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Abstract

Forward and backward stochastic Lagrangian trajectory simulation methods for

calculation of the mean concentration of scalars and their �uxes for sources arbitrar-

ily distributed in space and time are constructed and justi�ed. Generally, absorption

of scalars by medium is taken into account. A special case of the source structure,

when the scalar is generated by a plane source, say, located close to the ground, is

treated. This practically interesting particular case is known in the literature as the

footprint problem.

1 Introduction

The turbulent dispersion of particles in the framework of statistical �uid mechanics is

described as particles' transport in random velocity �eld (e.g., [17]). In particular, the

concentration of scalars and their �uxes are random �elds. There are mainly two di�erent

approaches for calculation of the mean values of these �elds: conventional deterministic

methods based on the semiempirical turbulent di�usion equation and closure assumptions

(e.g., see [6], [18], [26]), and stochastic approach which utilizes trajectory simulations (e.g.,

see [5], [8], [11], [21] [28], [29], [32]).

The deterministic approach directly deals with the equation governing the mean concen-

tration, and relies on the Bousinesque hypothesis whose applicability is restricted (e.g.,

see [1], [19]). For instance, this hypothesis cannot be true if the concentration is calcu-

lated close to the sources [1], [17]. More generally, the high order closure methods are

developed, but di�erent closure hypothesis also should be made (see, e.g. [7], [17]).

Stochastic approach based on modelling of stochastic Lagrangian trajectories in principle

does not require any closure hypotheses. Two main issues in this approach are (i) devel-

opment of adequate Lagrangian stochastic models governed by generalized Langevin-type

equations, and (ii) construction of Monte Carlo random estimators for evaluation of de-

sired statistical characteristics (for instance, the mean concentration, the mean height of

a cloud of particles, etc.).

It should be noted that in the Monte Carlo methods, when using the random estimators,

the results are obtained with statistical errors. Remind that a random variable � is said

to be a Monte Carlo estimator for a quantity a if the mathematical expectation of � is

equal to a: IE� = a. If �1; �2; :::�N are N independent samples of the random variable �

then the average SN = 1
N

PN
i=1 �i tends to a almost sure (i.e., with probability one) as N

tends to in�nity, and the error in using SN to approximate a = IE� (for su�ciently large

N) is proportional to the standard deviation of �. As N increases, this statistical error

decreases as N�1=2. The well known �law of three sigmas� gives the rate of convergence:

IP(jSN �aj < 3��=
p
N) � 0:997. Here �� = (IE�2� IE2�)1=2 is the standard deviation of �.

1



The larger N , the closer the distribution of SN to the Gaussian one, and the better this

approximation.

The issue (i) attracts attention in many recent publications (e.g., see [12], [20], [23], [31],

[32]). In this paper we concentrate on the issue (ii). It should be noted that this �eld is

not well developed, and we can give only few references [4], [13], [24], [28].

In this paper we treat simulation methods based on the forward and backward Lagrangian

trajectories. The general principle is quite clear: one uses the backward trajectories

originating at the detector, if it is a point detector in space (or the detector occupies a

small volume); the forward trajectories are used if the detector is quite extended in space.

The paper is organized as follows. In Section 2 one relates the calculation of the mean

concentration and its �ux with the averages over Lagrangian trajectories governed by

generalized Langevin-type equations. The forward and backward estimators are presented

in Section 3. Applications of these estimators to the footprint problem are given in Section

4. Some technical details are included in Appendices A-C.

2 Formulation of the problem

Let us assume that a passive but generally non-conservative scalar is dispersed by a

turbulent velocity �eld u(x; t) in the half-space D = fx = (x1; x2; x3) : x3 � 0g, for
example in the surface layer of the atmosphere. Throughout this paper the following

notation of spatial and velocity co-ordinates is used: x = (x1; x2; x3) = (x; y; z) and

u = (u1; u2; u3) = (u; v; w); and analogously X = (X1; X2; X3) = (X; Y; Z) and V =

(V1; V2; V3) = (U; V;W ) for the Lagrangian co-ordinates.

The passive scalar is assumed to be uninertial, i.e., it follows the streamlines of the �ow.

The evolution of scalar concentration �eld from a source of intensity q(x; t) (the amount

of emitted scalar per unit volume in a unit time interval at the phase point (x; t)) is

controlled by the turbulent transport and absorption by a medium:

@c(x; t)

@t
+ ui(x; t)

@c

@xi
+ 
(x; t)c(x; t) = q(x; t) ; t > 0; c(x; 0) = q0(x) ;

where 
(x; t) (
 � 0) denotes the coe�cient of absorption, the initial spatial distribution

of concentration is given by q0(x), and the molecular di�usion is neglected. Here and in

what follows the summation convention is assumed over repeated indices.

The turbulent velocity �eld u(x; t) is considered to be incompressible three-dimensi-

onal (3D) random �eld. Accordingly, the concentration c(x; t) is also a scalar random

�eld. We consider the simplest statistical characteristics of this �eld, the mean concentra-

tion hc(x; t)i, the mean �ux of scalar concentration hui(x; t)c(x; t)i and spatial-temporal

average of these statistical characteristics. Here and below the angle brackets denote the

average over samples of turbulent velocity �uctuations.

The above-mentioned means are calculated by simulation of Lagrangian trajectoriesX(t) =

X(t;x0; t0), t � t0, determined by

dXi(t)

dt
= ui(X(t); t) = Vi(t); X(t0) = x0 ;
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where V(t) = V(t;x0; t0) is the Lagrangian velocity.

