
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Thermodynamic design of energy models of

semiconductor devices

Günter Albinus, Herbert Gajewski, Rolf Hünlich

submitted: 28th April 2000

Weierstrass Institute

for Applied Analysis

and Stochastics

Mohrenstraÿe 39

D�10117 Berlin

Germany

E-Mail: albinus@wias-berlin.de

E-Mail: gajewski@wias-berlin.de

E-Mail: huenlich@wias-berlin.de

Preprint No. 573

Berlin 2000

WIAS
2000 Mathematics Subject Classi�cation. 35K55, 47H05, 47H50, 80A20, 80A30, 82D37.

Key words and phrases. Energy model, semiconductor devices, carrier temperatures, convex

thermodynamic potentials, systems of conservation laws, systems of nonlinear parabolic equations,

Lyapunov functions, convex analysis, monotone operators.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



1 INTRODUCTION 1

Abstract

In this preprint a system of evolution equations for energy models of a

semiconductor device is derived on a deductive way from a generally accepted

expression for the free energy. Only �rst principles like the entropy maximum

principle and the principle of partial local equilibrium are applied. Particu-

lar attention is paid to include the electrostatic potential self-consistently.

Dynamically ionized trap levels and models with carrier temperatures are

regarded. The system of evolution equations is compatible with the corre-

sponding entropy balance equation that contains a positively de�nite entropy

production rate.

1 Introduction

There is a large variety of energy models for semiconductor devices. G. Wachutka

proposed a rigorous thermodynamic model [20] (or [21]). His model is based on the

usual state equations and continuity equations for the carrier densities of electrons

and holes, n1 and n2, and on the conservation of the total energy expressed by

the equation @tu + r � ju = 0 for the density u and the current density ju of this

total energy. Neither he has chosen, however, u as an independent state variable

nor he has given state equations for all out of three independent state variables of

his model. Instead of doing so he has used di�erential relations for u and general

thermodynamic relations for ju and transformed the energy balance equation into a

heat �ow equation C@tT �r � (�rT ) = H ; the discussion of which was the main

subject of those papers. Meanwhile the heat �ow equation with the description

of the source term H is well established, the discussion about its relation to the

conservation law of energy has been going on. H. Brand and S. Selberherr [6] have

derived the heat �ow equation from the assumption that the density of total energy

as a function of the carrier densities and of the density s of entropy would be a

thermodynamic potential. This assumption, however, is wrong - at least in the

naive setting in which it was applied. To see this one considers two states 0 and 00

with n02 � n
00

2, s
0 � s

00

, but n
00

1 � n01 di�ers from zero only on a (small) ball B � 
 of

the domain which is occupied by the device. Then all other state variables should

also di�er only in B, but the electrostatic potentials, 	0 and 	
00

, di�er also outside

the ball. To our knowledge U. Lindefelt [15] was the �rst who observed a certain

inconsistency of Wachutka's arguments which are based on the conservation of the
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total energy. Indeed, the semiconductor device also in its simpli�ed model is not a

closed system, since the external electrostatic �eld represented by the bias voltages

at Dirichlet contacts or gate contacts performs work in the device. U. Lindefelt

and also J. E. Parrott [17] derived an energy balance equation by applying the

moment method to the Boltzmann equation. Considering the moments and the

kinetically de�ned entropy of particularly parametrized distribution functions near a

local equilibriumand using a �rst-order approximation they get a system of evolution

equations. The density of energy which they balance is not the density of total energy

of a system of charged particles with a self-consistent electrostatic potential.

Mathematical simulation of semiconductor devices yields another point of view than

physical modelling, since all quantities must be expressed more or less explicitly by

the independent state variables which are determined by the system of evolution

equations. Moreover the mathematical methods to solve a system of evolution equa-

tions are, in general, much less perfect than the methods of nature in the real world.

Often some useful information already hidden in the system of evolution equations

can be more easily obtaind from additional dependent state variables. Stimulated

by the ideas of H. Gajewski and K. Gröger [10], which have applied tools of convex

analysis and a free energy as a Ljapunov function in the analysis of the drift-di�usion

model, G. Albinus [2] has tried to de�ne the total energy as the sum of internal en-

ergy and of electrostatic energy and to consider the entropy as a function of the

carrier densities and of this total energy. As a result of this construction nonlocal

conjugate variables to n1 and n2 arise (cf. [3],Th. 2.1), which are quite unusual in

the �eld and which are, moreover, rather inconvenient from the mathematical point

of view.

These observations stimulated us to ask for a thermodynamically correct description

of systems with a nonlocal interaction like the electrostatic one. In this paper we give

an answer to this question. Based on the expression for the density of free energy

(cf. [19], chap. VIII) we derive a system of evolution equations on a deductive way.

Thereby we only apply �rst principles like the entropy maximum principle and the

principle of partial local equilibrium. Moreover we assume that the total energy is

the sum of the internal energy and of the electrostatic energy. The last assumption

is justi�ed by the fact that in simulation practice it is assumed that the dielectric

permittivity does not depend on the temperature and that the heat capacity does

not depend on the electric �eld.

We also dicuss the case of carrier temperatures. Although G. Wachutka [22] has

already described the system of evolution equations, the explicite description of the

system with carrier temperatures and its thermodynamic background given in Sect. 6

and Sect. 7 are new to our knowledge. We include also a species of trap levels of donor

type which are dynamically ionized. It seems to us particularly interesting to see in

the concrete model of a semiconductor device that some thermodynamic concepts

are not de�ned and some relations do not hold for general states (n0; n1; n2; T; T1; T2)
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which are called states of partial local equilibrium. The choice of the densities of

internal energy and of entropy in these states, in particular, is justi�ed by the facts

that

� the Lagrange method for the realization of the entropy maximum principle

combined with the principle of partial local equilibrium yields state equations

generally accepted in simulation practice,

� the thermodynamic forces and �uxes derived on the base of the description

of states of equilibrium and on the base of the condition of positive entropy

production also agree with the equations used in simulation practice, and

� the choice of system of evolution equations (in each stage of the deduction)

is compatible with the corresponding entropy balance equation having a posi-

tively de�nite expression for the entropy production.

2 Notation and Assumptions

We consider simple, but generally accepted models of a semiconductor. The semicon-

ductor is considered as a system which consists of several subsystems, the subsystem

of electrons in the conduction band, the subsystem of holes in the valence band and

the lattice. The lattice is described by a heat capacity (per unit volume) cL, by a

dielectric permittivity ", by a doping pro�le d which is a �xed density of completely

ionized donors or acceptors and by a �xed density ND of donor like trap levels which

are dynamically ionized, D+, or not, D�. The ionization and dissoziation are de-

scribed as chemical reactions, D�
� D

+ + 	 or D� + � � D
+. The ionization

energy of the electrons in the traps is denoted by E0, which is a value between the

band edges E2 and E1 of the valence band and the conduction band. In general

we admit that each subsystem has its own temperature, T1, T2, and T . In the

following three sections we consider, however, the case of coinciding temperatures,

T1 � T2 � T . In contrast to general states (n;T) � (n0; n1; n2; T; T1; T2) of partial

local eqilibrium we call such states (n; T ) states of partial local thermal eqilibrium.

The electrostatic interaction of the subsystems and an external electric �eld are

described in Sect. 7 as a boundary value problem �!
�D

(n2 + ND � n0 � n1) for

the Poisson equation �r � ("r	) = d + n2 + ND � n0 � n1 with the solution 	 =

P
!
�D

(n2+ND�n0�n1). We introduce the 'charge numbers` q2 = �q0 = �q1 = 1. For

the purpose of simulation practice it can be assumed that the dielectric permittivity

" does not depend on the temperature and that the heat capacity does not depend

on the electric �eld strength. Because of such assumptions (or simpli�cations) we

can and we do assume that the free energy is a sum of the electrostatic energy

U
!
�D

(n2 + ND � n0 � n1) and of an 'internal free energy`. Our basic assumption is



2 NOTATION AND ASSUMPTIONS 4

that the internal free energy of the whole system in a state of partial local thermal

equilibrium is given by the density

f(n; T ) =cL(T � T log T )�
2X

j=0

qjnjEj(T )

+ T log

"�
n0

2(ND � n0)

�n0
�
ND � n0

ND

�ND

#
(2.1)

+T

2X
l=1

�
nlF�1

�l�1

�
nl

Ml(T )T
�l

�
� T

�lMl(T )F�l Æ F�1
�l�1

�
nl

Ml(T )T
�l

��
with the state densitiesMi(T )T

�i (i = 1; 2). The indices �i of the Fermi integrals are

usually 3=2 (parabolic band structure), but we allow indices �i > 1. In simulation

practice one usually assumes that the e�ective masses of electrons and holes, which

contribute to the factors Mi, and the band gap Eg = E1 � E2 depend on the

temperature. Therefore we admit material laws Ei(T ) and Mi(T ) in general. The

Fermi integral F
 with the index 
 > �1 is de�ned by

F
(y) =
1

�(
 + 1)

Z
1

0

z



1 + exp (z � y)
dz ;

such that its derivative is F 0


 = F
�1 (
 > 0). One can easily switch to the case of

Boltzmann statistics simply by substituting all Fermi integrals F
 by the exponential

function exp and the inverse functions F�1

 by log. This switching is often quite

helpful, because the expressions become much simpler in general. On the other

hand the structure of the formulas becomes more clearly in the case of Fermi-Dirac

statistics.

It is well known that the free energy (per unit volume) as a function of the parti-

cle densities and temperature is a thermodynamic potential which contains much

information of the physical system. In contrast to the usual (irreversible) thermo-

dynamics where (local) equilibrium states are studied the free energy here is de�ned

for states of partial local thermal equilibrium which is a partial equilibrium with

respect to the densities.

