed points of P give periodic orbits of the �eld that make one round

along �, n-periodic points of P give n-round periodic orbits of the �eld. In the same

way the notion of n-round homoclinic orbits is introduced: these are homoclinic

orbits of XH which are homotopic to n� in a thin tube near �. The proof of the

Theorem 1 is given in [4]. It relies on several auxiliary assertions which are presented

below.

The construction of hyperbolic subsets gives the following property of these sets. If

one �xes the number 2n of states in the Bernoulli shift then the hyperbolic set with

this number of states exists for all values of c with jcj < cn < c0. In particular,

for jcj � c0 there exists a hyperbolic set with 2 states. This set contains two �xed

saddle points, one orientable and one nonorientable. Stable and unstable manifolds

of the orientable saddle periodic orbit play an essential role in detecting boundaries

of bifurcational intervals in c (see, Subsec. 4.1).
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It follows from the Theorem 1 that for any n 2 N there are orbits corresponding to

sequences (: : : ; 0�; 0�; a1; a2; : : : ; an; 0
+
; 0+; : : :). These orbits are homoclinic to p

and n + 1 is their roundness.

Corollary 1 In a neighborhood of � there are countably many homoclinic orbits of

any roundness.

Remark 1 It follows from the proof of this theorem that all these homoclinic orbits

are transverse as � itself.

Further assertions concern with the bifurcational phenomena occurring when c varies

near H = H(p): Theorem 1 implies that, as jcj ! 0, the number of states in the

related Bernoulli shift (Ym; �) increases, hence, bifurcations have to occur giving

rise reconstructions in the orbit structure in levels H = c. It turns out that on

the segment [�c0; c0] in the complementary set to hyperbolicity intervals there are

subintervals such that when c runs them bifurcations really take place.

Let us �x c > 0 to be de�nite, and denote (c0n+1; c
00

n+1), (c
0

n; c
00

n) two neighboring

hyperbolic intervals, c00n+1 < c
0

n.

Theorem 2 1. In each interval (c00n+1; c
0

n) a subinterval Jn exists such that in Jn

there are points d0 > d1 corresponding to the following bifurcations of the Poincaré

map Pc: i) at c = d0 inside of rectangle Nc a parabolic �xed point appears which

breaks up for c < d0 into elliptic and hyperbolic �xed points, both of them persist till

c = d1; ii) at c = d1 the elliptic point becomes a degenerate �xed point with double

multiplier �1, two-dimensional Jordan box of the linearization matrix and nonzero

Lyapunov value that leads to its doubling for c < d1 and appearing a period 2 elliptic

periodic point, the degenerate �xed point changes into a nonorientable saddle �xed

point.

The same is valid for c < 0.

Remark 2 The bifurcation occuring at c = d1 is, in fact, the beginning of a doubling

cascade leading to the formation of new Smale horseshoe constructed on two saddle

�xed points, namely, the orientable saddle (with positive eigenvalues) appearing from

the parabolic point after its destruction and nonorientable (Möbius) saddle having

appeared from the elliptic point in the process of the �rst doubling. See [13], where

this process is discussed in more details.

2.2 Heteroclinic connection.

Suppose now that XH0
has two singular points p1; p2 both of saddle-focus type with

eigenvalues ��i � i�i; �i�i 6= 0.

ASSUMPTION 1. For XH0
both points pi, i = 1; 2, belong to the same level and

there are two heteroclinic orbits 1; 2 joining respectively, when time increases, p1
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with p2 (for 1) and p2 with p1 (for 2). Intersection of W s(pi) and W
s(pj), i 6= j,

along k; k = 1; 2, is transverse.

We shall call the set made up of i, together with the points pi; i = 1; 2, heteroclinic

connection or contour and denote it �. The existence of a heteroclinic contour is

a codimension one phenomenon in the space of all Hamiltonians with Cr topology,

r � 2. Thus, the most natural problem is to study orbit structure and its bifurcations

in an, at least, one-parameter unfolding H� of H0. The unfolding H� is supposed to

be C2-smooth in �.

As pi are nondegenerate, C
2-functions pi : (��0; �0)!M are de�ned such that pi(�)

is a saddle-focus singular point for the vector �eld with the HamiltonianH�, pi(0) =

pi. Changing Hamiltonian H� ! H� � H�(p1(�)) we may assume H�(p1(�)) � 0.

Then f(�) = H�(p2(�)) is a C
2-function of � and we impose the following genericity

condition

ASSUMPTION 2. Function f(�) has a simple zero at � = 0 on (��0; �0), i.e.,

f
0(0) 6= 0.

This condition means that when changing � the point p2(�) crosses the level where

p1 lies with nonzero velocity .

Let U be some neighborhood of �. We study those orbits of the unfolding which

lie entirely in U . Their study is carried out by means of investigating of the related

Poincare map P�;c constructed on some cross-section to 1, where H� = c �xes the

level.