The instantaneous concentration can be expressed as (see Appendix A)

c(x; t) =

tZ

0

dt0

Z

D

dx0 �(t;x0; t0)q(x0; t0)Æ(x�X(t;x0; t0))

+

Z

D

dx0 �(t;x0; 0)q0(x0)Æ(x�X(t;x0; 0)); (1)

where Æ(�) is the Dirac delta function, and �(t) = �(t;x0; t0) is de�ned by

d�(t)

dt
+ 
(X(t;x0; t0); t)�(t) = 0 ; �(t0) = 1 : (2)

The expression for instantaneous concentration can be rewritten as

c(x; t) =
Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 � Q(x0; t0)

�Æ(x�X(t;x0; t0))Æ(u�V(t;x0; t0))Æ(�� �(t;x0; t0)) ;

where Q(x0; t0) = q(x0; t0) + q0(x0)Æ(t0). Averaging the last equation yields the mean

concentration

hc(x; t)i =
Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 � Q(x0; t0)pL(x;u; �; t;x0; t0) ; (3)

where

pL(x;u; �; t;x0; t0) = hÆ(x�X(t;x0; t0))Æ(u�V(t;x0; t0))Æ(�� �(t;x0; t0))i

is the joint probability density function (pdf) of Lagrangian characteristics X(t;x0; t0),

V(t;x0; t0), and �(t;x0; t0).

Analogously, the mean �ux of concentration can be represented as

hui(x; t)c(x; t)i =
Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 ui�Q(x0; t0)pL(x;u; �; t;x0; t0); i = 1; 2; 3: (4)

For convenience, the mean characteristics (3) and (4) will be written in the general form

< g(u(x; t))c(x; t) >=

Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 g(u)� Q(x0; t0)pL(x;u; �; t;x0; t0) ; (5)

where g(u) equals 1 and ui for the mean concentration and �uxes, respectively.

Our problem now can be formulated as follows: it is necessary to represent the integral (5

) as an expectation of a random estimator de�ned on Lagrangian trajectories. But since

the exact form of pL(x;u; �; t;x0; t0) is not known, we have to use some approximation,
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usually taken as a pdf of the solution to the following generalized Langevin-type equation

(e.g., see [28]):

dX(t) = V(t)dt;

dV(t) = a(t;X(t);V(t))dt+
q
C0�"(X(t); t) dW(t); (6)

where C0 is the universal Kolmogorov constant (C0 � 4�6), �"(x; t) is the mean dissipation

rate of the kinetic energy of turbulence, andW(t) = (W1(t);W2(t);W3(t)) is the standard

3D Wiener process. The function a is to be speci�ed in each speci�c situation (e.g., [3],

[15], [28], [32]). We mention only that in all these models Thomson's well-mixed condition

should be satis�ed [28].

We will deal in this paper with two di�erent types of random estimators, namely, with

forward estimators, which are de�ned on forward Lagrangian trajectories which emanate

from the source and move toward the detector, and with backward estimators which are

de�ned on backward trajectories starting at the detector and moving toward the source.

More exactly, the solution to (6) with the initial conditions

X(t0) = x0; V(t0) = u0

is called forward Lagrangian trajectory. We denote it by X
x0;u0;t0
t and V

x0;u0;t0
t . Then

the true Lagrangian trajectory X(t;x0; t0), V(t;x0; t0) can be approximated by the model

trajectory X
x0;u0;t0
t and V

x0;u0;t0
t with the random initial velocity u0 chosen according to

the Eulerian pdf pE which is de�ned by pE(u;x0; t0) = hÆ(u� u(x0; t0))i.
Let pL(x;u; �; t;x0;u0; t0) be the conditional pdf under the condition that

V(t;x0; t0) = u0:

pL(x;u; �; t;x0;u0; t0)

= hÆ(x�X(t;x0; t0))Æ(u�V(t;x0; t0))Æ(�� �(t;x0; t0))jV(t;x0; t0) = u0i:

By the theorem on conditional probability we get

pL(x;u; �; t;x0; t0) =
Z

IR
3

du0 pE(u0;x0; t0)pL(x;u; �; t;x0;u0; t0) :

Let us introduce the model conditional pdf:

pfL(x;u; �; t;x0;u0; t0) = IEx0;u0;t0

n
Æ(x�Xx0;u0;t0

t )Æ(u�Vx0;u0;t0
t )Æ(�� �x0;u0;t0t )

o
; (7)

where �(t) = �x0;u0;t0t is de�ned by

d�(t)

dt
+ 
(X

x0;u0;t0
t ; t)�(t) = 0 ; �(t0) = 1 :

Here IEx0;u0;t0 means the expectation over samples of stochastic processesX
x0;u0;t0
t ,V

x0;u0;t0
t ,

and �x0;u0;t0t , starting at time t = t0 from the point x0;u0; 1. Taking the model transi-

tion density p
f
L(x;u; �; t;x0;u0; t0) as an approximation to pL(x;u; �; t;x0;u0; t0), the true

Lagrangian pdf pL(x;u; �; t;x0; t0) is approximated

pL(x;u; �; t;x0; t0) �
Z

IR
3

du0 pE(u0;x0; t0)p
f
L(x;u; �; t;x0;u0; t0): (8)
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Substituting the approximation (8) into the integral (5), we come to the approximate

equality

hg(u(x; t))c(x; t)i =
Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 g(u)� Q(x0; t0)

�
Z

IR
3

du0 pE(u0;x0; t0)p
f
L(x;u; �; t;x0;u0; t0) : (9)

The backward Lagrangian trajectory, denoted in what follows by X̂(t0) = X̂
x;u;t
t0 , V̂(t0) =

V̂
x;u;t
t0 , t0 � t, is de�ned as the solution to (e.g, [4], [28])

dX̂(t0) = V̂(t0)dt0;

dV̂(t0) = â(t0; X̂(t0); V̂(t0))dt0 +
q
C0�"(X̂(t0); t0)

 

d W(t0); (10)

with the terminal condition

X̂(t) = x; V̂(t) = u ;

where the drift term â = (â1; â2; â3) of the backward model (10) is related to the drift

term a = (a1; a2; a3) of the forward model (6) via

âi(t;x;u) = ai(t;x;u)� C0�"(x; t)
@

@ui
ln pE(u;x; t) : (11)

This form of the drift term is the consequence of Thomson's well-mixed condition (see

[28]). It ensures the relation between the forward and backward pdf's used in the con-

struction of backward algorithms in Section 3.3. Note that in Appenix B such a relation

is given for a more general case.