In the next four sections we consider systems without electrostatic interaction. In

the next three sections we consider a system in local thermal equilibrium that has

a density of free energy de�ned by (2.1). In Sect. 6 we admit carrier temperatures

Ti for the electrons in the conduction band (i = 1) and for the holes in the valence

band (i = 2), which may di�er from the lattice temperature T (hot electrons). In

Sect. 7 the electrostatic interaction is included, the energy models of semiconductors

with and without hot electrons are presented as the result of a purely thermody-

namic deduction from the density of the free energy (2.1). In Sect. 8 the preceding

arguments and results are speci�ed for the case that the Boltzmann statistics can

be applied to the carriers.
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Notice that we use a convenient scaling such that the physical quantities become

dimensionless. Sometimes it will be su�cient to consider only spatially homogeneous

states. In these cases the densities ni, d, ND and the temperatures are constant or

functions of time only, and the material laws do not excplicitly depend on the spatial

coordinates. In general, however, the material laws may also explicitly depend on

the spatial coordinates, but this dependence will usually not be indicated.

3 The Entropy Maximum Principle

For the readers convenience we compile here some short notation which will be useful

throughout the paper.

Pi �Mi(T )T
�iF�i Æ F�1

�i�1

�
ni

Mi(T )T
�i

�
;

Qi � n
2
i

Mi(T )T �iF�i�2 Æ F�1
�i�1

h
ni

Mi(T )T
�i

i ;
Di � Pi �Qi =Mi(T )T

�i

�
F�i(z)�

F�i�1(z)
2

F�i�2(z)

�
z=F�1

�i�1

h
ni

Mi(T )T�i

i ;

and Li(T ) � T@T [logMi(T )] (i = 1; 2). Notice that

Di > � 1

�i
Mi(T )T

�iF�i(z) :

The densities of the entropy and of the energy of a system with the density (2.1) of

the free energy are de�ned by

s = sf (n; T ) =� @Tf(n; T )

=cL log T +

2X
j=0

qjnjE
0

j(T )� log

"�
n0

2(ND � n0)

�n0
�
ND � n0

ND

�ND

#
(3.1)

+
X
i

�
(�i + 1 + Li(T ))Pi � niF�1

�i�1

�
ni

Mi(T )T �i

��
and

u = uf (n; T ) =f(n; T )� T@Tf(n; T ) = f + Ts

=cLT �
2X

j=0

qjnj[Ej(T )� TE
0

j(T )] + T

2X
l=1

[�l + Ll(T )]Pl ;(3.2)

where the prime denotes the derivative with respect to the only argument T .
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Proposition 3.1 (Entropy maximum principle) If the heat capacity of the system
is positive, i.e. if

C �@Tuf = �T@2Tf = �T@Tsf

=cL +

2X
j=0

qjnjTE
00

j (T ) +

2X
l=1

�
(�l + [TLl(T )]

0
)Pl + (�l + Ll(T ))

2Dl

�
> 0 ;

the entropy S =
R
sf (n; T ) d
 realizes its maximum under the constraints

U0 =

Z
uf(n; T ) d
 and Q =

Z
(n2 � n1 � n0) d


at one of the equilibrium states which are characterized by the equilibrium conditions
T = 1=� � � and

� = �qi@ni
�
1

�
uf (n; �)� sf(n; �)

�
= �qi

Ei(�)

�
�
(

log
2(ND�n0)

n0
(i = 0)

qiF�1
�i�1

h
ni

Mi(�)�
�i

i
(i = 1; 2)

:

The proof is a straightforward application of the Lagrange method. The constants

� and � are the Lagrange multipliers of the two constraints. Their values and thus

the equilibrium densities

n0 = ND

2

2 + exp
E0(�)��

�

and ni =Mi(�)�
�iF�i�1

�
�qi � � Ei(�)

�

�
(i = 1; 2) ;

(� � �=�) are determined by the constraints, which form a system of two nonlinear

equations.

Remark 3.1 The derivatives of Ei andMi with respect to T in the expressions (3.1)
and (3.2) naturally occur if one starts from the free energy (2.1). They guarantee
that the temperature is constant in the equilibrium states de�ned by the entropy
maximum principle. If these terms had been omitted the temperature T would neither
coincide with 1=� nor be constant in equilibrium states. Is there a plausible physical
interpretation of these terms?

Remark 3.2 For the states of partial local thermal equilibrium we introduce state
variables �i according to the structure of the equilibrium densities. In this sense the
state equations

n0 = ND

2

2 + exp 1
T
[E0(T )� �0]

and ni =Mi(T )T
�iF�i�1

�
qi

T
[Ei(T )� �i]

�
(i = 1; 2) are a stringent consequence of the expression of the free energy. As long as
we neglect the electrostatic interaction between the carriers, we can not distinguish
electrochemical and chemical potentials. Let us call the �i electrochemical potentials,
since we have already regarded the charge of the carriers and traps.
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Remark 3.3 Notice that the identity @Tuf = T@Tsf re�ects the principle of local
thermal equilibrium of the irreversible thermodynamics. The heat capacity of the
system is positive if the estimate

cL +

2X
j=0

qjnjTE
00

j >

2X
l=1

�
1

�l
Ll(T )

2 + Ll(T )� TLl(T )
0

�
Ml(T )T

�lF�l

holds. This estimate is satis�ed in the model case in which the band edges Ei and
the functions Mi (i.e. the e�ective masses) do not depend on the temperature. The
estimate is checked in the Appendix for material laws which are used in simulation
practice.

Remark 3.4 A glance at (3.1) suggests that the quantities

Pi := [�i + 1 + Li(T )]
F�i(z)

F�i�1(z)z= qi
T
[Ei(T )��i]

+
qi

T
(�i � [Ei(T )� TE

0

i(T )])

(i = 1; 2) are the entropies per carrier. These quantities will play a role in the
current equations, where they also justify the name 'thermoelectric power`.

The following proposition is closely related to the entropy maximum principle.

Proposition 3.2 If the heat capacity C is positive, the implicitly de�ned function
s(n; u) := sf (n; T ) with u = uf(n; T ) is a thermodynamic potential. Its �rst-order
partial derivatives are the conjugate variables

@us =
@Tsf

C
=

1

T
=: �

and

@nis = @ni

�
sf � 1

T
uf

�
= qi

�i

T
�: qi�i (i = 0; 1; 2) :(3.3)

The negative conjugate potential of s is the potential

h(�0; �1; �2; � ) =sf (n; T )� 1

T
uf (n; T )�

2X
j=0

qjnj�j

=cL(log T � 1) +ND

�
�0 � 1

T
E0(T ) + log

�
2 + e

E0(T )=T��0
��

+

2X
l=1

Ml(T )T
�lF�l

�
ql

�
1

T
El(T )� �l

��
(� � 1=T ) :
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In the following the state variable �0 will be considered as a �xed parameter, be-

cause the occupied traps are localized electrons. Thus let us denote the function

h(�0; :; :; :) �: h. It will be, moreover, convenient to stick to the variable T instead

of the correct conjugate variable � . Therefore we denote h(:; :; � ) �: H(:; :; T ) and

notice that @�h(:; :; � ) = �T 2
@TH(:; :; T ). The �rst-order partial derivatives of h are

@�iH(�1; �2; T ) =� qiMi(T )T
�iF�i�1 [qi (Ei(T )=T � �i)] (i = 1; 2)

and

�T 2
@TH(:; :; T ) =� cLT � [E0(T )� TE

0

0(T )]ND

2

2 + exp [E0(T )=T � �0]

+

2X
l=1

ql[El(T )� TE
0

l(T )]Ml(T )T
�lF�l�1

�
ql

�
1

T
El(T )� �l

��

� T

2X
l=1

[�l + Ll(T )]Ml(T )T
�lF�l

�
ql

�
1

T
El(T )� �l

��
:

Remember that the quantities T 2
@TH(:; :; T ) = uf (n; T ) coincide, although the

functions on both sides are quite di�erent. The 3 � 3-matrix d2h of second-order

partial derivatives reads0@ A
1=2
1 0 0

0 A
1=2

2 0

0 0 1

1A
0B@ 1 0 A

�1=2
1 F1

0 1 A
�1=2

2 F2

A
�1=2

1 F1 A
�1=2

2 F2 AL

1CA
0@ A

1=2
1 0 0

0 A
1=2

2 0

0 0 1

1A
with Ai =Mi(T )T

�iF�i�2 > 0 (i = 1; 2),

Fi =Mi(T )T
�i [qiT (Li(T ) + �i)F�i�1 � (Ei � TE

0

i)F�i�2] ;

and

AL =cLT
2 + T

3

2X
j=0

qjnjE
00

j (T ) +
1

ND

[E0(T )� TE
0

0(T )]
2
n0(ND � n0)

+

2X
l=1

Ml(T )T
�l
�
T
2
�
�l + [TLl(T )]

0
+ [�l + Ll(T )]

2
�F�l

�2ql[El(T )� TE
0

l(T )]T [�l + Ll(T )]F�l�1 + [El(T )� TE
0

l(T )]
2F�l�2

�
:

Notice that the identity

AL �
2X

l=0

F
2
l =Al � CT

2
+

1

ND

[E0(T )� TE
0

0(T )]
2
n0(ND � n0)

hold.
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Proposition 3.3 If the heat capacity C is positive, the matrix d2h is positively
de�nite.

If for a �xed �0 the heat capacity is positive on a convex domain of states (�1; �2; 1=T ),

the function h is a strictly convex with the partial derivatives

@�ih = �qini (i = 1; 2) ; and @�h = �u :
The convexity of h means, mathematically spoken, that the operator (��1; �2; � ) 7!
(n1; n2; u) is strictly monotone, i.e.

�(n01 � n
00

1)(�
0

1 � �

00

1) + (n02 � n
00

2)(�
0

2 � �
00

2 ) + (u0 � u
00

)(� 0 � �
00

) < 0

for di�erent triples (��1; �
�
2; �

�) and the corresponding conjugate triples.

4 Thermodynamic Forces in homogeneous States

Knowing the equilibrium states of the system we are going to de�ne thermodynamic

forces that drive a state of partial local thermal equilibrium into the correspond-

ing equilibrium. In this section we study the transition from homogeneous states

of partial equilibrium into the corresponding equilibrium. The realization of the

maximum entropy principle by means of the Lagrange method suggests that the

di�erences of the reduced potentials �i (i = 0; 1; 2) are the driving forces for the

exchange of electrons or holes between the subsystems. The process of assimilation

of the reduced potentials to each other is derived from the mass action law.