For any �xed � the section is smoothly foliated by levels H� = c and �ow preserves

the levels, so every map can be restricted at such a level giving a two-parameter

family of related symplectic maps with respect to restriction of the symplectic form


 to these levels.

In this case symbolic dynamics is given by the alphabet A = B1 [ B2 consisting of

two copies of B. The transitions are described as follows: 1) after any symbol from

Bi, excepting for 0+, can follow only a symbol from Bj; i 6= j, moreover, it can be

any symbol from Bj but not 0
�

j ; after symbol 0
+
1 can follow only 0+1 , similarly, after

0+2 can follow only 0+2 ; 2) only 0�1 can precede 0�1 , only 0�2 can precede 0�2 .

The set of all admissible sequences obtained is denoted Y0 and the symbolic system

(Y0; �). We also will use symbolic systems (Ym; �) and (Ynm; �) whose alphabets

are the sets B [ Bm and Bn [ Bm.

The set of all admissible sequencies obtained is denoted Y0, and the symbolic system

is (Y0; �). We aslo use symbolic systems (Ym; �) and (Ymn; �) whose alphabets are

the sets B [ Bm and Bn [ Bm, here Bm is a set of numbers �1; �1=2; : : : ;�1=m.

For corresponding symbolic systems transitions are described in the same way with

the evident change concerning Bm since it does not contain symbols 0�; 0+.

Now we can formulate our results.

Theorem 3 There are positive constants �0; c0 small enough and a neighborhood U
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of � such that for H�; j�j � �0, in U \fH� = cg there exists an invariant hyperbolic

subset H�;c such that the Poincare map P�;c for H�;c is conjugated to:

1) symbolic system (Y0; �) for � = 0; c = 0;

2) symbolic system (Yn; �) for � 6= 0; c = 0 with some n = n(�); n(�) �
�2

2��2
ln(jf(�)j) + const;

3) symbolic system (Ynm; �) for � 6= 0; c 6= 0 with n �
�1

2��1
ln jcj + const; m �

�2
2��2

ln(jf(�)j) + const;

4) symbolic system of the item 2 when � 6= 0; c = f(�) with n � �1
2��1

ln jcj+ const;

For � = c = 0 the set H�;c exhausts all orbits lying entirely in U . There is a

countable set of disjoint intervals Il � [��0; �0] accumulating � = 0 such that for

these � the set H�;0 exhausts all orbits in U \ fH� = 0g lying entirely in U .

There are two sequences f�
(1)
k g; f�

(2)
k g; �

(i)
k 2 [��0; �0] such that the vector �eld

for H�; � = �
(i)
k , possesses a nontransverse homoclinic orbit to pi with quadratic

tangency.

Symbolis dynamics gives all necessary information concerning homo- and hetero-

clinic orbits as well as other types of orbits. For a reader convenience we formulate

two corollaries about the formers.

Corollary 2 For H0 the vector �eld on the level H0 = 0 has: i) a countable set

of transverse heteroclinic contours of any circuitness; ii) each saddle-focus pi has a

countable set of transverse homoclinic orbits of any circuitness; iii) for each integer

N > 0 there is a countable set of saddle periodic orbits of circuitness N , every

such orbit  possesses a countable set of heteroclinic orbits with pi; i = 1; 2;  !

pi; and pi ! , where the arrow points out the direction of increasing time.

Corollary 3 For � 6= 0; c = 0 the same assertions as in the items 2, 3 of Cor. 1

are true for p1 and periodic orbits in the level H� = 0. For � 6= 0; c = f(�) the

same is valid for the saddle-focus p2(�).

Proofs of the Theorem 3 and corollaries are given in [4].

3 Auxiliary results

We use the Moser's normal form for a Hamiltonian [9] to represent the local �ow.

Though it was found for analytic Hamiltonians, it also works in C1-case (Lychagin)

and su�ciently smooth case [7, 8]. It is su�cient the Hamiltonian to be C12, then by

means of C4-smooth symplectic transformation it can be brought into the following

normal form in a symplectic frame (x1; x2; y1; y2);
 = dx1 ^ dy1 + dx2 ^ dy2; near a

saddle-focus

H(x1; x2; y1; y2) = h(�; �) = �� + �� + � � � ; � = x1y1 + x2y2; � = x1y2 � x2y1 (1)
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with a polynomial h. If H C
r-smoothly depends on a parameter � 2 (��0; �0) then

for all j�j small enough there are symplectic coordinates Cr-smoothly depending on

� such that H� has the same form (1), only h will depend on �.