Remark. In (10), the di�erential
 

d W means that here the backward Ito integral is

taken1. From this, the �nite-di�erence form of the backward Ito equation (10) reads:

X̂(t0)� X̂(t0 ��t0)=V̂(t0)�t0;

V̂(t0)�V̂(t0��t0)=â(t0; X̂(t0); V̂(t0))�t0+
q
C0�"(X̂(t0); t0)

h
W (t0)�W (t0��t0)

i
;

where the integration step �t0 is positive.

Thus we will deal in this paper with the construction of Monte Carlo estimators for the

integral (9) based on simulation of forward and backward Lagrangian trajectories.

1The backward Ito integral is de�ned by

tZ

s

�(�)
 

d W (�) :=

T�sZ

T�t

�(T � �) dWT (�);

s � t � T; WT (�) := W (T )�W (T � �) is a standard Wiener process. This integral does not depend on

the choice of T . For details see, e.g., [9].
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3 Monte Carlo estimators for the mean concentration

and �uxes

In this section we construct Monte Carlo estimators for the mean concentration and �uxes

at a �xed point and for integrals over space and time of these mean �elds. In Sect.3.1 we

deal with forward estimators for the general case of nonstationary, possibly horizontally

inhomogeneous turbulence. In Sect.3.2 we modify these estimators to the horizontally

homogeneous turbulence. Backward estimators are suggested in Sect.3.3.

3.1 Forward estimator

Calculation of the mean concentration and �uxes at a �xed point by forward simulation

is generally not possible (e.g., [4]).

However if it is desired to calculate an integral of < g(u(x; t))c(x; t) > over space and

time,

IH =

Z

D

dx

TZ

0

dt < g(u(x; t))c(x; t) > H(x; t) ; (12)

where T > 0 and H(x; t) is a weight function de�ned on D � [0; T ], then the forward

estimator can be successfully used. As one example, we mention the problem of evaluation

of the centre and size of a cloud.

Let us give now a forward Monte Carlo estimator for the integral (12) with arbitrary

function H(x; t). Substituting (9) into the right-hand side of (12), we get

Z

D

dx

TZ

0

dt hg(u(x; t))c(x; t)iH(x; t) =

TZ

0

dt0

Z

D

dx0 g(u)� Q(x0; t0)
Z

IR
3

du0pE(u0;x0; t0)

�
Z

D

dx

TZ

t0

dt
Z

IR
3

du

1Z

0

d�H(x; t)p
f
L(x;u; �; t;x0;u0; t0) =

TZ

0

dt0

Z

D

dx0Q(x0; t0)
Z

IR
3

du0 pE(u0;x0; t0)IEx0;u0;t0

TZ

t0

dt �x0;u0;t0t g(Vx0;u0;t0
t )H(X

x0;u0;t0
t ; t)

where IEx0;u0;t0 is the expectation over samples of stochastic processes X
x0;u0;t0
t , V

x0;u0;t0
t ,

�x0;u0;t0t (for �xed x0, u0, t0). The forward estimator can be obtained by applying the

randomisation procedure (see e.g. [14], and [21]) to the integrals (over t0, x0 and u0) in the

second line of the last equality. Randomisation can be done by choosing an arbitrary pdf

r(x; t) de�ned in D � [0; T ] which is consistent with Q(x; t) in the sense that r(x; t) 6= 0

if Q(x; t) 6= 0. If (x0; t0) is a random point in D � [0; T ] with the pdf r(x; t), and u0 is a

3D random variable with the pdf pE(u;x0; t0), then

Z

D

dx

TZ

0

dt < g(u(x; t))c(x; t) > H(x; t) = IE�H ;

6



where

�H =
Q(x0; t0)

r(x0; t0)

TZ

t0

dt�x0;u0;t0t g(Vx0;u0;t0
t )H(X

x0;u0;t0
t ; t) ; (13)

and IE stands for the expectation over ensemble of trajectories X
x0;u0;t0
t , V

x0;u0;t0
t , �x0;u0;t0t

with random initial points x0;u0; t0.

It is reasonable to choose r(x; t) proportional to Q(x; t). In this case the factor Q=r in

(13) is a constant, and this might result in a variance reduction.

3.2 Modi�ed forward estimators in case of horizontally homoge-

neous turbulence

3.2.1 Time averaged mean characteristics

In this subsection the turbulence is assumed to be horizontally homogeneous, generally

non-stationary, and the coe�cient of absorption does not depend on the horizontal co-

ordinates: 
(x; t) = 
(z; t).

We use the horizontal homogeneity to calculate the time averaged meanR T
0 dt hg(u(x; t))c(x; t)ih(t) at a �xed point x = (x; y; z). Here h(t) is a weight function

de�ned on [0; T ].

From the horizontal homogeneity it follows that

pfL(x; y; z;u; �; t; x0; y0; z0;u0; t0) = pfL(x� x0; y � y0; z;u; �; t; 0; 0; z0;u0; t0) :

Taking into account that pE(u0;x0; t0) = pE(u0; z0; t0) we get

Z T

0
dt hg(u(x; t))c(x; t)i h(t) =

TZ

0

dt0

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0; t0)

�
TZ

t0

dt h(t)
Z

D

dx0
Z

IR
3

du

1Z

0

d�Æ(z � z0)g(u)�Q(x� x0; y � y0; z0; t0)

�pfL(x0;u; �; t; 0; 0; z0;u0; t0) =
TZ

0

dt0

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0; t0)IEz0;u0;t0

�
TZ

t0

dt h(t)Æ(z � Zz0;u0;t0
t )g(Vz0;u0;t0

t )�z0;u0;t0t Q(x�Xz0;u0;t0
t ; y � Y z0;u0;t0

t ; z0; t0); (14)

where IEz0;u0;t0 is the expectation over ensemble of trajectories X
z0;u0;t0
t , V

z0;u0;t0
t , �z0;u0;t0t ,

t � t0, which are de�ned as X
z0;u0;t0
t = (Xz0;u0;t0

t ; Y z0;u0;t0
t ; Zz0;u0;t0

t ) = X
x0;u0;t0
t ; Vz0;u0;t0

t =

(U
z0;u0;t0
t ; V

z0;u0;t0
t ;W

z0;u0;t0
t ) = V

x0;u0;t0
t ; �

z0;u0;t0
t = �(t;x0; t0) ; with x0 = (0; 0; z0).

