Weierstra3—Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

Heterogeneous Dynamic Process Flowsheet

Simulation of Chemical Plants

Friedrich Grund, Klaus Ehrhardt, Jiirgen Borchardt, Dietmar Horn

submitted: 10th May 2000

Weierstrass Institute

for Applied Analysis

and Stochastics

Mohrenstrasse 39

10117 Berlin

Germany

E-Mail: grund@wias-berlin.de
E-Mail: ehrhardt@wias-berlin.de
E-Mail: borchardt@wias-berlin.de
E-Mail: horn@wias-berlin.de

Preprint No. 576
Berlin 2000

1991 Mathematics Subject Classification. 65L05,80A30,65Y05,65H10.

Key words and phrases. Chemical process simulation, Systems of differential-algebraic equa-
tions, Large-scale dynamic simulation, Coupled processes, Distributed simulation, Waveform iter-
ation, Broyden update.

This work was supported by the Federal Ministry of Education, Science, Research and Tech-
nology, Germany under grant GR7FV1.



Edited by

Weierstra—Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39

D — 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint
E-Mail (Internet): preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract. For large-scale dynamic simulation problems in chemical process engi-
neering, a heterogeneous simulation concept is described which allows to distribute
the solution of the models of coupled dynamic subprocesses to a computer net-
work. The main principle of such a technique is to solve the submodels of an overall
model independently of each other on subsequent time intervals. This is done by
estimating the vector of input variables of the submodels, calculating the corre-
sponding time behaviour of the output variables concurrently, and matching the
time profiles of the interconnecting variables of the process flowsheet iteratively.
Therefore, accelerated waveform iteration methods are considered, using Broyden-—
and block-Broyden—type updates. The simulation concept is investigated especially
in the case that the submodels do not provide input-output sensitivities.

1 Distributed Simulation of Coupled Processes

The numerical simulation of dynamic processes for large-scale plants in chem-
ical industry requires a strongly modular division of modelling tasks with
respect to the design of sufficiently encapsulated subprocess models, their
mathematical formulation and numerical solution. In [3] - [6] we have shown
how such a modular modelling can be used to solve homogeneous dynamic
simulation problems for complex industrial distillation plants, achieving con-
siderable speedup factors on parallel computers with shared memory. But
the modular modelling concept is even more significant in the case of hetero-
geneous simulation problems, where different co-workers, possibly working
with different simulation tools on different computer platforms, have devel-
oped well working codes for subprocesses, which have now to be coupled with
other subprocesses to simulate plantwide dynamic process flowsheets. An ex-
ample for such a process flowsheet, assembled from 3 subprocesses, is shown
in Fig. 1.

A general approach of coupling p subprocesses can be derived in the case
that each submodel i, which represents a specific subprocess of the entire
plant, is determined by the submodel function which uniquely generates an
output function v;(t) for each given input function wu;(t), i.e.

vi(t) = Gi(ui(t)), t=1,...,p tE€lto,tgpl] (1)

Here the submodel functions G; are only given implicitly by applying a nu-
merical solution procedure to the respective submodel equations. Frequently,



the internal model of subprocess 7 is described by a large system of differential
algebraic equations (DAEs)

Fi(t,y:(t), 9:(t), ui(t)) = 0, (2)
yi(to) = vy,
with y; = (z;,v;)T. These internal submodel equations (2), the dimension

of the resulting discretized model as well as their numerical implementation
are not known outside the subprocess simulation. But it is worth mentioning
that the dimensions of the vectors of input and of output variables u; and v;
are usually small compared with the large number of internal variables z;.
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Fig. 1. Process flowsheet assembled from 3 subprocesses

In a global process flowsheet definition, each component of the overall
input vector u(t) = (uy,...,up)T corresponds uniquely to one component of
the overall output vector v(t) = (v1,...,v,)T. All feed and energy streams
entering the plant from the outside as well as the products, byproducts,
and energy streams leaving the plant are balanced within the appropriate
submodels, so that they do not need to be considered here. Therefore, the
system of equations describing the coupling between the submodels can be

defined by
f(u(t)) =u(t) — PG (u(t)) =0, tEto,tr], (3)

where P = ((ps;j)), with p;; € {0,1}, is a permutation matrix which allo-
cates the individual input and output variables of all subprocesses, and G
represents all submodel functions G;, cf. (1).