The exchange of electrons or holes between the subsystems is realized by three pairs

'0`, '1`, and '2` of 'chemical reactions',

	+�� ;+E1�E2 ; D
�+�� D

++E0�E2 ; or D
�
� D

++	�(E1�E0) ;

respectively. The rates of recombination, thermal generation, dissociation, or ion-

ization are �0n1n2, 
0, �1n0n2, 
1(ND�n0), �2(ND�n0)n1, and 
2n0. For any state

(n; T ) with the corresponding potentials �i there are uniquely determined solutions

�
0
, �

1
, and �

2
of the corresponding equations

N2F�2�1 ("2 � �)�N1F�1�1 (� � "1) = N2F�2�1 ("2 � �2)�N1F�1�1 (�1 � "1)

= n2 � n1 ;

N2F�2�1 ("2 � �) � 2ND

2 + exp ("0 � �)
= N2F�2�1 ("2 � �2)� 2ND

2 + exp ("0 � �0)

= n2 � n0 ;

N1F�1�1 (� � "1) +
2ND

2 + exp ("0 � �)
= N1F�1�1 (�1 � "1) +

2ND

2 + exp ("0 � �0)

= n1 + n0 ;
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where the short notation Ni :� Mi(T )T
�i and "i :� Ei(T )=T (i = 0; 1; 2) has been

used. The densities nki and n
k
j which correspond to this reduced potential �

k
(i 6= k,

j 6= k) represent the equilibrium of the recombination and generation processes

'k`, i.e. e.g. �0n
0
1n

0
2 = 
0. The assumption �k = �k and 
k = 
k, which mean a

linearization-like approximation, permit us to write the net recombination rate in

the form �0n1n2�
0 = �0 (n1n2 � n
0
1n

0
2). Notice that the quantities n1�n01, n2�n02,

n1n2 � n
0
1n

0
2, and �1 � �2 have all the same sign, because

N2

h
F�2�1 ("2 � �2)�F�2�1

�
"2 � �

1

2

�i
= N1

h
F�1�1 (�1 � "1)�F�1�1

�
�
1

2 � "1

�i
such that ��2 > ��0 if and only if �1 > �

0
. Thus the net recombination rate can be

written as

R0 = �0

�
n1n2 � n

0
1n

0
2

�
= r0(n; T ) exp

�
1

T
(E2(T )� E1(T ))

�
[exp (�1 � �2)� 1]

with a nonnegative material law r0. Analogous arguments yield

Ri = ri(n; T ) exp

h
�qi
T
(Ei�(T )� E0(T ))

i
[exp (qi�i� � qi�0) � 1] (i = 1; 2)

with the notation i� := i� (�1)i and with nonnegative material laws r1 and r2 .

We assume that the evolution of homogeneous states of partial local thermal equi-

librium is described by the following system of di�erential equations,

_n0 = R2 �R1 ;

_ni = �R0 �Ri� (i = 1; 2) ;(4.1)

_T@Tuf = �
2X

j=0

_nj@njuf =

2X
�=0

R�U
�
;

where the short notation

U
0 � @n1uf + @n2uf = E1 � TE

0

1 + TL1Q1=n1 �E2 + TE
0

2 + TL2Q2=n2 ;

U
1 � @n2uf + @n0uf = E0 � TE

0

0 �E2 + TE
0

2 + TL2Q2=n2 ;

and

U
2 � @n1uf � @n0uf = E1 � TE

0

1 + TL1Q1=n1 � E0 + TE
0

0

has been used. The quantities S� as well as eU � and eS� in Sect. 6 below are de�ned

analogously with sf , euf , and esf , respectively. The fourth equation of the system

describes the conservation of energy.
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The entropy s = sf [n; T ] of a solution of the system (4.1) satis�es the entropy

balance equation

_s =

2X
j=0

_nj@njsf +
_T@Tsf = �

2X
�=0

R�S
�
+

1

T

_T@Tuf =

2X
�=0

R�

�
1

T
U

� � S
�

�

= r0 exp

�
1

T
(E2(T )� E1(T ))

�
(�1 � �2) [exp (�1 � �2)� 1](4.2)

+

2X
l=1

rl exp

h
�ql
T
(El�(T )� E0(T ))

i
(ql�l� � ql�0) [exp (ql�l� � ql�0)� 1]

The positive de�niteness of the entropy production is an argument for the right

choice of the evolution equations!

5 Thermodynamic Forces in inhomogeneous States

The existence of �uxes of particles and of energy in inhomogeneous states of partial

local thermal equilibrium driven by the gradients of the conjugate variables �1, �2,

and � according to0@ jn1

jn2

ju

1A =

0@ D11 D12 D1u

D21 D22 D2u

Du1 Du2 Duu

1A �
0@ �r�1

r�2
r�

1A � D �
0@ �r�1

r�2
r�

1A
can be motivated by a decomposition of the whole device into small cells which

exchange particles and energy. The strict convexity of the function h can be applied

to derive the positive de�niteness of the coe�cient matrix. To this aim the domain


 � R
3 which is occupied by the system is decomposed into small cells � with

individual values ��1, �
�
2, and �

� of the independent state variables. Di�erences of these

values in neighboured cells causes an exchange of carriers and energy between these

cells. The rate of the exchange is determined by the 'permeability` or 'conductivity`

of the interfaces between neighboured cells and the exchange must be accompanied

with a growth of entropy. In the limit of vanishing cell volume the di�erential

law arises formally. We do not need this motivation, since the positive de�niteness

of the coe�cient matrix follows from the following proposition in connection with

the thermodynamic condition that the entropy production has to be positive. The

elements of the coe�cient matrix are state variables.

Proposition 5.1 Let (n; T ) be a solution of the following system of evolution equa-
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tions

_n0 = R2 �R1 ;

_ni +r � jni = �R0 �Ri� (i = 1; 2) ;(5.1)

_T@Tuf +r � ju =

2X
�=0

R�U
� +

2X
l=1

@nlufr � jnl

The density of entropy s = sf [n; T ] satis�es the entropy balance equation

_s+r � js = (�1 � �2)R0 +

2X
l=1

ql (�l� � �0)Rl

+

0@ �r�1
r�2
r�

1A �D �
0@ �r�1

r�2
r�

1A(5.2)

with the entropy �ux

js = ��1jn1 + �2jn2 +
1

T
ju :(5.3)

Proof.An immediate evaluation shows

_s = _n � @nsf + _T@T sf = _n � @nsf + 1

T

_T@Tuf

=

2X
�=0

R�

�
1

T
U

� � S
�

�
+

2X
l=1

@nl

�
1

T
uf � sf

�
r � jnl �

1

T
r � ju

= R0(�1 � �2) +

2X
l=1

ql [Rl(�l� � �0)� �lr � jnl ]� �r � ju :

The divergence terms provide the divergence of the entropy current density and the

part of the entropy production rate due to the current densities. 2

We want to discuss the coe�cient matrix in some detail, because some general

conclusions can be drawn. It will be convenient to write the equations for the

current densities in the form0@ �
jn1

jn2

�
ju

1A �
�
j

ju

�
=

�
Dc A

B D�

�
�
0@ � �r�1

r�2

�
r�

1A :

The requirement that the entropy production has to be positive implies that the

coe�cient matrix and the block diagonal matrices has to be positively de�nite, in

particular, regular matrices. We write0@ � �r�1
r�2

�
ju

1A =

�
D
�1
c �D�1

c A

R K

�
�
�

j

r�
�
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with the matrices R = BD�1
c = (R1 R2) and K = D� �BD�1

c A = D� �RA. The
current density of entropy turns out to be

js =
1

T
[(��1 �2) � j+R � j+K � r� ] ;

i.e. the matrices Ri are quasi scalar coe�cients

Ri = (TPi � qi�i)I ;

which do not contain particular properties of the material, but are determined by

the state of the system, in particular, by the entropies per carrier, P1 or P2, that

were introduced in Rem. 3.4.

Let us introduce a matrixM instead of the matrix A,

D
�1
c A = RT �RT +D�1

c A =: RT + 2M ;

such that

j = Dc �
�� �r�1

r�2

�
+
�
R

T + 2M
� � r�� :

Let denote DS
c :=

�
Dc +D

T
c

�
=2 and W :=

p
(D�1

c +DT �1
c ) =2. The entropy pro-

duction reads

� =
�
j r� � �

0@ � �r�1
r�2

�
ju

1A = j � �D�1
c � j�� 2j � (M � r� ) +r� � (K � r� )

= j � �W2 � j�� 2 (W � j) � �W�1
M � r��+ (M � r� ) � �W�2

M � r��
+r� � ��K�MT

D
S
cM

� � r��
=
�
W � j �W�1

M � r�� � �W � j�W�1
M � r��+r� � ��K�MT

D
S
cM

� � r��
=
�
j�DS

cM � r�� � �DS�1
c � �j�DS

cM � r���+r� � ��K�MT
D

S
cM

� � r��
= x � �DS

c � x
�
+r� � ��K�MT

D
S
cM

� � r��
with the thermodynamic forces

x = DS�1
c Dc �

�� �r�1
r�2

�
+
�
R

T + 2M �D�1
c D

S
cM

� � r�� :

We do not see that the model requires or implies the symmetry of the coe�cient

matrix which maps the thermodynamic forces �r�1, r�2, and r� into the �uxes

jn1 , jn2 , and ju, but the symmetry seems to be plausible in the absence of magnetism

due to kinetic modelling.
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In the symmetric case, i.e. if Dc = D
T
c , K = K

T , and M = 0, the thermodynamic

forces

xi = qir�i + (TPi � qi�i)r� = � 1

T
(�qir�i + PirT )

(i = 1; 2) and r� form a basis in the space of thermodynamic forces which decom-

poses the entropy production into a sum of the entropy production due to the carrier

�uxes and of the entropy production due to gradient of temperature. The matrixK

has to be positive de�nite. The �uxes read in the more detailed version

ju =

2X
l=1

(TPl � ql�l) jnl +K � r 1

T

and �
jn1

jn2

�
=� 1

T
Dc �

� r�1 + P1rT
�r�2 + P2rT

�
=� 1

T

�
(D11 �D12) � (r�1 + P1rT )�
D22 �DT

12

� � (�r�2 + P2rT )
�

� 1

T

�
D12

D
T
12

�
� [r (�1 � �2) + (P1 + P2)rT ] :

In the isotropic case the 3�3matricesDik = dikI are represented by scalar functions

dik. In the symmetric isotropic case, in particular, we write

(5.4) D =

0@ d1 �Æ f1

�Æ d2 f2

f1 f2 du

1A
The positive de�niteness of Dc becomes the condition d1d2 > Æ

2. Moreover,

R =
1

d1d2 � Æ2
(f1d2 + f2Æ ; f1Æ + f2d1) I

and K = �I with

� = du � 1

d1d2 � Æ2

�
f
2
1d2 + 2f1f2Æ + f

2
2 d1

�
> 0 :

The �uxes can be written in the familiar form

jni = �di + Æ

T
(�qir�i + PirT ) + Æ

T
[r (�1 � �2) + (P1 + P2)rT ] :

Notice that the second summands of the carrier �uxes do not contribute anything

to the electric current. In the case Æ � 0 it is easy to identify (di + Æ)=T with

niDi, where Di denote the (scaled) mobilities or di�usion coe�cients of the carriers.

