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Abstract. For large-scale dynamic simulation problems in chemical process engi-

neering, a heterogeneous simulation concept is described which allows to distribute

the solution of the models of coupled dynamic subprocesses to a computer net-

work. The main principle of such a technique is to solve the submodels of an overall

model independently of each other on subsequent time intervals. This is done by

estimating the vector of input variables of the submodels, calculating the corre-

sponding time behaviour of the output variables concurrently, and matching the

time pro�les of the interconnecting variables of the process �owsheet iteratively.

Therefore, accelerated waveform iteration methods are considered, using Broyden�

and block�Broyden�type updates. The simulation concept is investigated especially

in the case that the submodels do not provide input-output sensitivities.

1 Distributed Simulation of Coupled Processes

The numerical simulation of dynamic processes for large-scale plants in chem-

ical industry requires a strongly modular division of modelling tasks with

respect to the design of su�ciently encapsulated subprocess models, their

mathematical formulation and numerical solution. In [3] - [6] we have shown

how such a modular modelling can be used to solve homogeneous dynamic

simulation problems for complex industrial distillation plants, achieving con-

siderable speedup factors on parallel computers with shared memory. But

the modular modelling concept is even more signi�cant in the case of hetero-

geneous simulation problems, where di�erent co-workers, possibly working

with di�erent simulation tools on di�erent computer platforms, have devel-

oped well working codes for subprocesses, which have now to be coupled with

other subprocesses to simulate plantwide dynamic process �owsheets. An ex-

ample for such a process �owsheet, assembled from 3 subprocesses, is shown

in Fig. 1.

A general approach of coupling p subprocesses can be derived in the case

that each submodel i, which represents a speci�c subprocess of the entire

plant, is determined by the submodel function which uniquely generates an

output function vi(t) for each given input function ui(t), i.e.

vi(t) = Gi(ui(t)); i = 1; : : : ; p t 2 [t0; tE ]: (1)

Here the submodel functions Gi are only given implicitly by applying a nu-

merical solution procedure to the respective submodel equations. Frequently,
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the internal model of subprocess i is described by a large system of di�erential

algebraic equations (DAEs)

Fi(t; yi(t); _yi(t); ui(t)) = 0; (2)

yi(t0) = y
0
i ;

with yi = (xi; vi)
T . These internal submodel equations (2), the dimension

of the resulting discretized model as well as their numerical implementation

are not known outside the subprocess simulation. But it is worth mentioning

that the dimensions of the vectors of input and of output variables ui and vi

are usually small compared with the large number of internal variables xi.

 P2

Mixer 1

Mixer 2

Feed 1

Feed 2

Splitter

Reactor (cell model)

Heat
Exchanger   cooling

off-gas

liquid product

Separator

P3

 P1

Fig. 1. Process �owsheet assembled from 3 subprocesses

In a global process �owsheet de�nition, each component of the overall

input vector u(t) = (u1; :::; up)
T corresponds uniquely to one component of

the overall output vector v(t) = (v1; :::; vp)
T . All feed and energy streams

entering the plant from the outside as well as the products, byproducts,

and energy streams leaving the plant are balanced within the appropriate

submodels, so that they do not need to be considered here. Therefore, the

system of equations describing the coupling between the submodels can be

de�ned by

f (u(t)) � u(t)� PG (u(t)) = 0; t 2 [t0; tE]; (3)

where P = ((pij)), with pij 2 f0; 1g, is a permutation matrix which allo-

cates the individual input and output variables of all subprocesses, and G

represents all submodel functions Gi, cf. (1).
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A self-evident extension of the coupling equations (3) results from the

assumption of a time-delay in submodel coupling which may be described

by some simple residence-time model of material and heat �ow within the

interconnecting pipes like

!
du(t)

dt
= PG (u(t))� u(t); t 2 [t0; tE ] (4)

or more sophisticated plug-�ow assumptions. This approach is not exploited

directly within this paper, because it is expected that such e�ects have to be

modelled within the related subprocess models only. But the equation (4) can

be used to derive a natural relaxation strategy with ! ! 0 for the iterative

solution of (3) as it will be shown later on.