The related equations are the following

_x1 = �h�x1 + h�x2; _x2 = �h�x2 � h�x1; _y1 = h�y1 + h�y2; _y2 = h�y2 � h�y1; (2)

The functions �; � are local integrals so equations are immediately integrated

x1(t) = exp(�t
Æ

h�)(x
0
1 cos(t

Æ

h�) + x
0
2 sin(

Æ

h�));

x2(t) = exp(�t
Æ

h�)(�x
0
1 sin(t

Æ

h�) + x
0
2 cos(

Æ

h�));

y1(t) = exp(t
Æ

h�)(y
0
1 cos(t

Æ

h�) + y
0
2 sin(

Æ

h�));

y2(t) = exp(t
Æ

h�)(�y
0
1 sin(t

Æ

h�) + y
0
2 cos(

Æ

h�));

(3)

here index zero means calculation at an initial point. Without loss of generality one

may assume � to be positive that can be achieved by a change of variables preserving

the form (1) of the Hamiltonian.

To �nd the local map T and its properties let us take as a local sections submanifolds

N
s = f(x1; x2; y1; y2)jx

2
1 + x

2
2 = �

2
s; y

2
1 + y

2
2 � Æ

2
sg, N

u = f(x1; x2; y1; y2)jy
2
1 + y

2
2 =

�
2
u; x

2
1 + x

2
2 � Æ

2
ug. These submanifolds are foliated by levels H = c into two-

dimensional annulas, N s(c); Nu(c). It is convenient to represent these annuli via

coordinates (�; �; c); ('; �; c), respectively. These coordinates are introduced by the

following relations

x1 = �s cos(�); x2 = �s sin(�); y1 = �
�1
s (� cos(�)�� sin(�)); y2 = �

�1
s (� sin(�)+� cos(�))

When choosing a neighborhood U one may regard the equation h(�; �) = c to be

uniquely solved with respect to � in U , � = ac(�) = �
�1(c � �� + � � �). Easy

calculation shows that restrictions of the form 
 on these annuli are given by 2-

forms d� ^ d� and d' ^ d�, respectively, so these coordinates are symplectic on

N
s(c); Nu(c), respectively. It means, in particular, that local maps T1(c); T2(c)

and global ones, S1(c); S2(c), are area preserving in these coordinates.

Remark 3 Making a shift � ! � + �0 one can regard the origin in � at any point

on the circle, the same is valid for '. For our problem it is convenient to choose the

origins at the points of intersection of � with sections. In the sequel, it is supposed

it is the case.

To write down T one needs to �nd the time of passage for any orbit from N
s(c) to

N
u(c). In coordinates this time is given

tpas = (
Æ

h�)
�1 ln

�
�s�u=

q
�2 + a2c(�)

�

Inserting tpas and ac(�) into (3)
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The orbit behavior is studied by means of related Poincaré map constructed on some

cross-sections N s, Nu to stable and unstable manifolds of p. They are foliated by

levels H = c into annulae N s
c , N

u
c . For the case of homoclinic connection this map

is a superposition of two maps, local one near p and global one, near a global piece

of �. Using (1) and introducing a function � = ac(�) = �
�1(c � �� + � � �) being a

unique solution of the equation h(�; �) = c with respect to � in some neighborhood

of p, we obtain the following representation of the local map Tc ([1, 3, 4])

' = � +Bc(�) (mod2�); � = � (4)

with

Bc(�) = a
0

c(�) ln

�
�s�u=

q
�2 + a2c(�)

�
+ �c(�) (5)

the function �c(�) is de�ned as the principal branch ofArctan(�=ac(�)) with �0(+0) =

� � arctan(�=�); �0(�0) = � arctan(�=�).

The global map Sc is de�ned in some neighborhoods of traces of � on the sections,

it is given in coordinates (�; �; c) on the sections N s and ('; �; c) on Nu as

�1 = f('; �; c) = fc('; �); �1 = g('; �; c) = gc('; �) (6)

with D(f; g)=D('; �) � 1 (symplecticity), f(0; 0; 0) = g(0; 0; 0) = 0 (since the

trace of � on N
u is transformed to the trace of � on N

s), (@g=@')(0; 0; 0) 6= 0

(transversality condition of W s and W u).

Remark 4 It is worth noting that, in dependence on the sign of the quantity l =

(@g=@')(0; 0; 0) two cases can be distinguished, A : l > 0 and B : l < 0. In the

case A a region � > 0 by the map (6) transforms to a region to the right of the trace

of of unstable manifold on N
s(0), and onto a region to the left of this trace in the

case B. This disposition determines later on the position of orientable saddle �xed

points playing the essential role in dynamics.

All further considerations are carried out in some neighborhoods of points � \ N s,

� \Nu. These neighborhoods �s, �s are determined by inequalities

�s = f(�; �; c)j j�j � Æ; j�j � �; jcj � c0g; �u = f('; �; c)j j'j � Æ; j�j � �; jcj � c0g

for �; Æ; c0 small enough. The levels Vc = fH = cg are invariant sets, so we obtain a

family of Poincaré maps depending on parameter c, given on rectangles �s
c = �s\V,

�u
c = �u \ Vc.

The properties of the local map T are formulated in the next Lemmas, their proofs

are given in [4]. Here and later on we denote Ok(x) a function that is given on a

neighborhood of x = 0 and such that Ok(x)=x
k is bounded as x ! 0, o(x) means

that o(x)=x ! 0 as x ! 0, and O(x) denotes a function which tends to zero as

x! 0.