Now we will use the following property of the Dirac delta function (e.g., see [30], p.36,

formula (9.3)): for arbitrary continuous function f(�) and continuously di�erentiable

7



function Z(�)
tZ

0

f(�)Æ(Z(�)� z) d� =

�t(z)X
j=1

f(�j)���dZ(�j)
d�

��� ; (15)

where �t(z) is the number of intersections of the level z by the trajectory Z(�) in the

interval 0 � � � t, and �j are the intersection times.

Thus, from (14), taking into account (15), we �nd

Z T

0
dt hg(u(x; t))c(x; t)i h(t) =

TZ

0

dt0

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0; t0)

�IEz0;u0;t0 �
�t0;T (z)X
j=1

h(�j)
g(Vz0;u0;t0

�j
)

jW z0;u0;t0
�j j �

z0;u0;t0
�j

Q(x�Xz0;u0;t0
�j

; y � Y z0;u0;t0
�j

; z0; t0) ;

where �t0;T (z) is the number of intersections of the level z by the trajectory Zz0;u0;t0
t in

the interval t0 � t � T , and �j are the intersection times. Now the randomisation of

integrals over t0, z0 and u0 in the right-hand side of the last equality enables to obtain

the �nal estimator. For this, consider a pdf r(z0; t0) on [0;1)� [0; T ] which is consistent

with the source Q(x; y; z; t) in the sense that r(z0; t0) 6= 0 if there exist x, y such that

Q(x; y; z0; t0) 6= 0. Then,

Z T

0
dt hg(u(x; t))c(x; t)ih(t) = IE�1(x);

where

�1(x) =
1

r(z0; t0)

�t0;T (z)X
j=1

h(�j)
g(Vz0;u0;t0

�j
)

jW z0;u0;t0
�j j �

z0;u0;t0
�j

Q(x�Xz0;u0;t0
�j

; y � Y z0;u0;t0
�j

; z0; t0) :

Here z0; t0 is a 2D random variable chosen from [0;1)� [0; T ] with the pdf r(z0; t0), and

u0 is a 3D random variable with the pdf pE(u0; z0; t0).

3.2.2 Crosswind and time averaged mean characteristics

In this subsection the turbulence is assumed to be horizontally homogeneous (generally

nonstationary), and the coe�cient of absorption does not depend on the horizontal co-

ordinates : 
(x; t) = 
(z; t). Let us estimate the crosswind and time averaged mean

characteristic Ih =
R T
0 dt

R
1

�1

dy hg(u(x; y; z; t))c(x; y; z; t)i h(y; t) at a �xed point (x; z).

Here h(y; t) is a weight function de�ned on (�1;1)� [0; T ]. Using the same arguments

as in the previous subsection we get

Ih =

Z T

0
dt
Z
1

�1

dy hg(u(x; y; z; t))c(x; y; z; t)i h(y; t)

=

TZ

0

dt0

1Z

�1

dy0

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0; t0)IEy0;z0;u0;t0

TZ

t0

dt h(Y y0;z0;u0;t0
t ; t)

� Æ(z � Zy0;z0;u0;t0
t )g(Vy0;z0;u0;t0

t )�y0;z0;u0;t0t Q(x�Xy0;z0;u0;t0
t ; y0; z0; t0) ; (16)

8



where IEy0;z0;u0;t0 is the expectation over the ensemble of trajectoriesX
y0;z0;u0;t0
t ,V

y0;z0;u0;t0
t ,

�y0;z0;u0;t0t , t � t0, which are de�ned as

X
y0;z0;u0;t0
t = (X

y0;z0;u0;t0
t ; Y

y0;z0;u0;t0
t ; Z

y0;z0;u0;t0
t ) = X

x0;u0;t0
t ;

V
y0;z0;u0;t0
t = (Uy0;z0;u0;t0

t ; V y0;z0;u0;t0
t ;W y0;z0;u0;t0

t ) = V
x0;u0;t0
t ; �y0;z0;u0;t0t = �(t;x0; t0) ;

with x0 = (0; y0; z0).

From (16) we get by the property (15) that

Ih =

TZ

0

dt0

1Z

�1

dy0

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0; t0) IEy0;z0;u0;t0

�t0;T (z)X
j=1

h(Y y0;z0;u0;t0
�j

; �j)

�g(Vy0;z0;u0;t0
�j

)

jW y0;z0;u0;t0
�j j �

y0;z0;u0;t0
�j

Q(x�Xy0;z0;u0;t0
�j

; y0; z0; t0) ; (17)

where �t0;T (z) is the number of intersections of the level z by the trajectory Zy0;z0;u0;t0
t

during the interval t0 � t � T , and �j are the intersection times.

Now, it is not di�cult to construct a random estimator for Ih by applying a standard

Monte Carlo randomisation procedure for evaluation of integrals. In our case we apply it

to the multiple integral in (17) over t0; y0; z0 and u0. To this end, we consider a probability

density r(y0; z0; t0) on (�1;1) � [0;1) � [0; T ] which is consistent with the source

Q(x; y; z; t) in the sense that r(y0; z0; t0) 6= 0 if there exists x such that Q(x; y0; z0; t0) 6= 0.