The case Æ 6= 0 has been introduced into simulation practice by D.E.Kane and

R.M.Swanson [11] (or [12]), and the coe�cients must be compared with their more

speci�ed formulas.
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6 Several Temperatures

We want to include those hot electron e�ects which result, if the electrons do

not instantaneously exchange energy with the lattice. Therefore we admit states

(n;T) � (n0; n1; n2; T0; T1; T2) in which the subsystems have its own temperatures,

too. We shall see that there is a natural extension of the concepts, relations and ar-

guments of the preceding sections to general states of partial local equilibrium. For

the readers convenience we compile here some short notation which will be useful in

this section, but we shall write often T instead of T0.

ePi �Mi(T )T
�i
i F�i Æ F�1

�i�1

�
ni

Mi(T )T
�i
i

�
;

eQi � n
2
i

Mi(T )T
�i
i F�i�2 Æ F�1

�i�1

h
ni

Mi(T )T
�i
i

i ;
eDi � ePi � eQi > � 1

�i
Mi(T )T

�i
i F�i ;

ai � �i
ePi + �

2
i
eDi ; bi � �iLi(T ) eDi ;

and

a0 � cL + T

2X
j=0

qjnjE
00

j (T ) +

2X
l=1

� ePl [TLl(T )]
0
+ Ll(T )

2 eDl

�
:

It is not di�cult to guess those places in the expressions (3.1) or (3.2) where the

(lattice) temperature T is to be substituted by the carrier temperatures Ti, if states

of partial local equilibrium are considered, namely

esf (n;T) =cL log T +

2X
j=0

qjnjE
0

j(T )� log

"�
n0

2(ND � n0)

�n0
�
ND � n0

ND

�ND

#

+

2X
l=1

�
[�l + 1 + Ll(T )] ePl � nlF�1

�l�1

�
nl

Ml(T )T
�l
l

��
(6.1)

and

euf(n;T) =cLT � 2X
j=0

qjnj [Ej(T )� TE
0

j(T )] +

2X
l=1

[�lTl + TLl(T )] ePl :

(6.2)
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We shall see in Sect. 9 that this choice is con�rmed by some general properties of the

system. By admitting states with diverse temperatures, however, the state space

has been extended in such a way that some thermodynamic concepts are not de�ned

on the whole space or are no longer 'equivalent` as they are in states of partial local

thermal equilibrium.

The abbreviations introduced above are justi�ed by some useful formulas like

Ti@Tieuf (n;T) = aiTi + biT (i = 1; 2) ; T@Teuf (n;T) = a0T +
P2

l=1 blTl ;

Ti@Tiesf (n;T) = ai + bi ; and T@Tesf (n;T) = a0 + b1 + b2 :

Lemma 6.1 The matrix

(6.3)

0@ a1 0 b1

0 a2 b2

b1 b2 a0

1A
is regular or even positively de�nite if and only if the inequality

P2

l=1 b
2
l =al 6= a0 or

the estimate
P2

l=1 b
2
l =al < a0 holds, respectively.

Proof.As the inequalities

ai = �
2
iMi(T )T

�i
i

��
1

�i
+ 1

�
F�i �

F2
�i�1

F�i�2

�
> 0 (i = 1; 2)

hold, the matrix (6.3) can be factorized,0@ p
a1 0 0

0
p
a2 0

0 0 1

1A0@ 1 0 b1=
p
a1

0 1 b2=
p
a2

b1=
p
a1 b2=

p
a2 a0

1A0@ p
a1 0 0

0
p
a2 0

0 0 1

1A :

The central matrix is regular or positively de�nite if and only if the corresponding

condition is ful�lled. 2 Notice that

a0 �
2X

l=1

b
2
l

al
� cL + T@

2
T

2X
j=0

qjnjEj(T ) +

2X
l=1

ePl

 
[TLl(T )]

0
+
Ll(T )

2 eDlePl + �i
eDl

!
;

and the condition a0 �
P2

l=1 b
2
l =al > 0 is satis�ed in the model case in which the

band edges Ei and the coe�cients Mi (i.e. the e�ective masses) do not depend on

T . The inequality is checked in the Appendix for material laws which are used in

simulation practice.



6 SEVERAL TEMPERATURES 17

Proposition 6.1 (Entropy maximum principle) If the matrix (6.3) is regular, the
entropy maximum principle yields the equilibrium conditions T1 = T2 = T = 1=� � �

and

� = �qi@ni
�
1

�
euf(n; �; �; �)� esf(n; �; �; �)� = � qi@ni

�
1

�
uf (n; �)� sf(n; �)

�
:

as in Prop. 3.1.

Proof.The proof is a straightforward application of the Lagrange method. The con-

ditions for the thermal equilibrium are a system of three linear equations for three

variables,

(6.4)

0@ T1@T1

T2@T2

T@T

1A [esf � �euf ] =
0@ a1 0 b1

0 a2 b2

b1 b2 a0

1A0@ 1� �T1

1� �T2

1� �T

1A = 0 :

2

Remark 6.1 The derivatives of Ei and Mi with respect to T in the expressions
(6.1) and (6.2) guarantee that the diverse temperatures coincide and are constant
in the equilibrium states de�ned by the entropy maximum principle. If these terms
had been omitted the diverse temperatures would neither coincide (with 1=�) nor be
constant in equilibrium states.

Remark 6.2 For the states of partial local equilibrium electrochemical potentials e�i
are de�ned again according to the structure of the equilibrium densities. Thus the
state equations

n0 = ND

2

2 + exp
E0(T )��0

T

and

ni =Mi(T )T
�i
i F�i�1

�
qi

Ti

�
Ei(T )� e�i�� (i = 1; 2)

are a stringent consequence of the entropy maximum principle.

We introduce densities of energies of the subsystems,

ui = u
(i)

f (ni; Ti; T ) := �iTi
ePi (i = 1; 2) ; @niu

(i)

f (ni; Ti; T ) =
�i

ni
Ti
eQi ;

u0 = u
(0)

f
(n;T) := cLT �

2X
j=0

qjnj

�
Ej(T )� TE

0

j(T )
�
+

2X
l=1

TLl(T ) ePl :

The following proposition is closely related to the entropy maximum principle.
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Proposition 6.2 If the matrix (6.3) is regular, the implicitly de�ned function

es (n;u) := es hn; u(0)f ; u
(1)

f ; u
(2)

f

i
= esf (n;T)

is a thermodynamic potential. Its �rst-order partial derivatives are the conjugate
variables

@u0es (n;T) = 1

T
� � ; @uies (n;T) = 1

Ti
� �i ; @n0es (n;T) = ��0

T
� ��0 � �e�0 ;

and

@nies (n;T) = qi

" e�i
Ti
� Ei(T )

�
1

Ti
� 1

T

�#
� qi

e�i (i = 1; 2) :

The negative conjugate potential of es (n;u) readseh h�0; e�1; e�2; �; �1; �2i
:=esf [n;T]� 1

T
euf [n;T]� 2X

l=1

�
1

Tl
� 1

T

�
u
(l)

f (nl; Tl; T )�
2X

j=0

qjnj
e�j

=cL (log T � 1) +ND

�
�0 � 1

T
E0(T ) + log

�
2 + exp

�
1

T
E0(T )� �0

���
+

2X
l=1

Ml(T )T
�l
l F�l

�
ql

�
1

T
El(T )� e�l�� :

Notice that the conjugate variables of n1 and n2 with respect to es on the state space

of partial local equilibrium are extensions of the conjugate variables of n1 and n2

with respect to the restriction s of es onto the state space of partial local thermal

equilibrium. The state variable �0 will be considered as a �xed parameter again,

and we shall stick to the variables T and Ti instead of the corresponding correct

conjugate variables. Therefore we denote eh ��0; e�1; e�2; �; �1; �2� �: eH �e�1; e�2;T� and

notice that @�i
eh � �T 2

i @Ti
eH (i = 0; 1; 2). The �rst-order partial derivatives ofeh (�0; :; :; :; ; :; :; :) are

@e�i eH �e�1; e�2;T� = �qiMi(T )T
�i
i F�i�1

�
qi

�
1

T
Ei(T )� e�i�� (i = 1; 2) ;

�T 2
i @Ti

eH �e�1; e�2;T� = ��iMi(T )T
�i+1
i F�i (i = 1; 2) ;

and

�T 2
@T
eH �e�1; e�2;T� = �cLT � [E0(T )� TE

0

0(T )]ND

2

2 + exp
�
1
T
E0(T )� �0

�
+

2X
l=1

fql [El(T )� TE
0

l(T )]Ml(T )T
�l
l F�l�1 � TLl(T )Ml(T )T

�l
l F�lg :
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The 5 � 5 matrix of second-order partial derivatives of the function eh(�0; �; �; �; �; �)
has a block matrix structure 0@ A1 0 F1

0 A2 F2

F
T
1 F

T
2 A0

1A
with the positively de�nite symmetric matrices

Ai =

�
niF�i�2=F�i�1 qi�iTini

qi�iTini �i(�i + 1)T 2
i Mi(T )T

�i
i F�i

�
;

with vectors

Fi = ni

�
qiTLi(T )� [Ei(T )� TE

0

i(T )]F�i�2=F�i�1

�iTi [(TLi(T )F�i=F�i�1 � qi[Ei(T )� TE
0

i(T )]]

�
;

and a diagonal element

A0 =cLT
2 + T

3

2X
j=0

qjnjE
00

j +
1

ND

[E0(T )� TE
0

0(T )]
2
n0 (ND � n0)

+

2X
l=1

Ml(T )T
�l
l

�
T
2
�
[TLl(T )]

0 + Ll(T )
2
�F�l

�2qlTLl(T )[El(T )� TE
0

l(T )]F�l�1 + [El(T )� TE
0

l(T )]
2F�l�2

�
:

Lemma 6.2 The matrix d2eh(�0; :::) is regular or even positively de�nite if and only
if the inequality

2X
l=1

F
T
l A

�1
l Fl 6= A0

or the estimate

A0�
2X

l=1

F
T
l A

�1
l Fl � 1

ND

[E0(T )� TE
0

0(T )]
2
n0 (ND � n0) + T

2

 
a0 �

2X
l=1

b
2
l

al

!