9



Lemma 2 For jcj; j�j small enough the following holds

B
0

0(�) =
�=�+O(�)

�
; jB

0

0j �
�

2�j�j
; (7)

B
0

c(�) = [L(c; �) + a
00

cR(c; �) +O2(c; �)] =(�
2 + a

2
c(�)) (8)

with L(c; �) = �
�3(�2 � �

2)c+ �(�2 + �
2)�; R(c; �) = (�2 + a

2
c(�)) ln (�

2 + a
2
c(�));

B
00

c (�) = [q2(c; �) +O3(c; �)] =(�
2 + a

2
c(�))

2 (9)

with a quadratic form q2(c; �) = �
�2
�(3��2)c2+2��1(�4�1)c���(1+�2)2�2; � =

�=�; having positive discriminant � = �
�2(�2 + 1)3:

To formulate next lemma let us consider a standard covering of the annulus Nu
c . It

is a strip on the plane ('; �), where ' is considered as a�ne coordinate, j�j � �. If

� = u(�) is a function given for j�j � �, then the image of its graph w.r.t. Tc is a

curve in the strip ('; �), being graph of a function (see (4))

' = u(�) +Bc(�): (10)

Lemma 3 There are positive �; c0 small enough such that in the strip ('; �),

j�j � �, the image under T (c) of the graph of a C2-function � = u(�), ju(�)j � Æ,

ju0(�)j � d1; ju
00(�)j � d2, is

1. for c = 0 the graph of a function '(�) for c = 0, being C2-smooth everywhere on

j�j � � except for the point � = 0 where it has a logarithmic singularity, derivative

of '(�) satis�es the estimate j'0(�)j � �=2�j�j;

2. for c 6= 0; jcj � c0, c0 small enough, the graph of a C2-smooth function '(�) such

that

i) '0(�) is a monotone function with a unique zero at a minimum point �c; �c =
�2��2

�(�2+�2)
c+ o(c); o(c)! 0 as jcj ! 0;

ii) the value '(�c) tends to �1 when jcj ! 0, moreover, the following representation

is valid: '(�c) = (�=�) ln jcj + E(c) with a bounded function E(c), and d
dc
'(�c) =

(�=�+O(c))=c:

The following lemma allows one to distinguish the region of hyperbolicity and a

band on �s
c where the creation of parabolic �xed points occurs.

Lemma 4 For any K > 0 there exists  > 0 such that for all jcj � c0 there is a

region on the segment j�j � �, where the estimate jB0

c(�)j � K holds. Furthermore,

if c = 0 then this region coincide with the segment j�j � �;

if c 6= 0 then this region consists of two segments given with inequalities �c + c
2 �

� � � and �� � � � �c � c
2.

10



Next lemma is used for proofs that tangency is quadratic if stable and unstable

manifolds of some periodic orbit in a neighborhood of � are tangent.

Lemma 5 Consider a family of smooth C2-functions of the form ' = v(�); j�j � �

with C
2-norms bounded with some constant D. Then there is a positive c1 small

enough such that for all c; jcj � c1, graphs of any function '(�) from lemma 3 and

of v(�) are quadratically tangent if they have a tangency point.

Now we are able to describe the domain of the map T and its restrictions Tc (see

(4)). Let us denote � = ��(�) two branches of the inverse function for � = Bc(�).

Fix � > 0; Æ > 0 such that conclusions of preceding Lemmas 1-4 would hold.

1. c = 0. Then for any �; j�j � Æ, curves ' = � + B0(�) (here � is a parameter

marking the curve) monotonically decrease for � < 0 and increase for � > 0. Since

B0(�) ! �1 as j�j ! 0, then graphs of inverse functions � = �+(' � �) and

� = ��(' � �) being projected into the annulus Nu
0 are the curves which go round

the annulus in�nitely many times approaching the circle � = 0 as ' ! �1. Take

two such the curves with � = �Æ. Then, beginning from some n0 > 0 these curves

will intersect all segments ' = Æ� 2�jnj; n � n0; j�j � �: Thus, we obtain in�nitely

many strips

�
u
n = f('; �)jj'j � Æ; �+('� Æ + 2�n) � � � �+('+ Æ + 2�n)g; if n > 0 (i.e., � > 0);

�
u
n = f('; �)jj'j � Æ; ��('+ Æ � 2�n) � � � ��('� Æ � 2�n)g; if n < 0 (i.e.., � < 0);

(11)

being the domain of T0.

2. c 6= 0. Lemma 3 implies that curves ' = Æ + Bc(�) for all jnj � n0 intersect

segments ' = Æ � 2�jnj; n0 � n � n1(c); j�j � �; where n1(c) is equal to that

maximal n such that Æ+Bc(�)+2�n < �Æ. For these n equation ' = �+Bc(�) can

be solved for � = �Æ giving for n > 0 lower (at � = Æ) and upper (for theta = �Æ)

boundaries of the strip �un. If n < 0 then lower and upper boundaries change places.