Then,

IE�2(x; z) =
Z T

0
dt
Z
1

�1

dy hg(u(x; y; z; t))c(x; y; z; t)i h(y; t)
where

�2(x; z) =
1

r(y0; z0; t0)

�t0;T (z)X
j=1

h(Y y0;z0;u0;t0
�j

; �j)
g(Vy0;z0;u0;t0

�j
)

jW y0;z0;u0;t0
�j j �

y0;z0;u0;t0
�j

�Q(x�Xy0;z0;u0;t0
�j

; y0; z0; t0) :

Here y0; z0; t0 is a random variable chosen in (�1;1)� [0;1)� [0; T ] with the density

r(y0; z0; t0), and u0 is a 3D random variable with the pdf pE(u0; z0; t0).

3.2.3 Stationary turbulence

In this subsection the turbulence is assumed to be horizontally homogeneous and station-

ary, and the coe�cient of absorption depends only on heigth: 
(x; t) = 
(z). In addition,

the initial concentration is assumed to be zero: q0(x) = 0. These assumptions allow to

estimate < g(u(x; t))c(x; t) > directly at a �xed point (x; t). Indeed, under conditions

assumed

p
f
L(x; y; z;u; �; t; x0; y0; z0;u0; t0) = p

f
L(x� x0; y � y0; z;u; �; t� t0; 0; 0; z0;u0; 0) :

Therefore, by pE(u0;x0; t0) = pE(u0; z0) we get

< g(u(x; t))c(x; t) >=

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0)

tZ

0

d�
Z

D

dx0
Z

IR
3

du

1Z

0

d�Æ(z � z0)

9



�g(u)� q(x� x0; y � y0; z0; t� �)pfL(x
0;u; �; � ; 0; 0; z0;u0; 0) =

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0)

�IEz0;u0

tZ

0

d�Æ(z � Zz0;u0
� )g(Vz0;u0

� )�z0;u0� q(x�Xz0;u0
� ; y � Y z0;u0

� ; z0; t� �) ; (18)

where IEz0;u0 is the expectation over the ensemble of trajectories Xz0;u0
� , Vz0;u0

� , �z0;u0� ,

� � 0, which are de�ned as

X
z0;u0
� = (Xz0;u0

� ; Y z0;u0
� ; Zz0;u0

� ) = X
x0;u0;0
� ; Vz0;u0

� = (U z0;u0
� ; V z0;u0

� ;W z0;u0
� ) = V

x0;u0;0
� ;

�z0;u0� = �(� ;x0; 0) ; with x0 = (0; 0; z0).

Now, from (18) we get by (15)

< g(u(x; t))c(x; t) >=

1Z

0

dz0

Z

IR
3

du0 pE(u0; z0)IEz0;u0

�t(z)X
j=1

g(Vz0;u0
�j

)

jW z0;u0
�j j �

z0;u0
�j

� q(x�Xz0;u0
�j

; y � Y z0;u0
�j

; z0; t� �j) ;

where �t(z) is the number of intersections of the level z by the trajectory Zz0;u0
� during

the interval 0 � � � t, and �j are the intersection times.

We apply here the standard Monte Carlo randomisation procedure to evaluate the inte-

grals over z0 and u0. To this end, we consider a probability density r(z0) on [0;1) which

is consistent with the source q(x; y; z; t) in the sense that r(z0) 6= 0 if there exist x, y, t

such that q(x; y; z0; t) 6= 0. Then,

hg(u(x; t))c(x; t)i = IE�3(x; t)

where

�3(x; t) =
1

r(z0)

�t(z)X
j=1

g(Vz0;u0
�j

)

jW z0;u0
�j j �

z0;u0
�j

q(x�Xz0;u0
�j

; y � Y z0;u0
�j

; z0; t� �j) : (19)

Here z0 is a random variable chosen in [0;1) with the density r(z0), and u0 is a 3D

random variable with the pdf pE(u0; z0).

Analogously the crosswind averaged mean can be evaluated at a �xed point (x; z; t):R
1

�1

dyhg(u(x; y; z; t))c(x; y; z; t)i h(y). Here h(y) is a weight function de�ned on (�1;1).

Let r(y0; z0) be a probability density de�ned on (�1;1) � [0;1) which is consistent

with the source q(x; y; z; t) in the sense that r(y0; z0) 6= 0 if there exist x, t such that

q(x; y0; z0; t) 6= 0. Then,Z
1

�1

dy < g(u(x; y; z; t))c(x; y; z; t) > h(y) = IE�4(x; z; t);

where

�4(x; z; t) =
1

r(y0; z0)

�t(z)X
j=1

h(Y y0;z0;u0
�j

)
g(Vy0;z0;u0

�j
)

jW y0;z0;u0
�j j �

y0;z0;u0
�j

q(x�Xy0;z0;u0
�j

; y0; z0; t� �j) :

Here (y0; z0) is a random variable chosen in (�1;1)�[0;1) with the density r(y0; z0), u0
is a 3D random variable with the pdf pE(u0; z0) and X

y0;z0;u0
� , Wy0;z0;u0

� , �y0;z0;u0� (� � 0)

are stochastic processes de�ned as Xy0;z0;u0
� = (Xy0;z0;u0

� ; Y y0;z0;u0
� ; Zy0;z0;u0

� ) = X
x0;u0;0
� ;

V
y0;z0;u0
� = (Uy0;z0;u0

� ; V y0;z0;u0
� ;W y0;z0;u0

� ) = V
x0;u0;0
� ; �y0;z0;u0� = �(� ;x0; 0) ; with x0 =

(0; y0; z0).
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3.3 Backward estimator

Unlike to forward algorithm, the backward technique enables to estimate the mean concen-

tration and �uxes at a �xed point in space and time, even in general case of non-stationary

turbulence. Therefore, the estimation can be done directly for hg(u)ci. Note that taking
g(u) equal to 1 or to ui, we get h g(u)ci = hci or h g(u)ci = huici, respectively.
Analogously to forward Lagrangian pdf (7), the backward Lagrangian pdf can be de�ned

as

pbL(x0;u0; �0; t0;x;u; t) = IEx;u;t
n
Æ(x0 � X̂x;u;t

t0 )Æ(u0 � V̂x;u;t
t0 )Æ(�0 � �̂

x;u;t
t0 )

o
;

where �̂(t0) = �̂x;u;tt0 is de�ned by

d�̂(t0)

dt0
= 
(X̂

x;u;t
t0 ; t0)�̂(t0) ; �̂(t) = 1 ;

and IEx;u;t means the expectation over samples of stochastic processes X̂
x;u;t
t0 , V̂

x;u;t
t0 , and

�̂x;u;tt0 , t0 � t, starting at �nal time t0 = t at point x;u; 1. In appendix C it is shown that

pE(u0;x0; t0)p
f
L(x;u; �; t;x0;u0; t0) = pE(u;x; t)p

b
L(x0;u0; �; t0;x;u; t) : (20)