�
2X

l=1

nl�lT
2
Ll(T )

2 F�lF�l�1

(�l + 1)F�lF�l�2 � �lF2
�l�1

> 0 ;

respectively, holds.

Proof.The assertion becomes evidently by factorizing0@ A
1=2

1 0 0

0 A
1=2

2 0

0 0 1

1A
0B@ I 0 A

�1=2

1 F1

0 I A
�1=2
2 F2

F
T
1 A

�1=2

1 F
T
2 A

�1=2

2 A0

1CA
0@ A

1=2

1 0 0

0 A
1=2

2 0

0 0 1

1A :
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2

In the model case in which the band edges Ei and the coe�cients Mi (i.e. the

e�ective masses) do not depend on T the 5� 5 matrix d2eh(�0; �; �; �; �; �) is positively
de�nite. We consider it as an implicit assumption concerning the material laws

Ei and Mi that the matrix is positively de�nite in general, too. The estimate is

checked in the Appendix for material laws which are used in simulation practice.

The function eh(�0; �; �; �; �; �) is then strictly convex and has the partial derivatives

@~�i
eh = �qini ; @�i

eh = �u(i)f (i = 1; 2) ; and @�
eh = �u(0)f :

Remark 6.3 The splitting euf =
P2

j=0 u
(j)

f
is not arbitrary, but a consequence of the

demand @uies = 1
Ti

(i = 1; 2) and @u0es = 1
T
(cf. Sect. 9).

We are going to de�ne thermodynamic forces that drive a homogeneous state of

partial equilibrium into the corresponding equilibrium. There is no problem to

substitute the reduced potentials �1 or �2 in the net reaction ratesRi by the quantitiese�1 or e�2. Therefore, we choose the following extensions of the net reaction rates to

the states of partial local equilibrium,

eR0 = er0(n;T) exp� 1

T2
E2(T )� 1

T1
E1(T )

�h
exp

�e�1 � e�2�� 1

i
and

eRi = eri(n;T) exp�qi
T
E0(T )� qi

Ti�
Ei�(T )

�h
exp

�
qi
e�i� � qi�0

�
� 1

i
;(6.5)

(i = 1; 2 ; i� = i � (�1)i) with nonnegative material laws erl (l = 0; 1; 2), that are

extensions of rl.

We have seen that the system seemingly prefers the thermal equilibrium, i.e. the

assimilation of the (reciprocal) temperatures, to the assimilation of the reduced

potentials. Therefore the following system of di�erential equations describes the

evolution of homogeneous states.

_n0 = eR2 � eR1 ;

_ni = � eR0 � eRi� (i = 1; 2) ;

_Ti@Tiu
(i)

f
+ _T@Tu

(i)

f
= �qi�0

�
1

T1

� 1

T2

�
� �i

�
1

T
� 1

Ti

�
+

� eR0 + eRi�

�
@niu

(i)

f
;

2X
l=1

_Tl@Tlu
(0)

f
+ _T@Tu

(0)

f
=

2X
l=1

�
�l

�
1

T
� 1

Tl

�
�
� eR0 + eRl�

�
@nlu

(l)

f

�
+
X eR�

eU �
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with nonnegative material laws �i = �i(n;T) (i = 0; 1; 2 ).

The same arguments as in Sect. 5 yield equations for the current densities of �uxes

of particles or energies driven by the gradients of the conjugate variables. In the

case of several temperatures the current equations read0BBBB@
� ejn1ejn2

�
0@ ju1

ju2

ju0

1A
1CCCCA =

�
D B

C Q

�
�

0BBBBB@

 
�re�1
re�2

!
0@ r�1

r�2
r�

1A

1CCCCCA :

The requirement that the entropy production has to be positive implies again that

the coe�cient matrix and the block diagonal matrices has to be positive de�nite, in

particular, regular matrices. Then we have0BBBBB@

 
�re�1
re�2

!
0@ ju1

ju2

ju0

1A

1CCCCCA =

�
D
�1 �D�1

B

CD
�1

Q�CD�1
B

�
�

0BBBB@
� ejn1ejn2

�
0@ r�n
r�p
r�

1A
1CCCCA :

The entropy production reads

� =
� ejn1 ejn2 � �

24D�1 �
� ejn1ejn2

�
�D�1

B �
0@ r�1
r�2
r�

1A35
+
� r�1 r�2 r� � �

24CD�1 �
� ejn1ejn2

�
+K �

0@ r�1
r�2
r�

1A35
with the heat conductivity matrix K = Q�CD�1

B.

We consider the symmetric case D = D
T , K = K

T , and C = B
T . In this case

the entropy production is diagonalized with respect to the block structure, i.e. the

entropy production is the sum of the entropy production due to convectivity or

electric conductivity and of the entropy production due to heat conductivity. The

matrices D and K has to be positive de�nite in the symmetric case. We introduce
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the matrix eR := BT
D
�1. The entropy �ux

ejs =� �e�1 e�2 �� ejn1ejn2
�
+
�
�1 �2 �

�0@ ju1

ju2

ju0

1A
=

h�
�e�1 e�2 �+

�
�1 �2 �

� eR�i� ejn1ejn2
�

+
�
�1 �2 �

�
K �

0@ r�1
r�2
r�

1A
shows that the matrix eR is related to the entropies per carrier. A look onto the

expression esf shows that the entropies per carrier read

ePi = [�i + 1 + Li(T )]
F�i

F�i�1

+ qi

�e�i + 1

T
(Ei(T )� TE

0

i(T ))

�
(i = 1; 2). Writing the entropy �ux with the matrix eR we see that the relations

ePi � qi
e�i = 2X

j=1

eRij

Tj
+
eRi0

T
(i = 1; 2)

hold. These formulas suggest the identity

eR =

0B@ [�1 + 1 + L1(T )]
F�1

F�1�1
0

0 [�2 + 1 + L2(T )]
F�2

F�2�1

E1(T )� TE
0

1(T ) �[E2(T )� TE
0

2(T )]

1CA :

The carrier �uxes are � ejn1ejn2
�

= D �
�
x1

x2

�
with the thermodynamic forces

xi =qire�i + [�i + 1 + Li(T )]
F�i

F�i�1

r�i � qi[Ei(T )� TE
0

i(T )]r�

=
qi

Ti
re�i � 1

Ti

�
qi
e�i + [�i + 1 + Li(T )]

F�i

F�i�1

�
r log Ti +

qi

T
[Ei(T )� TE

0

i(T )]r logT

i.e. xn, xp, r�n, r�p, and r� is a basis in the space of thermodynamic forces which

diagonalizes the entropy production with respect to the block matrix structure,

� =
�
xn xp

� � �D �
�
xn

xp

��
+
� r�n r�p r� � �

24K �
0@ r�n
r�p
r�

1A35 :

The following theorem is the summary of the preceding discussion.
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Theorem 6.1 The density of entropy s = esf [n;T] of any solution of the system of
evolution equations

_n0 = eR2 � eR1 ;

_ni +r � ejni = � eR0 � eRi� (i = 1; 2) ;(6.6)

_Ti@Tiu
(i)

f + _T@Tu
(i)

f +r � jui = ��0
�

1

T1
� 1

T2

�
� �i

�
1

T
� 1

Ti

�
+

� eR0 + eRi� +r � ejni� @niu(i)f (i = 1; 2) ;

2X
l=1

_Tl@Tlu
(0)

f + _T@Tu
(0)

f +r � ju0 =

2X
l=1

�l

�
1

T
� 1

Tl

�
+
X eR�

eU �

+
P2

l=1

h
(r � ejnl)@nlu(0)f �

� eR0 + eRl�

�
@nlu

(l)

f

i
(6.7)

satis�es the entropy balance equation

_s+r � js = �0

�
1

T1
� 1

T2

�2

+

2X
l=1

�l

�
1

T
� 1

Tl

�2

+ (e�1 � e�2) eR0 +

�
�0 � e�2� eR1 +

�e�1 � �0

� eR2(6.8)

+

0BBBBB@

 
�re�1
re�2

!
0@ r 1

T1

r 1
T2

r 1
T

1A

1CCCCCA �

2666664
�
D B

B
T
Q

�
�

0BBBBB@

 
�re�1
re�2

!
0@ r 1

T1

r 1
T2

r 1
T

1A

1CCCCCA

3777775
with the entropy �ux

(6.9) js =

2X
l=1

ql
e�lejnl + 2X

k=0

1

Tk
juk :