A self-evident extension of the coupling equations (3) results from the
assumption of a time-delay in submodel coupling which may be described
by some simple residence-time model of material and heat flow within the
interconnecting pipes like

du(t)
dt

w8 _ pG (u(t) — ult), te lto,ts] (4)
or more sophisticated plug-flow assumptions. This approach is not exploited
directly within this paper, because it is expected that such effects have to be
modelled within the related subprocess models only. But the equation (4) can
be used to derive a natural relaxation strategy with w — 0 for the iterative
solution of (3) as it will be shown later on.

In order to investigate the dynamics of the coupling equations (3) in a
strongly modular manner, one has to guarantee that within each submodel
i there is no direct feedback of outputs v;(t) to its own inputs u;(t). The
behaviour of the time-dependent system (3) is then mainly determined by
the corresponding Jacobian

J=1-p% (5)
Ou

where 0G/0u denotes the overall block diagonal matrix of the dynamic in-
put—output—sensitivities 0G;/du; of the submodels. Generally, these dynamic
sensitivities are not provided by todays commercial simulation tools. Even
an initial estimation of the Jacobian at ty will be difficult to obtain with rea-
sonable effort. Additionally, discontinuities of the solution and of parameter
functions may arise in subprocesses at predefined time points or sporadically.
Furthermore, a truly heterogeneous process simulation environment may re-
quire to handle different submodels on different computer platforms and to
retain proven software for submodel solution with its own internal step size
and accuracy control. Under these stringent modelling restrictions the sub-
sequent algorithmic details for solving (3) have to be assessed.

2 Waveform Iteration Methods

It is obvious that for the distributed simulation of coupled subprocesses an
adapted waveform iteration method, cf. [8] and [13], can be used. The basic
idea of waveform iteration is to solve submodels of an overall model inde-
pendently of each other on subsequent time intervals, so called windows. For
that, on the current window, the time behaviour of the vector of input vari-
ables of the submodels is estimated, the corresponding time behaviour of the
output variables is computed concurrently for all submodels, and the inter-
connecting variables of the flowsheet are matched iteratively. An overview of
this approach with applications in chemical engineering and a discussion of
preparatory literature has been given in [11].



2.1 The Discretized Problem

Due to the need to simplify communication and synchronization between
subprocess simulations, the time variable ¢ € [to, tg] is discretized within each
window [t§,t5,] equidistantly. With ) = ¢y, one gets for the s’th window of
length T° =t;, — 3

t‘;:tf;l‘F]*Ts/m; j=0,1,...,m. (6)

A sufficient degree of adaptivity is still preserved by a flexible window length
T? as well as by the possibility to reduce the window size, after some iteration,
by shifting the left boundary of the window from t§ to some ¢],0 < ! < m, if
convergence is achieved for all ¢7,j = 0(1)! already.

Keeping in use the same symbols for notational simplicity, now u;, and v;
denote the vectors of all discretized input and output variables at all internal

time points t7, j = 0,...,m of the current window in an appropriate order,
and u and v the related overall vectors u = (us, ..., u,)T and v = (v1,...,v,)7,
respectively.

2.2 Iterative solution of coupling equations
A Picard-type iteration, which solves (3) at the grid points t3,j = 0(1)m, of
the current window, is given by

utt = Gi(uf), i=1,..,p (7)

(2 (2

uk+l — P,UkJrl, (8)

where k denotes the iteration index. Obviously, the evaluation of (7) can be
done in parallel for all subprocesses, followed by a common step (8) of allo-
cating the output variables to the related inputs. It is noteworthy to state
that it is nowhere required at all that the elements of u and v have to be dis-
crete function values, but instead they can be parameters of an appropriate
continuous approximation of the trajectories of the interconnecting variables.
In this paper we use a linear interpolation in order to get continuous piece-
wise linear approximations of the inputs w; in (7). This is realized by calling
an additional interpolation subroutine within each function evaluation of the
associated systems (2). It avoids the permanent reinitialization of the integra-
tion procedure, as it has to be done in the case of piecewise constant inputs,
and increases the approximation accuracy.

To accelerate the convergence of the Picard iteration, (8) can be substi-
tuted by a quasi-Newton approach

uFtl = oF — (Bk)il (u* — PG(u")), (9)
where B* should be an approximation of the Jacobian, preferably

I — PGF. (10)



Here G* represents a reasonable approximation of the overall block diagonal
matrix of the dynamic input-output sensitivities of submodels at all internal
time points of the current window. Generally, a trusted estimation of G%,
even at tg, will be difficult to get. Therefore, we have been looking for an
update procedure in the case that no initial estimation is available, i.e. the
iteration starts with an iteration matrix B® = I, as it is discussed in [12], or
in the case that only some of the submodels provide such information.