The di�erence n1(c) � n0 gives the upper estimate for the number of strips. This

di�ers from the number of states n(c) in the Bernoulli shift as the latter requires

hyperbolicity that can be achieved for lower value of strips. In fact, hyperbolicity

can be proved for intervals j� � �cj � c
2 where jB0

cj > K. One can be shown (see

[4]) that asymptotically

n(c) � �
�

2��
ln jcj+ const: (12)

We have constructed strips �un making up the range of the local map T . The domain

of this map, �sn, are preimages of �un, and they are determined with inequalities

similar to (11) with j��(�Æ � � � 2�jnj).

11



4 Proof of Theorem 2

We look for �xed points of the Poincaré map as follows. For the global map S0

the inequality (@g0=@')(0; 0) 6= 0 holds, f0(0; 0) = 0; g0(0; 0) = 0, then for some

positive small c0 and jcj < c0 the second equation in (6) can be solved w.r.t. ',

therefore (6) can be rewritten in the �cross� form

�1 = Qc(�; �1) = �
@Fc

@�1
; ' = Rc(�; �1) =

@Fc

@�
(13)

for j�j; j�1j; j'j; j�j small enough, here Fc is a generating function of the symplectic

map. Using (4) the equations for �nding �xed points take the form

Qc(�; �) = � (mod 2�); Rc(�; �) = � +Bc(�) (mod 2�):

Eliminating � from these equations we come to the equation

rc(�) = Bc(�) (mod 2�); with rc(�) = Rc(�; �)�Qc(�; �) =
@

@�
Fc(�; �): (14)

It is easily seen that the function  = rc(�) in l.h.s of this equation is a smooth

function in �; c, which vanishes at � = 0; c = 0. Considering it as a family of smooth

functions of � depending smoothly on a parameter c we get that the functions of

this family are C3-close to that which corresponds to c = 0. The graph of this latter

function contains the point (0; 0), therefore graphs of all functions of the family lie

in the band j j � Æ for � small enough.

On the other hand, due to Lemmas 3, 4 the function Bc(�) on the segment [��; �]

has a unique minimum that monotonically tends to �1 as jcj ! 0. Considering

its graph in the strip j�j � �;�� �  � � one obtains that it consists of �nitely

many branches with their range the segment [��; �] and a middle part in the form

of a parabola-like sharp tongue that stretches monotonically till  = �� when

decreasing jcj. It implies that these two graphs always have �nitely many points

of the transverse intersection inside of the band j j � Æ, these intersection points

correspond to �xed points of the hyperbolic set (they also correspond to the �xed

points of the Bernoulli shift), and at any passage of the tongue through the band one

obtains a point of tangency of these graphs. So, we have countably many such values

of c when jcj ! 0. That the tangencies are quadratic follows from the representation

(9) implying jB00

c (�)j ! 1 in the region j� � �cj � c
2 where tangencies occur.

In order to connect the intersection points of the graphs and �xed points of the map

let us apply the idea from [10] which connects �xed points of an area preserving

map and critical points of its generating function.

Lemma 6 Let S : (x; y) ! (x1; y1) = (f(x; y); g(x; y)) be a symplectic map and

suppose gx 6= 0 in some simply connected region G such that the map can be written

in the cross form x = P (y; y1); x1 = Q(y; y1) with a generating function F (y; y1),

that is, P (y; y1) = Fy; Q(y; y1) = �Fy1, and F (y; y1) is de�ned in some simply

12



connected region D, where Fyy1 6= 0. Then if (x�; y�) is any isolated �xed point of S

in G then y� is an isolated critical point of the function f(y) = F (y; y). Conversely,

if y� is a critical point of this function such that the point (x�; y�); x� = Fy(y�; y�)

belongs to G then (x�; y�) is the �xed point of S. Moreover, nondegenerate critical

points of the generating function correspond to hyperbolic and elliptic points of the

map in dependence of the sign of the second derivative, and vice versa.

For our case the Poincaré map takes the form

�1 = fc(� +Bc(�) + 2�k; �); �1 = gc(� +Bc(�) + 2�k; �): (15)

As we have already known (see Sec. 3), the domain of the local map Tc consists of

either countably many strips for c = 0 or of the �nite number of strips (always exist

for c 6= 0) and, in addition for some c, of a middle connected part where B0

c can

vanish (�dangerous� zone). For these latter c there are a positive integer k and values

of (�; �) such that the value of the �rst argument belongs to the interval (�Æ; Æ). A

generating function F̂c(�; �1) of the map is Fc(�; �1)� 2�k� �
R �
Bc(s)ds, therefore,

@F̂c

@�
=
@Fc

@�
� Bc(�)� 2�k;

@F̂c

@�1
=
@Fc

@�1

. So, using (13) we get

� = Rc(�; �1)� Bc(�)� 2�k =
@F̂c

@�
; �1 = Qc(�; �1) = �

@F̂c

@�1
; (16)

and the equation for searching for critical points is

f
0

c(�) =

 
@F̂c

@�
+
@F̂c

@�1

!
jy=y1 = Rc(�; �)�B

0

c(�)� 2�k �Qc(�; �) = 0;

that is, it precisely coincides with (14). To determine the type of the point appearing

at the tangency we use the following assertion [10].