Proof.A consequence of Prop. 6.2 is the identity

(6.10)
�
@T1esf @T2esf @Tesf �

0B@ @T1u
(1)

f
0 @Tu

(1)

f

0 @T2u
(2)

f @Tu
(2)

f

@T1u
(0)

f @T2u
(0)

f @Tu
(0)

f

1CA
�1

=
�

1
T1

1
T2

1
T

�
;

but the identity

�
@T1esf @T2esf @Tesf � = � 1

T1

1
T2

1
T

�0B@ @T1u
(1)

f 0 @Tu
(1)

f

0 @T2u
(2)

f @Tu
(2)

f

@T1u
(0)

f @T2u
(0)

f @Tu
(0)

f

1CA
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holds also for a singular matrix (6.3). Taking regard to this identity and applying

the evolution equations one obtains

_s =

2X
j=0

h
_Tj@Tjesf + _nj@njesfi

=�0

�
1

T1
� 1

T2

�2

+

2X
l=1

�l

�
1

T
� 1

Tl

�2

�
2X

k=0

1

Tk
r � juk �

2X
l=1

ql
e�lr �ejnl

2X
�=0

eR�

�
1

T

eU � � eS�

�
+

2X
l=1

�
1

Tl
� 1

T

��eR0 + eRl�

�
@nlu

(l)

f

=�0

�
1

T1
� 1

T2

�2

+

2X
l=1

�l

�
1

T
� 1

Tl

�2

�
2X

k=0

1

Tk
r � juk �

2X
l=1

ql
e�lr �ejnl

+ eR0

2X
l=1

@nl

�
1

T
u
(0)

f
� esf + 1

Tl
u
(l)

f

�

+

2X
l=1

eRl

�
@nl�

�
1

T
u
(0)

f � esf + 1

Tl�
u
(l�)

f

�
� ql@n0

�
1

T
euf � esf�� :

The divergence terms provide the divergence of the entropy current density and the

part of the entropy production rate due to the current densities. From the identities

@nl

�
1

T
u
(0)

f � esf + 1

Tl
u
(l)

f

�
= @nl

�
1

T
euf � esf +� 1

Tl
� 1

T

�
u
(l)

f

�
= @nl

n
�ql
T
nlEl(T ) + nlF�1

�l�1
�Ml(T )T

�l
l F�l Æ F�1

�l�1

o
=� ql

" e�l
Tl
�
�

1

Tl
� 1

T

�
El(T )

#
= �qle�l

and @n0
�
1
T
euf � esf� � @n0

�
1
T
uf � sf

�
= �0 (cf. (3.3) with i = 0) we get the positively

de�nite expression

eR0

2X
l=1

@nl

�
1

T
u
(0)

f � esf + 1

Tl

u
(l)

f

�

+

2X
l=1

eRl

�
@nl�

�
1

T
u
(0)

f
� esf + 1

Tl�
u
(l�)

f

�
� ql@n0

�
1

T
euf � esf��

= eR0

�e�1 � e�2�+ 2X
l=1

eRl

�
ql
e�l� � ql�0

�
:

2
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Remark 6.4 The positive de�niteness of the entropy production rate remains pre-
served if the thermodynamic forces 1

T
� 1

Ti
or 1

T1
� 1

T2
are substituted by arbitrary

expressions Xi

�
1
T
;
1
Ti

�
or X0

�
1
T1
;
1
T2

�
with the property Xl(x; y) (x�y) > 0 (x 6= y).

7 Electrostatic Interaction

In this section we complete the energy model by including the electrostatic inter-

action which is described by the electrostatic potential 	 on the domain 
. This

potential is de�ned as the solution 	 �: P!
�D

(ND � n0 � n1 + n2) of a boundary

value problem �!
�D

(ND � n0 � n1 + n2) for the Poisson equation

�r � ("r	) = d+ND � n0 � n1 + n2 :

We discuss three boundary conditions, namely the homogeneous Neumann condition

(! � 0 and �D = ;), the boundary condition of the third kind,

"@�	+ !	 = !g

on the whole boundary @
 with a given nonnegative function ! 6= 0 and boundary

values g (�D = ; and not ! � 0 ), and the mixed boundary condition, 	 =  
D on

some proper subset �D � @
 of the boundary and the boundary condition of the

third kind on the complementary set � = @
 n �D. The homogeneous Neumann

condition has only model character; it is particularly compatible with thermody-

namically closed systems. The boundary condition of the third kind connects in

some sense the homogeneous Neumann condition (! � 0) with the Dirichlet con-

dition 	 = g (! very large); it is, moreover, the favoured boundary condition on

the gate contacts of the semiconductor device. The mixed boundary condition, �-

nally, satis�es the needs of device simulation in the best way. The boundary value

problems are formulated as integral identities. Let H; � H
1(
) denote the space

of square integrable functions which have square integrable derivatives (in the sense

of the theory of distributions) of �rst order. The homogeneous Neumann problem

�0
;
(ND�n0�n1+n2) asks for potentials 	 2 H; which satisfy the integral identityZ

"r � r�d
 =

Z
�(d+ND � n0 � n1 + n2) d
 (� 2 H;) :

The problem has a solution only in the case that the global charge neutrality con-

dition
R
(d+ND � n0� n1 + n2) d
 = 0 is ful�lled; the solution is determined up to

an arbitrary additive constant, but there is just one solution P0
;
(ND�n0�n1+n2)

which satis�es the orthogonality condition
R
	 d
 = 0. The integral formulation of

the second boundary value problem readsZ
"r	 � r�d
 +

Z
@


!	�d� =

Z
�(d+ND � n0 � n1 + n2) d
 +

Z
@


!g�d�
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(� 2 H;). In the case of mixed boundary condition let H�D � H
1
0 (
[�) denote the

space of those functions � 2 H1(
) which vanish on the portion �D of the boundary.

The integral formulation of the mixed boundary value problem reads againZ
"r	 � r�d
 +

Z
�

!	�d� =

Z
�(d+ND � n0 � n1 + n2) d
 +

Z
�

!g�d�

(� 2 H�D).

We may assume that  D does not only represent the Dirichlet data on the portion

�D of the boundary, but that it represents the external electric �eld,  D � P!
�D

(0),

meanwhile  := 	 �  
D represents the internal electric �eld. There are a Green

kernel G!
�D

on 
 � 
 and a Poisson kernels P !
�D

on 
� �D and Q!
� on 
 � � such

that

 
D =

Z



G
!
�D

(�; y)d(y) dy +
Z
�D

P
!
�D
 
D(�; z) D(z) d�(z) +

Z
�

Q
!
�D

(�; z)g(z) d�(z) :

If the boundary data f =  
Dj�D or g depend on the time t, then  D depends also

on time and its derivative with respect to time reads

_ D =

Z
�D

P
!
�D
 
D(�; z) _f(z; t) d�(z) +

Z
�

Q
!
�D

(�; z) _g(z; t) d�(z) :

We associate an electrostatic energy U
!
�D

(�) (� � ND � n0 � n1 + n2) with each

boundary value problem, namely

U
0
;
(�) =

1

2

Z
" jr	j2 d


and

U
!
�D

(�) =
1

2

Z
"

��r D
��2 d
 +

1

2

Z
�

!

�� D
��2 d� +

Z
� 

D
d


+
1

2

Z
" jr j2 d
 +

1

2

Z
�

! j j2 d�

in the case ! 6= 0 or �D 6= ;.

Lemma 7.1 Both energies are chosen in a plausible way and satisfy

hdU!
�D

(�); Æ�i =
Z

	Æ� d


for arbitrary variations Æ� which has to satisfy
R
Æ� d
 = 0 in the case ! = 0 and

�D = ;.
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Proof.Indeed, the solution Æ of the Poisson equation for Æ� under homogeneous

boundary conditions satis�es either

U
0
;
(�+ Æ�) =

1

2

Z
" jr(	 + Æ )j2 d


= U
0
;
(�) +

Z
"r	 � rÆ d
 +

1

2

Z
" jrÆ j2 d


= U
0
;
(�) +

Z
	Æ� d
 +

1

2

Z
" jrÆ j2 d


or

U
!
�D

(�+ Æ�) = U
!
�D

(0) +

Z
(�+ Æ�) D

d


+
1

2

Z
" jr( + Æ )j2 d
 +

1

2

Z
�

! j + Æ j2 d�

= U
!
�D

(�) +

Z
Æ� 

D
d
 +

Z
"r � rÆ d
 +

Z
�

! Æ d�

+
1

2

Z
" jrÆ j2 d
 +

1

2

Z
�

!jÆ j2 d�

= U
!
�D

(�) +

Z
Æ�	 d
 +

1

2

Z
" jrÆ j2 d
 +

1

2

Z
�

!jÆ j2 d� ;

i.e. the assertion. 2

In the case of local thermal equilibrium we introduce the free energy by

F(n; T ) := U
!
�D

(ND � n0 � n1 + n2) +

Z
f [n; T ] d
 :

This functional satis�es evidently

h@TF(n; T ); ÆT i =
Z
ÆT@Tf [n; T ] d
 = �

Z
sf [n; T ]ÆT d
 :

We de�ne

Uf (n; T ) := F(n; T ) +

Z
sf [n; T ]T d


= U
!
�D

(ND � n0 � n1 + n2) +

Z
uf [n; T ] d


and

eUf (n;T) := U
!
�D

(ND � n0 � n1 + n2) +

Z euf [n;T] d
 :
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Proposition 7.1 (Entropy maximum principle) The entropy

eSf(n;T) := Z esf [n;T] d

realizes its constrained maximum under the constraints

U0 = eUf (n;T) and Q0 =

Z
(ND � n0 � n1 + n2) d


(Q0 = � R d d
 if ! = 0 and �D = ;) at one of the equilibrium states which are
characterized by the equilibrium conditions of coinciding constant temperature � and
coinciding constant reduced potentials �, T1 � T2 � T = 1=� = � and

� = qi@ni

� eSf (n; �; �; �)� 1

�

eUf (n; �; �; �)� (i = 0; 1; 2) :

The equilibrium densities are

n0[�; �;	(�; �)] = ND

2

2 + exp
�
1
�

�
E0(�)�	(�; �)

� � �
�

and

ni[�; �;	(�; �)] =Mi(�)�
�iF�i�1

�
�qi

�
� +

	(�; �)� Ei(�)

�

��
(i = 1; 2) :

The equilibrium potential 	(�; �) is the solution of the nonlinear Poisson equation

	 = P!
�D

"
ND +

2X
j=0

qjnj(�; �)

#
:

Proof.The proof is again a straightforward application of the Lagrange method.

Indeed

0 = h@Ti
h eSf � �eUfi ; ÆT i = Z ÆT@Ti [esf � �euf ] d
 (i = 0; 1; 2)

for arbitrary variations ÆT yield the system (6.4) and thus T1 � T2 � T = 1=� = �.