Broyden update: Numerous versions and modifications of Broyden update
formulas have been derived in the past, mainly focussed on improving a given
iteration matrix in (9) by calculating an adjacent matrix which still satisfies
the quasi-Newton condition with the most recent function values, cf. [9], [12],

B* Auk = Afk, (11)

In this paper the classical Broyden method is adapted to the investigated
waveform iteration technique and a possible extension to it is discussed.
With abbreviations

Auk = uFtt oy f (12)
Av* = Pk (13)
Afk = R _ k= Auk — PAVF (14)

the conventional Broyden approach

(B* Au* — AfF)(AuF)T
(Auk)T Ayk ’

Bl = BF (AuMT Auk £ 0 (15)

is applied even in the case that no initial estimate of the sensitivity matrix is
available at all, i.e. GY = 0 or B® = I. Obviously, this update strategy (15)
can be applied to G directly to get

AuF(AuF)T Avk(AuF)T
(Auk)T Ayk (Auk)T Ak’

Gt = GF (I - (AuF)T AuF £ 0. (16)

As demonstrated later on, this update strategy improves the iteration (9)
significantly even in the case G° = 0.

Block-Broyden update: In the case that at least some submodels provide

input-output sensitivity information, with
Aub(Auk)T N Avk(Auk)T
(Aub)T Auk (Aub)T Aul’

Gitl =G (1 (Aub)T Auk £ 0, (17)
a block-Broyden update of (10) is proposed which maintains the global block

pattern, but is still in conflict with the sparsity pattern of sensitivity sub-
matrices, cf. also [16]. Here Gﬁi denotes the i’th diagonal block of G¥ and



Avk = vZ’-“Jrl — v¥ the vector of output variations of the submodel calculated
E+1

for an input change Auf = u; u® at all discrete time points of the current
window.

The denominator (Au¥)T Au® instead of (Au¥)T AuF ensures that this up-
date is approximating the dynamic sensitivity matrix of submodel ¢ indepen-
dently of the input changes Au? (j # 1) of the other submodels. Additionally,

the local condition
GET Aub = Avf (18)

is fulfilled, which gives a finite difference approximation of the sensitivity
matrix of the corresponding submodel in the case of an orthogonal sequence

Auf) (K =1,2,..).

Relaxation Strategies: In the case of smooth trajectories, a relaxation
strategy can be introduced by formally discretizing the time delayed cou-
pling equations (4) with an implicit Euler formula simultaneously for all in-
ternal grid points of the current window. This gives a quite natural relaxation
method

1

mw ?
1+st

ufFHE5) = (1= Aj)u(td) + PG (u), A= j=11)m (19)

where the desired solution is obtained for w — 0, i.e., A\; — 1. This embed-
ding technique is especially recommended if a submodel fails to initialize the
integration procedure at a given inlet stream variation. Additionally, a com-
ponent specific relaxation parameter w can be introduced, if an experienced
user knows internal dependencies of the process. With

uktl =k — (I — /1PGu(uk))_1 [uk — APG(u*) — (I - A)UO] , (20)

a damped version of the iteration (9) results with a diagonal relaxation matrix

A = A(w), with lim,, o A(w) = I.

3 Implementation and Results

This project is primarily intended to develop the algorithmic details of an im-
proved waveform iteration method for large-scale dynamic process simulation.
The implementation of a communication software for distributed simulation
tasks are beyond the scope of this project, because our cooperation partners
at Bayer AG, Leverkusen, have already developed such a software tool called
Simulation Manager [7]. This tool is mainly used for distributed simulation
tasks of stationary process models, but it also allows the distributed dynamic
simulation based on a simple Picard-type iteration (7,8) with a piecewise
constant approximation of the interconnecting variables. A graphical user in-
terface is provided for deriving the set of coupling equations by drawing the



process flowsheet and for communication and control of subprocesses which
can run on different computer platforms using different commercial simula-
tion tools. We have successfully implemented dynamic processes within this
environment by using the commercial simulator SPEEDUP™|2] to formu-
late and solve the subprocesses. Additionally, an own software environment
has been implemented which is still limited to the case of spreading the sub-
processes within a network of coupled workstations with a common NF'S file
system. This allows a more rapid testing and an immediate access to the
model equations of subprocesses. The following examples have been tack-
led within both environments by using our block—oriented process simulator
BOP [5] to solve the submodels, or the simulator SPEEDUP™ within the
Simulation Manager tool, respectively.