Lemma 7 (Parabolicity conditions) Let, under the conditions of the preceding Lemma,

the critical point be simplest degenerate, i.e., f 00(y�) = 0 but f 000(y�) 6= 0. Then the

corresponding �xed point of the map is parabolic, that is, it has 1 as a double multi-

plier, Jordan form of the related linearization matrix is 2-dimensional box, and the

related coe�cient (see below) in the normal form of the second order at this point

does not vanish. If, in addition, the family of the functions f depends smoothly

on a parameter c, and at c = 0 a simplest degenerate critical point exists at which

f
000

y (y�; 0) 6= 0 and @2

@c@y
f(y�; 0) 6= 0, then, when passing through c = 0 the following

bifurcation of the map occurs: on the one side of c = 0 the related map has not �xed

points near (x�; y�), but on the other side there are two �xed points, elliptic and

hyperbolic ones.
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The related normal form of the second order to which any area preserving map near

its parabolic point can be transformed is the following

x1 = x+ y + Ax
2 + : : : ; y1 = y + Ax

2 + : : : :

Parabolicity condition (i.e., not more higher degeneracy) isA 6= 0. Two-dimensionality

of Jordan box follows from the inequality gx 6= 0.

This Lemma implies that a �xed point will be a parabolic if it corresponds to a

simplest degenerate critical point of generating function. The Lemma works in our

case. Indeed, let us calculate f
00

c (��). As is easily seen, in notations of Lemma 6,

this quantity is equal to the value of function Fyy + 2Fyy1 + Fy1y1 evaluated at the

point y = y1 = y�. Since the trace of Jacobi matrix is fx+gy = P
�1
y1

(Qy1�Py), then

fx+ gy� 2 = P
�1
y1

(Qy1 �Py� 2Py1) = �(Fy1y1 +Fyy +2Fyy1)=Fyy1 , the numerator of

this fraction at the point y = y1 = y� is equal to f
00

(y�), this implies that the trace

is equal to 2 if and only if f
00

c (��) = 0. This calculation shows that vanishing this

quantity is equivalent to tangency of curves in (14), and their transversality means

that the related critical point is nondegenerate. Since jB0

c(�)j is large enough in the

region j� � �cj � c
2, then all intersection points of two graphs over this region are

transverse. Thus, we have got countably many points with the double multiplier 1,

one needs to verify that they are parabolic.

The condition f 000(y�) 6= 0 reads in our case as nonvanishing the quantity

f
000

c (��) = �B00

c (�) +
@2Rc

@�2
(�; �1) + 2 @2Rc

@�@�1
(�; �1) +

@2Rc

@�2
1

(�; �1)�
@2Qc

@�2
(�; �1)� 2 @2Qc

@�@�1
(�; �1)�

@2Qc

@�2
1

(�; �1);

where one should set � = �1 = �� in the function at the r.h.s.. Similarly, the function
@2

@c@y
f takes the form

@
2

@c@y
f = �

@B
0

c(�)

@c
�
@Qc

@c
+
@Rc

@c
:

The properties of the functionBc(�) (Lemma 2), namely, B
00

c (��)!1, and j @
@c
Bc(�c)j !

1 prove Lemma 7. From this we get a countable set of c = d0(n) in each semi-

interval c > 0 and c < 0.

The points c = d1(n) are obtained from another statement connecting the presence

of a �xed point with the double multiplier �1 with some properties of generating

function of the map under consideration.

Lemma 8 Let, under the conditions of Lemma 6, a critical point y� of the function

F (y; y) be such that the function Fyy�2Fyy1+Fy1y1 evaluated at the point y = y1 = y�

is equal to zero. Then the related �xed point (x�; y�) has double multiplier �1

with two-dimensional Jordan box. If, in addition, F depends on a parameter c and

quantities similar to those in lemma 7 do not vanish, then for jcj small enough the

following bifurcation does occur: in the space (x; y; c) near the point (0; 0; 0) there
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is a smooth curve (x(c); y(c); c) through (0; 0; 0) which consists of �xed points of the

map. The �xed points are elliptic for c < 0 and they are hyperbolic for c > 0, or

vice versa. Furthermore, from this family of �xed points a family of period 2 points

branches at c = 0. This latter family exists only on one side of c = 0. In dependence

on the sign of some coe�cient in the normal form of the second order the bearing

family consists of either elliptic period 2 points (then it exist for those c where the

main family consists of hyperbolic points) or, for opposite sign of the coe�cient, it

consists of hyperbolic period 2 points (then it exists for those c where the main family

consists of elliptic points).