In order to investigate the dynamics of the coupling equations (3) in a

strongly modular manner, one has to guarantee that within each submodel

i there is no direct feedback of outputs vi(t) to its own inputs ui(t). The
behaviour of the time-dependent system (3) is then mainly determined by

the corresponding Jacobian

J = I � P
@G

@u
; (5)

where @G/@u denotes the overall block diagonal matrix of the dynamic in-

put�output�sensitivities @Gi/@ui of the submodels. Generally, these dynamic

sensitivities are not provided by todays commercial simulation tools. Even

an initial estimation of the Jacobian at t0 will be di�cult to obtain with rea-

sonable e�ort. Additionally, discontinuities of the solution and of parameter

functions may arise in subprocesses at prede�ned time points or sporadically.

Furthermore, a truly heterogeneous process simulation environment may re-

quire to handle di�erent submodels on di�erent computer platforms and to

retain proven software for submodel solution with its own internal step size

and accuracy control. Under these stringent modelling restrictions the sub-

sequent algorithmic details for solving (3) have to be assessed.

2 Waveform Iteration Methods

It is obvious that for the distributed simulation of coupled subprocesses an

adapted waveform iteration method, cf. [8] and [13], can be used. The basic

idea of waveform iteration is to solve submodels of an overall model inde-

pendently of each other on subsequent time intervals, so called windows. For

that, on the current window, the time behaviour of the vector of input vari-

ables of the submodels is estimated, the corresponding time behaviour of the

output variables is computed concurrently for all submodels, and the inter-

connecting variables of the �owsheet are matched iteratively. An overview of

this approach with applications in chemical engineering and a discussion of

preparatory literature has been given in [11].
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2.1 The Discretized Problem

Due to the need to simplify communication and synchronization between

subprocess simulations, the time variable t 2 [t0; tE ] is discretized within each

window [ts0; t
s
m] equidistantly. With t

0
0 = t0, one gets for the s'th window of

length T
s = t

s
m � t

s
0

t
s
j = t

s�1
m + j � T

s
=m; j = 0; 1; : : : ;m: (6)

A su�cient degree of adaptivity is still preserved by a �exible window length

T
s as well as by the possibility to reduce the window size, after some iteration,

by shifting the left boundary of the window from t
s
0 to some tsl ; 0 < l < m, if

convergence is achieved for all tsj ; j = 0(1)l already.
Keeping in use the same symbols for notational simplicity, now ui, and vi

denote the vectors of all discretized input and output variables at all internal

time points tsj ; j = 0; : : : ;m of the current window in an appropriate order,

and u and v the related overall vectors u = (u1; :::; up)
T and v = (v1; :::; vp)

T ,

respectively.

2.2 Iterative solution of coupling equations

A Picard�type iteration, which solves (3) at the grid points tsj ; j = 0(1)m, of

the current window, is given by

v
k+1
i = Gi(u

k
i ); i = 1; :::; p (7)

u
k+1 = Pv

k+1
; (8)

where k denotes the iteration index. Obviously, the evaluation of (7) can be

done in parallel for all subprocesses, followed by a common step (8) of allo-

cating the output variables to the related inputs. It is noteworthy to state

that it is nowhere required at all that the elements of u and v have to be dis-

crete function values, but instead they can be parameters of an appropriate

continuous approximation of the trajectories of the interconnecting variables.

In this paper we use a linear interpolation in order to get continuous piece-

wise linear approximations of the inputs ui in (7). This is realized by calling

an additional interpolation subroutine within each function evaluation of the

associated systems (2). It avoids the permanent reinitialization of the integra-

tion procedure, as it has to be done in the case of piecewise constant inputs,

and increases the approximation accuracy.

To accelerate the convergence of the Picard iteration, (8) can be substi-

tuted by a quasi-Newton approach

u
k+1 = u

k
�
�
B
k
�
�1 �

u
k
� PG(uk)

�
; (9)

where Bk should be an approximation of the Jacobian, preferably

I � PG
k
u: (10)
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Here Gk
u represents a reasonable approximation of the overall block diagonal

matrix of the dynamic input-output sensitivities of submodels at all internal

time points of the current window. Generally, a trusted estimation of Gk
u,

even at t0, will be di�cult to get. Therefore, we have been looking for an

update procedure in the case that no initial estimation is available, i.e. the

iteration starts with an iteration matrix B
0 = I , as it is discussed in [12], or

in the case that only some of the submodels provide such information.

Broyden update: Numerous versions and modi�cations of Broyden update

formulas have been derived in the past, mainly focussed on improving a given

iteration matrix in (9) by calculating an adjacent matrix which still satis�es

the quasi-Newton condition with the most recent function values, cf. [9], [12],

B
k+1

�u
k = �f

k
: (11)

In this paper the classical Broyden method is adapted to the investigated

waveform iteration technique and a possible extension to it is discussed.