The other conditions are

0 = h@ni
� eSf [n; �; �; �]� 1

�

eUf [n; �; �; �]� ; Æni � qi

Z
�Æn d


=

Z
Æn

�
@ni

�esf [n; �; �; �]� 1

�
euf [n; �; �; �]�� qi�

�
d
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(i = 0; 1; 2) for arbitrary variations Æn, i.e. the assertion. 2

The values (�; �) of the equilibrium de�ned by the parameters Q0 and U0 in the

constraints are the solution of a system of two highly nonlinear equations which

arises if the equilibrium densities and � = T1 = T2 = T are put in the constraints.

The electrochemical potentials �i are de�ned now by the state equations

n0 = ND

2

2 + exp
E0(T )�	��0

T

;(7.1)

and

ni =Mi(T )T
�i
i F�i�1

�
�qi

1

Ti
(�i +	� Ei(T ))

�
(i = 1; 2) ;(7.2)

(7.3)

where 	 is the solution of the nonlinear Poisson equation

	 = P!
�D

(
ND

"
1� 2

2 + exp
E0(T )�	��0

T

#

+

2X
l=1

qlMl(T )T
�l
l F�l�1

�
�ql 1

Tl
(�l +	� El(T ))

�)
:

Notice that the electrochemical potentials appear here as independent state vari-

ables, but the densities as dependent ones, and that the state equations re�ect the

principle of partial local equilibrium.

Remark 7.1 The equations are not so deterent as they seem to be. They are, in
particular, uniquely solvable by comfortable methods because of monotony properties
of associated operators.

According to (3.3) or Prop. 6.2 the conjugate variables of the densities with re-

spect to the entropy considered as a thermodynamic potential are closely related to

the entropy maximum principle combined with the principle of partial local equilib-

rium. These relations hold also for the corresponding systems with the electrostatic

interaction, i.e. the relations

�i = qi@nisf [n; T ]�
qi

T
(@niuf [n; T ]�	) =

�i

T
(i = 0; 1; 2) ;(7.4)
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and

e�i = qi@nisf [n;T]�
qi

Ti

�
@niu

(i)

f �	

�
� qi

T
@niu

(0)

f

� qi@ni

 esf � 2X
l=1

1

Ti

u
(i)

f � 1

T
u
(0)

f

!
+
qi

Ti

	

=
e�i
Ti
�Ei(T )

�
1

Ti
� 1

T

�
;(7.5)

respectively, hold for the systems with electrostatic interaction.

Theorem 7.1 Let (n;T) be any solution of the system of evolution equations

_n0 = eR2 � eR1 ;

_ni +r � ejni = �eR0 � eRi� (i = 1; 2) ;(7.6)

_Ti@Tiu
(i)

f + _T@Tu
(i)

f +r � jui = �qi�0
�

1

T1
� 1

T2

�
� �i

�
1

T
� 1

Ti

�
+

� eR0 + eRi� +r �ejni� h@niu(i)f �	

i
(i = 1; 2) ;

2X
l=1

_Tl@Tlu
(0)

f + _T@Tu
(0)

f +r � ju0 =

2X
l=1

�l

�
1

T
� 1

Tl

�
+

� eR1 � eR2

�
(@n0euf �	)

+

2X
l=1

� eR0 + eRl� +r �ejnl� @nlu(0)f

with the electrostatic potential 	 = P
!
�D

(ND � n0 � n1 + n2). The density of total
energy of this solution,

(7.7) eu =
"

2
jr	j2 + euf (n;T)

and its �ux

(7.8) ejeu =

2X
l=0

jul �	"r _	 = eju �	"r _	

satisfy the conservation law
@t[eu] +r �ejeu = 0 :

The corresponding density of entropy satis�es the entropy balance equation (6.8).
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Proof.On the one hand the identity

@t[eu] +r � ej~u = "r	 � r _	�r �
�
	"r _	

�
+ @t[euf ] +r �

2X
l=0

jul

= �	r �
�
"r _	

�
+ @t[euf ] +r �eju

= 	

2X
l=0

ql _nl + @t[euf ] +r �eju
holds, where the Poisson equation di�erentiated with respect to the time has been

applied. On the other hand the sum of the three energy balance equations reads

2X
l=0

_Tl@Tleuf +r �eju
=�

2X
l=0

_nl@nleuf +	

2X
l=1

�eR0 + eRl� +r � ejnl + ql
eRl

�
;

i.e. @t[eu] +r � ej~u = 0.

The entropy density s = esf [n;T] of a solution of (7.6) satis�es

_s �
2X

l=0

h
_Tl@Tlesf + _nl@nlesfi

=

2X
l=1

ql

Tl

�
��0

�
1

T1

� 1

T2

�
+ �l

�
1

T
� 1

Tl

�
+r � jul

�

+

2X
l=1

�
R0 +Rl� +r � ejnl�� 1

Tl

�
@nlu

(l)

f �	

�
+

1

T
@nlu

(0)

f � @nlesf�

+
1

T

"
2X

l=1

�l

�
1

T
� 1

Tl

�
�r � ju0

#
+

� eR1 � eR2

��
1

T
(@n0euf �	)� @n0esf�

=�0

�
1

T1

� 1

T2

�2

+

2X
l=1

�l

�
1

T
� 1

Tl

�2

�
2X

l=0

1

Tl

r � jul

�
2X

l=1

e�l � eR0 + eRl� +r �ejnl�+ �0

�eR1 � eR2

�
because of (6.10), (7.6), and (7.5). The divergence terms provide the divergence of

the entropy current density and the part of the entropy production rate due to the

current densities. 2
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Remark 7.2 The conservation law of energy would also allow to omit the termseR�	 in the energy balance equations for the subsystems, but the entropy balance
equation does not tolerate this change!

The following theorem is proved analogously.

Theorem 7.2 Let (n; T ) be a solution of the following system of evolution equations

_n0 = R2 �R1 ;

_ni +r � jni = �R0 �Ri� (i = 1; 2) ;(7.9)

_T@Tuf +r � ju =

2X
�=0

R�U
� +

2X
l=1

(@nluf �	)r � jnl

with the electrostatic potential 	 = P
!
�D

(ND � n0 � n1 + n2). The density of total
energy of this solution,

u =
"

2
jr	j2 + uf (n; T )

and its �ux
ju = ju �	"r _	

satisfy the conservation law
@t[u] +r � ju = 0 :

The density of entropy s = sf [n; T ] satis�es the entropy balance equation (5.2) with
the entropy �ux (5.3).

Remark 7.3 The relations (7.5) or (7.4) guarantee the generally expected behaviour
of the entropy density s = esf or s = sf of solutions of either the system (7.6) or
the system (7.9) of evolution equations. As these systems has been based on rather
elementary principles only, we intend to accept them as the correct formulation of
energy models.

Remark 7.4 Notice that the densities eu or u coincide with the densities of eUf or Uf
only in the case that the electrostatic potential satis�es the homogeneous Neumann
condition. The reason is that in general the electrostatic energy cannot be restricted
to the domain 
 in the `real electrostatic world', and our choice is a necessary
compromise and approximation.

Remark 7.5 In a certain sense, the system (7.6) is an extension of the system
(7.9). It should be noticed, however, that the temperatures Ti(t) of a solution of
(7.6) with coinciding initial temperatures T1(0) = T2(0) = T (0) need not and will
not coincide for later times t > 0. A-posteriori experience may show, nevertheless,
that in a class of situations it is not necessary to solve the more expensive system
(7.6), because the di�erences Ti(t)� T (t) are negligible.
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In the discussion after a lecture on the subject in the Langenbach seminar Prof. K.

Gröger suggested to regard the conjugacy of the variables more consequently in the

evolution equations. Indeed, the system (7.9) can be written more lucidly

_n0 = R2 �R1 ;

_ni +r � jni = �R0 �Ri� (i = 1; 2) ;

_u+r � ju = 	r � �jn2 � jn1

�
with kinetic or transport coe�cients

r0(n; u) � r0(n; T ) exp

�
1

T
[E2(T )� E1(T )]

�
etc, and the system (7.6) can be written

_n0 = R̂2 � R̂1 ;

_ni +r � ĵni = �R̂0 � R̂i� (i = 1; 2) ;

_ui +r � ĵui = �qi�̂0
�

1

T1

� 1

T2

�
� �̂i

�
1

T
� 1

Ti

�
�
�
R̂0 + R̂i� +r � ĵni

�
	(i = 1; 2) ;(7.10)

_u0 +r � ĵu0 =
X
l

�̂l

�
1

T
� 1

Tl

�
�
�
R̂1 � R̂2

�
	

with kinetic or transport coe�cients �̂i (n;u) � �i (n;T) etc. It might be more

natural or more convenient, at least in principle, to evaluate primarily the indepen-

dent variables n, and u or u from these systems of evolution equations, but evaluate

secondarily temperatures by means of either the nonlinear equation uf(n; T ) = u or

the system of nonlinear equations

u
(i)

f (ni; Ti; T ) = ui (i = 1; 2) ;

uf (n;T)�
2X

l=1

u
(l)

f (nl; Tl; T ) = u0 :

It must be said, however, that these densities are conjugate to the state variables �i
and 1=T or to the state variables e�i and 1=Tj only in a generalized sense, because we

do not know a thermodynamic potential `entropy' in these cases. It seems to be more

usual, moreover, to describe material laws in dependence upon the temperature(s)

than in dependence upon the energy or the energies.

8 The case of Boltzmann statistics

If the Boltzmann statistics can be applied to the carriers in the conduction band

and in the valence band, the formulas become much simpler. In this case ePi � eQi
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reduces to ni (i = 1; 2), i.e. ai = �ini and bi = 0. and the densities of entropy and

energy read

esBf = cL log T +

2X
j=0

qjnjE
0

j(T )� log

"�
n0

2(ND � n0)

�n0
�
ND � n0

ND

�ND

#

+

2X
l=1

nl

�
�l + 1 + Ll(T )� log

nl

Ml(T )T
�l

l

�
;

euBf = cLT �
2X

j=0

qjnj

�
Ej(T )� TE

0

j(T )
�
+

2X
l=1

nl [�lTl + TLl(T )] ;

and u
(i)

f = �iTini (i = 1; 2). The conditions for the thermal equilibrium (cf. (6.4)

with bi = 0) are three decoupled linear equations, i.e. the subsystems are weaker

coupled in the Boltzmann case than in the Fermi-Dirac statistics. This observation

is also con�rmed by the formulas

Ti@TiesBf = @TieuBf = @Tiu
(i)

f
and T@TesBf = @TeuBf = @Tu

(0)

f
:

The coe�cients r� or er� (� = 0; 1; 2 ), D, D1, D2, Æ or �j (j = 0; 1; 2) may be

di�erent in the two statistics, but the structure of the net recombination rates and

of the �uxes remain unchanged. The nonlinear Poisson equation changes, too, but

the qualitative properties, which base on the monotony properties of associated

operators, remain unchanged.