Substituting the right-hand side of this equality to the right-hand side of (9), we get

< g(u(x; t))c(x; t) >=

Z

IR
3

du

1Z

0

d�

tZ

0

dt0

Z

D

dx0 g(u)� Q(x0; t0)
Z

IR
3

du0 pE(u;x; t)

� pbL(x0;u0; �; t0;x;u; t) =
Z

IR
3

du pE(u;x; t)g(u)IEx;u;t

tZ

0

dt0 �̂
x;u;t
t0 Q(X̂

x;u;t
t0 ; t0) :

From the last expression, using the standard Monte Carlo arguments, one gets

hg(u(x; t))c(x; t)i = IE�̂(x; t) ; (21)

where

�̂(x; t) = g(u)

tZ

0

dt0 �̂
x;u;t
t0 Q(X̂

x;u;t
t0 ; t0)

= g(u)

0
@�̂x;u;t0 q0(X̂

x;u;t
0 ) +

tZ

0

dt0 �̂
x;u;t
t0 q(X̂x;u;t

t0 ; t0)

1
A : (22)

Here u is 3D random variable with the pdf pE(u;x; t).

Now we are in a position to construct a Monte Carlo estimator for the integral (12) from

hg(u)ci over space and time with an averaging function H(x; t). For this, we consider an

arbitrary pdf p(x; t) de�ned in D � [0; T ] which is consistent with H(x; t) in the sense

that p(x; t) 6= 0 if H(x; t) 6= 0. Let (x; t) be a random point in D � [0; T ] with the pdf

11



p(x; t), and u be a 3D random variable with the pdf pE(u;x; t). Then from (21)-(22) and

the standard Monte Carlo arguments it follows that the random variable

�̂H =
H(x; t)

p(x; t)
g(u)

tZ

0

dt0 �̂
x;u;t
t0 Q(X̂

x;u;t
t0 ; t0)

=
H(x; t)

p(x; t)
g(u)

0
@�̂x;u;t0 q0(X̂

x;u;t
0 ) +

tZ

0

dt0 �̂
x;u;t
t0 q(X̂x;u;t

t0 ; t0)

1
A

is a Monte Carlo estimator for the integral (12):

Z

D

dx

TZ

0

dt hg(u(x; t))c(x; t)iH(x; t) = IE�̂H :

4 Application to the footprint problem

The footprint problem as formulated in the literature (e.g., see [2], [27]) essentially deals

with the calculation of the contribution to the mean concentration and its �ux at a �xed

point from a surface source of a scalar.

Let us consider a surface sourse at a height zs and let F (x; y; t) be an amount of emit-

ted scalar per unite time and area (at time t near the surface point (x; y)). Then the

distribution function q(x; t) has the form:

q(x; t) = q(x; y; z; t) = F (x; y; t) Æ(z � zs): (23)

We assume that the turbulence is horizontally homogeneous and stationary. The coef-

�cient of absorption is assumed to depend only on height: 
(x; t) = 
(z). The initial

concentration distribution is assumed to be zero: q0(x) = 0. The Lagrangian trajectories

are perfectly re�ected at roughness height z
�
. Therefore we will naturally assume that

zs � z
�
.

First, let us construct a Monte Carlo estimator for hg(u(x; t))c(x; t)i based on the forward

Lagrangian trajectory Xzs;u0
� , Vzs;u0

� , �zs;u0� , � � 0 (see Sect. 3.2.3). Indeed, choosing in

(19) r(z0) = Æ(z0 � zs) and taking into account (23), we have

hg(u(x; t))c(x; t)i = IEzs;u0

0
@
�t(z)X
j=1

g(Vzs;u0
�j

)

jW zs;u0
�j j �

zs;u0
�j

F (x�Xzs;u0
�j

; y � Y zs;u0
�j

; t� �j)

1
A ; (24)

where u0 is a 3D random variable with the pdf pE(u0; zs) and IEzs;u0 means an expectation

over samples of the stochastic processes Xzs;u0
� , Vzs;u0

� , �zs;u0� , � � 0.

In practical implementation the mathematical expectation in the right-hand side of (24)

is approximately calculated as

IEzs;u0

0
@
�t(z)X
j=1

g(Vzs;u0
�j

)

jW zs;u0
�j j �

zs;u0
�j

F (x�Xzs;u0
�j

; y � Y zs;u0
�j

; t� �j)

1
A

' 1

N

NX
i=1

�iX
j=1

g(Vi
�ij
)

jW i
�ij
j �

i
�ij
F (x�X i

�ij
; y � Y i

�ij
; t� �ij) ; (25)
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where i denotes the trajectory starting with the initial velocity u0i (which is random with

the pdf pE(u0; zs) and independent for di�erent i), N is the number of trajectories, �i is

the number of intersections of the level z by i-th trajectory, and �ij are the intersection

times.