With abbreviations

�u
k
� u

k+1
� u

k (12)

�v
k
� v

k+1
� v

k (13)

�f
k
� f

k+1
� f

k = �u
k
� P�v

k (14)

the conventional Broyden approach

B
k+1 = B

k
�

(Bk
�u

k ��f
k)(�u

k)T

(�uk)T�uk
; (�u

k)T�u
k
6= 0 (15)

is applied even in the case that no initial estimate of the sensitivity matrix is

available at all, i.e. G0
u = 0 or B0 = I . Obviously, this update strategy (15)

can be applied to G
k
u directly to get

G
k+1
u = G

k
u

�
I �

�u
k(�u

k)T

(�uk)T�uk

�
+

�v
k(�u

k)T

(�uk)T�uk
; (�u

k)T�u
k
6= 0: (16)

As demonstrated later on, this update strategy improves the iteration (9)

signi�cantly even in the case G0
u = 0.

Block-Broyden update: In the case that at least some submodels provide

input-output sensitivity information, with

G
k+1
ui

= G
k
ui

�
I �

�u
k
i (�u

k
i )

T

(�u
k
i )

T�u
k
i

�
+

�v
k
i (�u

k
i )

T

(�u
k
i )

T�u
k
i

; (�u
k
i )

T
�u

k
i 6= 0; (17)

a block-Broyden update of (10) is proposed which maintains the global block

pattern, but is still in con�ict with the sparsity pattern of sensitivity sub-

matrices, cf. also [16]. Here G
k
ui

denotes the i'th diagonal block of Gk
u and
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�v
k
i = v

k+1
i � v

k
i the vector of output variations of the submodel calculated

for an input change�u
k
i = u

k+1
i �uki , at all discrete time points of the current

window.

The denominator (�u
k
i )

T
�u

k
i instead of (�u

k)T�u
k ensures that this up-

date is approximating the dynamic sensitivity matrix of submodel i indepen-

dently of the input changes �u
k
j (j 6= i) of the other submodels. Additionally,

the local condition

G
k+1
ui

�u
k
i = �v

k
i (18)

is ful�lled, which gives a �nite di�erence approximation of the sensitivity

matrix of the corresponding submodel in the case of an orthogonal sequence

�u
k
i , (k = 1; 2; :::).

Relaxation Strategies: In the case of smooth trajectories, a relaxation

strategy can be introduced by formally discretizing the time delayed cou-

pling equations (4) with an implicit Euler formula simultaneously for all in-

ternal grid points of the current window. This gives a quite natural relaxation

method

u
k+1(tsj) = (1� �j)u(t

s
0) + �jPG(uk); �j =

1

1 + m!
jT s

; j = 1(1)m (19)

where the desired solution is obtained for ! ! 0, i.e., �j ! 1. This embed-
ding technique is especially recommended if a submodel fails to initialize the

integration procedure at a given inlet stream variation. Additionally, a com-

ponent speci�c relaxation parameter ! can be introduced, if an experienced

user knows internal dependencies of the process. With

u
k+1 = u

k
�
�
I � �PGu(u

k)
�
�1 �

u
k
� �PG(uk)� (I � �)u0

�
; (20)

a damped version of the iteration (9) results with a diagonal relaxation matrix

� = �(!), with lim!!0 �(!) = I:

3 Implementation and Results

This project is primarily intended to develop the algorithmic details of an im-

proved waveform iteration method for large-scale dynamic process simulation.

The implementation of a communication software for distributed simulation

tasks are beyond the scope of this project, because our cooperation partners

at Bayer AG, Leverkusen, have already developed such a software tool called

Simulation Manager [7]. This tool is mainly used for distributed simulation

tasks of stationary process models, but it also allows the distributed dynamic

simulation based on a simple Picard�type iteration (7,8) with a piecewise

constant approximation of the interconnecting variables. A graphical user in-

terface is provided for deriving the set of coupling equations by drawing the
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process �owsheet and for communication and control of subprocesses which

can run on di�erent computer platforms using di�erent commercial simula-

tion tools. We have successfully implemented dynamic processes within this

environment by using the commercial simulator SPEEDUPTM[2] to formu-

late and solve the subprocesses. Additionally, an own software environment

has been implemented which is still limited to the case of spreading the sub-

processes within a network of coupled workstations with a common NFS �le

system. This allows a more rapid testing and an immediate access to the

model equations of subprocesses. The following examples have been tack-

led within both environments by using our block�oriented process simulator

BOP [5] to solve the submodels, or the simulator SPEEDUPTM within the

Simulation Manager tool, respectively.