Details of a large-scale model of three interconnected reactive distillation
columns have been reported previously [10]. Here, each subprocess model
consists of 600 cell models with different parameter settings, which results
into an DAE system with an overall number of 45 600 differential algebraic
equations. Each submodel consists of 15 200 DAEs while the total number
of connecting variables is only 40. This is not an untypical ratio in industrial
applications. Although the process flowsheet of this model has non—-sequential
reflux streams, the iteration of the Picard—type method converges quite fast,
and the Broyden update does not give a significant additional progress. Ob-
viously, the number of iterations per window and the inlet stream variations
are too small, so as to alter the initial iteration matrix significantly.

A different behaviour has been observed for the process flowsheet in chap-
ter 1 (Fig. 1), where a reactor model (Subprocess P1, 507 DAEs) is inter-
connected with a heat-exchanger (P2, 779 DAEs) and a simplified separation
unit (P3, 48 DAEs). The plant serves for the production of 1,2-dicloroethane.
Reactants are pure chlorine and ethene diluted by ethane. The exothermal
reaction is performed in a tubular plug-flow reactor. To get a sufficient reac-
tion rate, the fresh reaction mixture is preheated by the hot reactor output
stream in a counter-current manner. Afterwards the reactor output stream

Time ()

Fig. 2. Trajectories of stream P3 — P2



Time ()

Fig. 3. Trajectories of stream P1 — P2

is further cooled down in the separator (P3) to condense the desired prod-
uct which leaves the condenser as liquid. The remaining gas stream is than
partly returned to the input of the heat exchanger (P2). By varying input
concentrations, flow rates or temperatures of both feed streams as well as
by changing internal parameters, the model allows to perform different dy-
namic scenarios like ignition or extinguishing of the reaction as well as very
rapid transitions between steady states. The exemplary curves in Fig. 2,3
have been achieved by switching the recycle ratio within the splitter in P3.
Fig. 2 represents the resulting connecting stream variables between P3 and
P2, while Fig. 3 shows the dynamics of the corresponding product stream
leaving the rector P1 towards the heat exchanger P2. The presented scenario
shows rapid changes in the very beginning and a smooth tail towards the new
steady state, and is therefore well suited for testing purposes. In both figures
a window length of 8 is indicated while the inner grid size of the windows is
equal to 1 for the linear approximation of all trajectories.

Table 1 shows the comparison of the Picard—type iteration (7)—(8) ver-
sus its modification with Broyden update (16) at a constant window length
of 16 seconds. In fact, the number of iterations, i.e. the number of subse-
quent subprocess integration steps, is significantly reduced by Broyden up-
date in the dynamic part of the trajectories (window 1) compared with the
smoother tail afterwards. Furthermore, comparative calculations have been

Window number 1 2 3 4 14
Time interval (sec.) 0-16  16-32  32-48 4864 0-64

Number of iterations:
without Broyden update 39 29 23 18 109
with Broyden update 23 20 14 13 70

Table 1. Convergence acceleration of Picard—type iteration by Broyden update



done within the simulation interval ¢ € [0,64] by choosing different window
lengths of 1, 2, 4, 8 16, and of 32 seconds to demonstrate the even more
dramatic influence of the length of the time interval on the total number
of iterations. Fig. 4 shows the cumulative number of iterations needed with
Broyden update (16) and applying this windowing strategy on the same sub-
grid, in order to achieve a comparable approximation accuracy. Apparently,
the number of iterations is reduced remarkably to less than 10% by increasing
the length of the time window from 1 to 32 seconds. This is mainly caused
by the fact that the number of coupling systems to be solved iteratively as
well as their dimensions are changing significantly with the window length.
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Fig. 4. Influence of the window length on the number of iterations

The preceding results reveal the inherent potential of a heterogeneous
modelling approach based on an appropriate waveform iteration technique.
Basic requirements are a correct modelling of the input-output behaviour of
each subprocess over small time intervals, as well as a continuous at least
piecewise linear approximation of all trajectories of the connecting variables
in order to avoid a permanent re-initialization during submodel integration.
A well adapted Broyden update strategy may accelerate the solution proce-
dure. Furthermore, the presented approach allows the modular treatment of
subprocess model formulation as well as their parallel numerical solution.
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