Now, let us construct a Monte Carlo estimator for hg(u(x; t))c(x; t)i based on the backward
Lagrangian trajectory X̂

x;u;t
t0 , V̂

x;u;t
t0 , and �̂

x;u;t
t0 , t0 � t (see Sect.3.3). First we will assume

that zs > z
�
. Taking into account (23) and using the property (15) of the Dirac delta

function, from (21)-(22) we �nd

hg(u(x; t))c(x; t)i = IEx;u;t

0
@g(u)

tZ

0

dt0 �̂
x;u;t
t0 q(X̂

x;u;t
t0 ; t0)

1
A

= IEx;u;t

0
@g(u)

�̂t(zs)X
j=1

�̂x;u;t�j

jŴ x;u;t
�j j F (X̂x;u;t

�j
; Ŷ x;u;t

�j
; �j)

1
A ; (26)

where �̂t(zs) is the number of intersections of the level zs by the backward trajectory

Ẑx;u;t
� in the interval 0 � � � t; �j are the intersection times; u is 3D random variable

with the pdf pE(u;x; t), and IEx;u;t is the expectation taken over samples of the stochastic

processes X̂
x;u;t
t0 , V̂

x;u;t
t0 , and �̂x;u;tt0 , t0 � t. The surface emission at the height where the

trajectories are re�ected, (the case zs = z
�
) can be handled by letting zs ! z

�
(zs > z

�
).

Taking into account that for each time �j the trajectory Ẑx;u;t
� will simultaneously pass

twice (�rst in dawnward direction and, then, in upward one) the level zs, it is easy to

establish that:

hg(u(x; t))c(x; t)i = IE

0
@g(u)

tZ

0

dt0 �̂
x;u;t
t0 q(X̂

x;u;t
t0 ; t0)

1
A

= 2 IE

0
@g(u)

�̂t(z�)X
j=1

�̂x;u;t�j

jŴ x;u;t
�j j F (X̂x;u;t

�j
; Ŷ x;u;t

�j
; �j)

1
A : (27)

In practice, the approximate calculation of mathematical expectations in the right-hand

sides of (26)-(27) is carried out by similiar technique as in (25). For example, in the case

zs = z
�
we have

IEx;u;t

0
@g(u)

�̂t(z�)X
j=1

�̂x;u;t�j

jŴ x;u;t
�j j q(X̂

x;u;t
�j

; �j)

1
A ' 2

1

N

NX
i=1

�̂iX
j=1

g(u)
�̂i�ij

jŴ i
�ij
j F (X̂ i

�ij
; X̂x;u;t

�ij
; �ij): (28)

Appendix A. Representation of concentration in Lagrangian

description

Here we show that the equality (1) is true. The total instantaneous concentration c(x; t)

can be represented as the sum of c0(x; t) and c1(x; t), de�ned by

@c0(x; t)

@t
+ ui(x; t)

@c0

@xi
+ 
(x; t)c0(x; t) = 0 ; t > 0; c0(x; 0) = q0(x) ; (A1)
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and
@c1(x; t)

@t
+ ui(x; t)

@c1

@xi
+ 
(x; t)c1(x; t) = q(x; t) ; t > 0; c1(x; 0) = 0 ;

respectively. First we show that

c0(x; t) =
Z

D

dx0 �(t;x0; 0)q0(x0)Æ(x�X(t;x0; 0)): (A2)

According to (A1) the function C0(t) = C0(t;x0) = c0(X(t;x0; 0); t) satis�es the equation

dC0(t)

dt
+ 
(X(t;x0; 0); t)C0(t) = 0 ; C0(0) = q0(x0) :

Therefore from the de�nition of �(t;x0; t0) given by (2) it follows that

C0(t;x0) = �(t;x0; 0)q0(x0), and
Z

D

dx0 �(t;x0; 0)q0(x0)Æ(x�X(t;x0; 0)) =

Z

D

dx0 c0(X(t;x0; 0); t)Æ(x�X(t;x0; 0))

=

Z

D

dy0c0(y0; t)Æ(x� y0) = c0(x; t) :

Here in the last integral the substitution of variables x0 ! y0 = X(t;x0; 0) was performed,

and it was taken into account that the Jakobian of this transformation equals unity due

to incompressibility of the velocity �eld u(x; t) ([16]). With this, (A2) is established.

Now the following equality will be shown:

c1(x; t) =

tZ

0

dt0

Z

D

dx0 �(t;x0; t0)q(x0; t0)Æ(x�X(t;x0; t0)) : (A3)

Indeed, it can be easily shown (by taking suitable derivatives) that

c1(x; t) =

tZ

0

dt0 gt0(x; t) ; (A4)

where gt0(x; t), (t0 > 0) is de�ned by

@gt0(x; t)

@t
+ ui(x; t)

@gt0
@xi

+ 
(x; t)gt0(x; t) = 0 ; t > t0; gt0(x; t0) = q(x; t0) : (A5)

From (A5) and by the de�nition of the function �(t;x0; t0) given by (2), it follows that

gt0(X(t;x0; t0); t) = �(t;x0; t0)q(x0; t0) :

From this equality and since the Jakobian of the transformation x0 ! y0 = X(t;x0; t0) is

equal to unity, we obtain
Z

D

dx0 �(t;x0; t0)q(x0; t0)Æ(x�X(t;x0; t0)) =

Z

D

dx0 gt0(X(t;x0; t0); t)Æ(x�X(t;x0; t0))

=

Z

D

dy0gt0(y0; t)Æ(x� y0) = gt0(x; t) :

14



The last equality and (A4) yields (A3). Since c(x; t) = c0(x; t) + c1(x; t), from (A2) and

(A3) it follows that the representation (1) holds.

Appendix B. Relation between forward and backward
transition density functions

Here we present the relation between the forward and backward pdf's used further in

Appendix C. Let pf (y; t;y0; t0) = hÆ(y�Yy0;t0
t )i be the transition density function of the

n-dimensional di�usion process Y
y0;t0
t , the solution to

dYi(t) = Ai(Y(t); t)dt+ �ij(Y(t); t)dWj(t); t > t0; i = 1; : : : ; n; Y(t)jt=t0 = y0; (B1)

where Ai(y; t) and �ij(y; t) are functions de�ned in D� [0; T ]; W1(t); : : : ;Wn(t) are inde-

pendent standard Wiener processes; D is a domain in IRn, T > 0.