Proof. Let us calculate the trace of linearization matrix D(f; g)=D(x; y). It is

easily veri�ed that fx + gy = P
�1
y1

(Qy1 � Py). Therefore one gets � = fx + gy + 2 =

P
�1
y1

(Qy1 � Py + 2Py1) = �(Fy1y1 + Fyy � 2Fyy1)=Fyy1 , it implies that the trace is

equal to �2 i� the numerator of this expression vanishes. Two-dimensionality of the

Jordan box follows, as before, from the inequality gx 6= 0.

In our case the numerator is equal to �B0

c(�) +
@Rc

@�
+ 2@Qc

@�
�

@Qc

@�1
. So, as above,

since �xed points appear in the region j� � �cj � c
2, we conclude that at the

bearing elliptic point the quantity fx+gy decreases monotonically, when jcj decreases

reaching the value �2. It follows from this lemma the existence of the �xed point

with double eigenvalue �1, two-dimensional Jordan box for linearized map and

nonzero Lyapunov value, that leads to doubling bifurcation for the further varying

c. The theorem 2 is proved.

It is worth emphasizing that the same tool can be used for searching for 1-round

periodic orbits and determining their types near a heteroclinic connection. Let us

brie�y outline related details based on the results of the Sec.3 and 4. Recall that in

this case one has two local maps T (i)
c;� : (�i; �i)! ('i; �i) = (�i+B

(i)
c;�(�i); �i); i = 1; 2;

and two global ones, S(1)
c;� : ('1; �1) ! ('2; �2) = (f (1)c;�('1; �1); g

(1)
c;�('1; �1)), and

S
(2)
c;� : ('2; �2) ! ( �'1; ��1) = (f (2)c;� ('2; �2); g

(2)
c;�('2; �2)). Symplecticity of these global

maps means, as usually, that d'1 ^ d�1 = d'2 ^ d�2, and d'2 ^ d�2 = d �'1 ^ d ��1.

Transversality of heteroclinic orbits is expressed in two inequalities li = @g
(i)
c;�=@'i 6=

0; i = 1; 2; at the points (0; 0) for (c; �) = (0; 0) (we suppose, as above, the traces

of heteroclinic orbits have zero coordinates that always possible to do, see Remark

3). We can also write global maps in the cross form, as above, since li 6= 0, namely

�2 = F
(1)
c;� (�1; �2) = �@R(1)

c;�(�1; �2)=@�2; '1 = G
(1)
c;�(�1; �2)) = @R

(1)
c;�(�1; �2)=@�1;

��1 = F
(2)
c;� (�2; ��1) = �@R(2)

c;�(�2; ��1)=@��1; '2 = G
(2)
c;�(�2; ��1)) = @R

(2)
c;�(�2; ��1)=@�2;

where R(1)
c;�; R

(2)
c;� are corresponding generating fuctions of the symplectic global maps.

The existence of a 1-round periodic orbit means that (��1; ��1) = (�1; �1), therefore we

get the following relations.

�2 = F
(1)
c;� (�1; �2) = �@R(1)

c;�(�1; �2)=@�2; �1 = F
(2)
c;� (�2; �1) = �@R(2)

c;�(�2; �1)=@�1;

�1 +B
(1)
c;�(�1) = G

(2)
c;�(�2; �1)) = @R

(2)
c;�(�2; eta1)=@�2;

�2 +B
(2)
c;�(�2) = G

(2)
c;�(�2; �1)) = @R

(2)
c;�(�2; �1)=@�2:
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Inserting �2; �1 from the �rst and third relations into the second and fourth relations,

respectively, we come to the following system of two equations

@[R(2)
c;�(�2; �1) +R

(1)
c;�(�1; �2)]=@�1 = B

(1)
c;�(�1) (mod 2�);

@[R(2)
c;�(�2; �1) +R

(1)
c;�(�1; �2)]=@�2 = B

(2)
c;�(�1) (mod 2�):

Now we can proceed as above. Solutions of this system gives �i-coordinates of �xed

points. As was said above in this Section, l.h.s. of this equations are functions which

are slightly depend on parameters c; � as they are obtained from the global maps but

the functions B(i)
c;� depend on c essentially and have the form of very sharp parabola

(see Sec.2 for the properties of these functions, they are similar). Solutions of each

equation consist of a collection of curves in the plane (�1; �2). Some of them exist for

all c small enough, for instance, those that lie outside of regions j�i��i(c; �)j � c
2.

Such the curves from di�erent collections are transverse, and their intersection gives

a saddle periodic orbits described in Theorem 3 by periodic symbolic sequences

of the form (:::; b; b; b; :::), where block b = (!1
1; !

1
2; !

2
1; !