Details of a large-scale model of three interconnected reactive distillation

columns have been reported previously [10]. Here, each subprocess model

consists of 600 cell models with di�erent parameter settings, which results

into an DAE system with an overall number of 45 600 di�erential algebraic

equations. Each submodel consists of 15 200 DAEs while the total number

of connecting variables is only 40. This is not an untypical ratio in industrial

applications. Although the process �owsheet of this model has non�sequential

re�ux streams, the iteration of the Picard�type method converges quite fast,

and the Broyden update does not give a signi�cant additional progress. Ob-

viously, the number of iterations per window and the inlet stream variations

are too small, so as to alter the initial iteration matrix signi�cantly.

A di�erent behaviour has been observed for the process �owsheet in chap-

ter 1 (Fig. 1), where a reactor model (Subprocess P1, 507 DAEs) is inter-

connected with a heat-exchanger (P2, 779 DAEs) and a simpli�ed separation

unit (P3, 48 DAEs). The plant serves for the production of 1,2-dicloroethane.

Reactants are pure chlorine and ethene diluted by ethane. The exothermal

reaction is performed in a tubular plug-�ow reactor. To get a su�cient reac-

tion rate, the fresh reaction mixture is preheated by the hot reactor output

stream in a counter-current manner. Afterwards the reactor output stream
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Fig. 2. Trajectories of stream P3 ! P2
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Fig. 3. Trajectories of stream P1 ! P2

is further cooled down in the separator (P3) to condense the desired prod-

uct which leaves the condenser as liquid. The remaining gas stream is than

partly returned to the input of the heat exchanger (P2). By varying input

concentrations, �ow rates or temperatures of both feed streams as well as

by changing internal parameters, the model allows to perform di�erent dy-

namic scenarios like ignition or extinguishing of the reaction as well as very

rapid transitions between steady states. The exemplary curves in Fig. 2, 3

have been achieved by switching the recycle ratio within the splitter in P3.

Fig. 2 represents the resulting connecting stream variables between P3 and

P2, while Fig. 3 shows the dynamics of the corresponding product stream

leaving the rector P1 towards the heat exchanger P2. The presented scenario

shows rapid changes in the very beginning and a smooth tail towards the new

steady state, and is therefore well suited for testing purposes. In both �gures

a window length of 8 is indicated while the inner grid size of the windows is

equal to 1 for the linear approximation of all trajectories.

Table 1 shows the comparison of the Picard�type iteration (7)�(8) ver-

sus its modi�cation with Broyden update (16) at a constant window length

of 16 seconds. In fact, the number of iterations, i.e. the number of subse-

quent subprocess integration steps, is signi�cantly reduced by Broyden up-

date in the dynamic part of the trajectories (window 1) compared with the

smoother tail afterwards. Furthermore, comparative calculations have been

Window number 1 2 3 4 1�4

Time interval (sec.) 0�16 16�32 32�48 48�64 0�64

Number of iterations:

without Broyden update 39 29 23 18 109

with Broyden update 23 20 14 13 70

Table 1. Convergence acceleration of Picard�type iteration by Broyden update
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done within the simulation interval t 2 [0; 64] by choosing di�erent window

lengths of 1, 2, 4, 8 16, and of 32 seconds to demonstrate the even more

dramatic in�uence of the length of the time interval on the total number

of iterations. Fig. 4 shows the cumulative number of iterations needed with

Broyden update (16) and applying this windowing strategy on the same sub-

grid, in order to achieve a comparable approximation accuracy. Apparently,

the number of iterations is reduced remarkably to less than 10% by increasing

the length of the time window from 1 to 32 seconds. This is mainly caused

by the fact that the number of coupling systems to be solved iteratively as

well as their dimensions are changing signi�cantly with the window length.
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Fig. 4. In�uence of the window length on the number of iterations

The preceding results reveal the inherent potential of a heterogeneous

modelling approach based on an appropriate waveform iteration technique.

Basic requirements are a correct modelling of the input-output behaviour of

each subprocess over small time intervals, as well as a continuous at least

piecewise linear approximation of all trajectories of the connecting variables

in order to avoid a permanent re-initialization during submodel integration.

A well adapted Broyden update strategy may accelerate the solution proce-

dure. Furthermore, the presented approach allows the modular treatment of

subprocess model formulation as well as their parallel numerical solution.
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