We assume that the boundary of D is impenetrable, i.e., the trajectories determined by

(B1) do not reach the boundary. Assume that we have a positive function �(y; t) de�ned

on D � [0; T ] as a solution to the equation

@�

@t
+

@

@yi
(Ai�) =

1

2

@2 (Bij�)

@yi@yj
; (B2)

where �ik�jk = Bij. Let pb(y0; t0;y; t) = hÆ(y0 � Zy;tt0 )i be the transition density of the

di�usion process Zy;t
t0 , 0 � t0 � t which is de�ned by

dZi = A�i (Z; t0) dt0 + �ij(Z; t0); t0)
 

d Wj(t0); t0 < t; Z(t) = y: (B3)

Here
 

d Wj(t0) is de�ned as in the footnote to (10) in Sect.2, and

A�i (y; t) = Ai(y; t)� 1

�(y; t)

@

@yj
(Bij(y; t)�(y; t)):

We assume again, that the solutions to (B3) do never reach the boundary of D. Then the

following relation is true (see [13], Appendix C):

�(y0; t0)p
f(y; t;y0; t0) = �(y; t)pb(y0; t0;y; t): (B4)

Appendix C. Derivation of the relation (20)

Here the derivation of the relation between forward and backward Lagrangian transition

pdf's, equation (20), is presented. It is assumed that the boundary z = 0 is impenetrable,

i.e., the trajectory, the solution to (6), will never reach this boundary.

Let us de�ne C(t) = Cx0;u0;c0;t0
t as the solution to

dC(t)

dt
+ 
(Xx0;u0;t0

t ; t)C(t) = 0 ; t > t0; C(t0) = c0 ;

15



and the extended forward Lagrangian transition pdf

P
f
L(x;u; c; t;x0;u0; c0; t0) = IEx0;u0;c0;t0

n
Æ(x�Xx0;u0;t0

t )Æ(u�Vx0;u0;t0
t )Æ(c� C

x0;u0;c0;t0
t )

o
;

where the forward Lagrangian trajectory X
x0;u0;t0
t , V

x0;u0;t0
t is de�ned in Sect.2 and

IEx0;u0;c0;t0 means an expectation over samples of stochastic processes X
x0;u0;t0
t , V

x0;u0;t0
t ,

and Cx0;u0;c0;t0
t starting at time t = t0 from the point x0;u0; c0. Analogously, we de�ne

Ĉ(t0) = Ĉx;u;c;t
t0 as the solution to

dĈ(t0)

dt0
+ 
(X̂x;u;t

t0 ; t0)Ĉ(t0) = 0 ; t0 < t; Ĉ(t) = c ;

and the extended backward Lagrangian transition pdf

P b
L(x0;u0; c0; t0;x;u; c; t) = IEx;u;c;t

n
Æ(x� X̂x;u;t

t0 )Æ(u� V̂x;u;t
t0 )Æ(c� Ĉx;u;c;t

t0 )
o
;

where IEx;u;c;t means the expectation over samples of stochastic processes X̂
x;u;t
t0 , V̂

x;u;t
t0 ,

Ĉx;u;c;t
t0 , t0 � t, starting at �nal time t0 = t at point x;u; c.

To derive the relation (20), �rst we establish the following equality:

pE(u0;x0; t0)

c0
P f
L(x;u; c; t;x0;u0; c0; t0) =

pE(u;x; t)

c
P b
L(x0;u0; c0; t0;x;u; c; t) : (C1)

To this end, we use the well-mixed condition [28]:

@pE

@t
+
@(uipE)

@xi
+
@(aipE)

@ui
=

1

2
C0�"(x; t)

@2pE

@ui@ui
:

Denote

�(x;u; c; t) =
pE(u;x; t)

c
:

From the well-mixed condition we get

@�

@t
+
@(ui�)

@xi
+
@(ai�)

@ui
+
@(�
(x; t) c �)

@c
=

1

2
C0�"(x; t)

@2�

@ui@ui
: (C2)

Now (C1) follows from (C2) and from the result obtained in Appendix B.

Using

pfL(x;u; c; t;x0;u0; t0) = P f
L(x;u; c; t;x0;u0; 1; t0)

and assuming in (C1) that c0 = 1 and c = �, we get

pE(u0;x0; t0)p
f
L(x;u; �; t;x0;u0; t0) =

pE(u;x; t)

�
P b
L(x0;u0; 1; t0;x;u; �; t) : (C3)

Further taking into account that

Ĉx;u;�;t
t0 =

�

�̂x;u;tt0

;
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and using the following property of the Dirac delta function

Æ(a�� b) =
1

a
Æ(�� b

a
) ; �; a; b 2 (�1;1) ;

with b = 1 and a = 1=�̂
x;u;t
t0 , we get

Æ(1� Ĉx;u;�;t
t0 ) = Æ(

�

�̂
x;u;t
t0

� 1) = �̂x;u;tt0 Æ(�� �̂x;u;tt0 ) = �Æ(�� �̂x;u;tt0 ) :

From this and the de�nition of the function P b
L it follows that

P b
L(x0;u0; 1; t0;x;u; �; t)

= �IEx;u;t
n
Æ(x0 � X̂x;u;t

t0 )Æ(u0 � V̂x;u;t
t0 )Æ(�0 � �̂x;u;tt0 )

o
= �pbL(x0;u0; �0; t0;x;u; t) :

Substitution of the right-hand side of the last equality into (C3) completes the proof of

the relation (20).

5 Conclusion

Direct and backward Lagrangian stochastic algorithms for the numerical evaluation of the

mean concentration of scalars and its �uxes are suggested and justi�ed. The random esti-

mators are constructed in the form of expectations over stochastic Lagrangian trajectories

governed by Langevin type equations derived from Thomson's well-mixed condition. The

transported scalar may be absorbed. Detailed expressions for random estimators for the

mean characteristics (concentration, �uxes, time and space averages of concentration and

�uxes) for quite general cases of sources are given. A practically important case of a plane

source (related to the so-called �footprint problem�) is treated in details. Advantages of

the methods developed are that they are �exible to the structure of the source and the

measured statistical characteristics.
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