2
2) made up of symbols !

j
i

from alphabets Bi (see Subsection 2.2 for the description of the related symbolic

systems). In the �dangerous zone� the curves (when they exist in the corresponding

regions of the parameters (c; �)) have the form of the narrow tongues, the curves

from di�erent families can have tangency points of order 2 and 3 which correspond

to periodic orbits of parabolic types and more higher degeneracy. We do not dwell

on the study of these points that requires of a special investigation.

4.1 Bifurcational intervals revisited

Bifurcational intervals, inside of which bifurcations described by theorem 2 occur,

can be characterized in more details. Namely, boundary points of these intervals can

be explicitly pointed out. To this end, let us enumerate strips lying outside of the

regionDc=fj���cj � c
2g (see Lemma 4) in such a way that their numeration begins

with 1 (for the upper strip) and �1 (for lower strip). Consider, for de�niteness, the

case when (@g=@')(0; 0; 0) > 0 in (6). We distinguish a region in �s(c) bounded

with segments of stable and unstable manifolds of the orientable saddle �xed point

O lying in the strip �s1 and corresponding to the sequence (: : : ; 1; 1; : : :). Another

saddle �xed point N corresponding to (: : : ;�1; �1; : : :) is nonorientable (Möbius's

one). Stable manifold of the point O intersects transversely unstable manifold of

N , giving a heteroclinic point q1 (in the upper strip), and unstable manifold of O

transversely intersects stable manifold of N giving a heteroclinic point q2 (in the

lower strip) (see Fig.1). Let us construct a curvilinear rectangle Rc in �s
c, whose

boundaries are: the upper one is the stable manifold of the point O, the lower one

is the preimage under Pc of a local piece through q1 of the stable manifold of point

O (this preimage is a smooth curve in �s
�1 lying beneath the stable manifold of the

point N , due to nonorientability of N , and intersecting W u(O)); from the left it is

bounded with unstable manifold of O, and from the right � with the image under

Pc of that local piece through q2 of the unstable manifold of O which belongs to �s
�1
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(this image is a smooth curve that lies to the right of the unstable manifold of N ,

due to nonorientability of N , and intersecting W s(O)).

Figure 1: The �rst tangency of stable and unstable manifolds of the point O. The

dashed region is the dangerous one, it is determined by the inequalities j���cj � c
2
:

Only two extreme strips are plotted

It is readily seen, due to the construction, that the region constructed is invariant

in the sense that image (and preimage) of any strip �
s
j (c); jjj � n(c), belongs to

this region, but points from the strip Dc \ Rc can be transformed outside of Rc.

When c belongs to a hyperbolic interval, then Pc(Dc) is situated outside of Rc and

orbits lying entirely in U cut �s(c) only in strips. When jcj decreases, Tc(Dc) moves

monotonically (see Lemma 3) around the annulus Nu
c and countably many times

passes through �u(c), therefore Pc(Dc) monotonically passes through Rc. The �rst

value of c, when this intersection is not empty, corresponds exactly to the �rst

quadratic (Lemma 5) tangency point of the stable manifold of O and of the image

of that piece of the unstable manifold of O (on the left side of the boundary of Rc)

which belongs to Dc (see Fig.1 and [14] for the explanation what the �rst tangency

point means). Before this value of c no orbits of Pc exist which begin in Dc and

hit Rc one more time. After that, bifurcations take place related with formation of
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multi period elliptic points in the �rst strip in a neighborhood of the tangency point

[11, 12, 14]. In fact, bifurcational structure, when Pc(Dc) passes through Rc, is very

complicated, in particular, Newhouse phenomena are expected here [16]. Moreover,

during subsequent decreasing c W u(O) will be tangent with stable manifold of the

orientable saddle �xed point in the strip �
s
2(c), etc.. It is also easily to construct

here two saddle �xed points for which one pair of stable and unstable separatrices

intersect transversely but another pair is tangent, as in [15]. Then a countable set of

elliptic periodic points can be expected. To this end, for instance, one should take

saddle points O and N and a piece of W u(N) which belongs to the right boundary

of Dc. Then, when decreasing jcj, this piece under Pc comes from above forming

parabola-like smooth curve and cross W s(O) at a tangency point. Here, W u(O)

(i.e., the left boundary of Rc) and a part of W s(N) belonging to �
s
�1(c) remain

transverse.

The last point of the bifurcational interval is determined with that value of c, when

the so-called �last tangency� case of stable and unstable manifolds for the point O

arises [14]. Namely, at this value of c the image of the piece of the unstable manifold

of O on the right boundary of Rc belonging Dc, is tangent to the lower boundary

of Rc. As follows from the geometry of the map (Fig.1), at this c region Pc(Dc)

has a unique common point with Rc, its tangency point. At this moment the local

structure of invariant set in a neighborhood of this point is hyperbolic excepting

the tangency point itself [14]. After that, when jcj further decreases, hyperbolic

structure of that larger invariant set of orbits restores and the whole invariant set

of orbits lying entirely in N s
c acquires two new states in the Bernoulli shift.
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