We consider only states of partial local thermal equilibrium and the case of symmet-

ric isotropic current equations. The complete system of evolution equations reads

in the case of Boltzmann statistics

_n0 = R2 �R1 ;(8.1)

_ni +r � jni = �R0 �Ri� (i = 1; 2) ;

_T@Tu
B
f +r � ju =

2X
�=0

R�U
� +

2X
l=1

[T (�l + Ll(T )) + ql (	� El(T ) + TE
0

l(T ))]r � jnl

with the electrostatic potential 	 = P
!
�D

(p + ND � N � n), with the density of

internal energy

u
B
f (n; T ) = cLT �

2X
j=0

qjnj

�
Ej(T )� TE

0

j(T )
�
+ T

2X
l=1

nl [�l + Ll(T )] ;

(8.2)
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with the current densities

jni = �niDi (�qir�i + PirT ) + Æ

T
[r (�1 � �2) + (P1 + P2)rT ] ;

(8.3)

ju =

2X
l=1

(TPl � ql�l) jnl �
�

T 2
rT ;

(8.4)

Pi = �i + 1 + Li(T )� log
ni

Mi(T )T
�i

= �i + 1 + Li(T ) +
qi

T
[�i +	� Ei(T )] ;

(8.5)

with the net reaction rates

R0 = r0(n; T ) exp

�
1

T
[E2(T )� E1(T )]

��
exp

�
1

T
[�1 � �2]

�
� 1

�(8.6)

and

Ri = ri(n; T ) exp

�
�qi
T
[Ei�(T )� E0(T )]

�h
exp

�
qi

T
[�i� � �0]

�
� 1

i
(i = 1; 2)

(i� = i� (�1)i) and with

U
0 = �

2X
l=1

ql[El(T )� TE
0

l(T ) + TLl(T )]

and

U
i = qi[[Ei�(T )� TE

0

i�(T ) + TLi�(T )� E0(T ) + TE
0

0(T )] (i = 1; 2) :

9 Miscellanous topics.

In Sect. 6 we have guessed state equations for the densities of internal energy euf and
of entropy esf of a model of a semiconductor device with carrier temperatures (hot

electrons). These densities generalize the densities uf and sf , which are derived from

the density f of a free energy in the usual way, from states of partial local thermal

equilibrium to states of partial local equilibrium with speci�ed carrier temperatures

T1 and T2. In this section we shall discuss related topics more systematically. To

this aim it will be enough to consider a reduced system with electrons only. The

mentioned densities of energy and of entropy for such a simpli�ed model read

euf (n; Tn; T ) = cLT + n [E(T )� TE
0
(T )] + Tn [�+ L(T )] eP
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and

esf (n; Tn; T ) = cL log T � nE
0
(T )� nF�1

��1

�
n

M(T )T �
n

�
+

�
1 + � +

Tn

T

� eP
with the abbreviations L(T ) := T [logM(T )]

0
and

eP :=M(T )T �
nF� Æ F�1

��1

�
n

M(T )T �
n

�
:

We have seen that

� the entropy maximum principle applied to these expressions yields the usual

states of equilibrium,

� the principle of partial local equilibrium yields the state equation

n =M(T )T �
nF��1

�
1

Tn
[e� � E(T )]

�
;

which can be considered as the de�nition of the (electro)chemical potential e�
or the reduced potential e�=Tn of electrons,

� the function unf (n; Tn; T ) � �Tn
eP can be considered as the density un of energy

of the subsystem of electrons,

� the implicitly de�ned function

es �n; unf (n; Tn; T );euf(n; Tn; T )� u
n
f (n; Tn; T )

�
= esf (n; Tn; T )

has the properties of a thermodynamical potential that respects the decompo-

sition of the system into two subsystems, namely,

� the conjugate variables of un, uL � euf � u
n
f , and n are 1

Tn
=

@unes �n; unf ; euf � u
n
f

�
, 1
T
= @uLs

�
n; u

n
f ; euf � u

n
f

�
, and e� := e�

Tn
�E(T )

�
1
Tn
� 1

T

�
.

Although in systems of irreversible thermodynamics the energy and the entropy can

exchange their role to some extent, we shall see that there is no function sn = s
n
f in

general such that an implicitly de�ned function

eu �n; snf (n; Tn; T );esf(n; Tn; T )� s
n
f (n; Tn; T )

�
= euf(n; Tn; T )
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would satisfy the analogous relations @sneu �n; snf ;esf � s
n
f

�
= Tn and

@sLeu �n; snf ;esf � s
n
f

�
= T . Indeed, these requirements would imply the di�er-

ential relations

(Tn � T )@Tns
n
f = @Tneuf � T@Tnesf =

1

Tn
(aTn + bT )� T

Tn
(a+ b) = (Tn � T )

a

Tn

= (Tn � T )
�

Tn

h
(�+ 1) eP � � eQi

and

(Tn � T )@Ts
n
f = @Teuf � T@Tesf =

1

T
(a0TT + bTn)� a

0
T � b = (Tn � T )

b

T

= (Tn � T )
L(T )

T
�

h eP � eQi
with the abbreviation

eQ � n
2

M(T )T �
nF��2 Æ F�1

��1

h
n

M(T )T�n

i ;
but the integrability condition @T

�
@Tns

n
f

� � @Tn

�
@Ts

n
f

�
is violated in general, for

@T

�
@Tns

n
f

�� @Tn

�
@Ts

n
f

� � �

Tn

L(T )

T

h eP � eQi :
With regard to systems with electrostatic interaction such a splitting of entropy

would be useful, however, because in the case of local thermal equilibrium the total

energy

U [n; sf ] �
Z
uf [n; T ] d
 + U

!
�D

(�n)

has the properties of the thermodynamic potential, namely,

h@T [U (n; sf [n; T ])] ; ÆT i =
Z
ÆT@Tuf [n; T ] d
 =

Z
ÆTT@Tsf [n; T ] d
 ;

i.e.

h@sU (n; s) ; Æsi =
Z
TÆs d
 ;

and

h@n [U (n; esf [n; Tn; T ])] ; Æni = Z Æn [@nuf � Tsf �	] d
 =

Z
Æn� d
 :
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In contrast to that de�nition, there are some problems to �nd a functional space for

the total energy such that S[n; u] � R
sf [n; T ] d
 can be understood analogously,

i.e. h@uS (n; u) ; Æui = h 1
T
; Æui etc. It seems that the functional space of the total

energy should be a dual space of a space of functions on the domain 
 which contains

the reciprocal temperature.

We return to systems without electrostatic interaction and ask for other choises of

densities of energy and entropy instead of euf and esf . We start with densities

ŝf (n; Tn; T ) :� �@Tnf̂ (n; Tn; T )� @T f̂ (n; Tn; T )

and

ûf (n; Tn; T ) :� f̂(n; Tn; T )� Tn@Tnf̂ (n; Tn; T )� T@T f̂ (n; Tn; T )

associated with a function f̂ (n; Tn; T ). In the case of local thermal equilibrium

Tn � T the functions f(n; T ) � f̂ (n; T; T ), sf(n; T ) � ŝf(n; T; T ), and uf (n; T ) �
ûf (n; T; T ) are the densities of free energy and the corresponding entropy and en-

ergy. We apply the entropy maximum principle. The Lagrange method yields the

equilibrium conditions

0 = @Tn [ŝf � �ûf ] = �(1� �Tn)@
2
Tn
ûf (n; Tn; T )� (1� �T )@Tn@T f̂(n; Tn; T ) ;

0 = @T [ŝf � �ûf ] = �(1� �Tn)@Tn@T f̂ (n; Tn; T )� (1� �T )@2T f̂(n; Tn; T ) ;

and

� = �@nûf � @nŝf :

If the matrix d2f̂(n; �; �) of the second order partial derivatives with respect to the

temperatures is regular, the �rst two equations de�ne the states of thermal equilib-

rium Tn � T � 1=� �: �. Under these conditions the third equation becomes

� = 1
�
@nf̂(n; �; �). The principle of partial local equilibrium reads in this case

� � @nf̂(n; Tn; T ) and yields the corresponding state equation, which means nothing

else than the de�nition of the (electro)chemical potential � of electrons.

We check now the possibility of splitting the energy ûf = u
n
f + (ûf � u

n
f ) or the

entropy ŝf = s
n
f + (ŝf � s

n
f ) in this general setting. We look for a function snf such

that the implicitly de�ned function û
�
n; s

n
f ; ŝf � s

n
f

�
= ûf has the properties of a

thermodynamic potential which respects the decomposition of the system into two

subsystems, namely, which satis�es the identities @sn û = � and @sL û = T . These

requirements are the identities

(Tn � T )@Tns
n
f = �(Tn � T )@2Tnf̂(n; Tn; T )
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and

(Tn � T )@Ts
n
f = �(Tn � T )@T@Tnf̂ (n; Tn; T ) ;

which are trivially satis�ed by the function snf = �@Tnf̂ . The conjugate variable of
n with respect to the potential û(n; sn; sL) becomes

@nû = @nûf � T@nŝf � (Tn � T )@ns
n
f = @nf̂ :

Remark 9.1 A consequence of this observation is that the densities euf(n;T) andesf (n;T) can not be derived from a free energy ef(n;T) in general!

The question for a function unf with the property that the implicitly de�ned entropy

ŝ(n; unf ; ûf � u
n
f ) = ŝf has the properties of a thermodynamic potential which re-

spects the decomposition of the system into two subsystems yields analogously the

di�erential identities @Tnu
n
f = �Tn@2Tnf̂ and @Tu

n
f = �Tn@T@Tn f̂ . The ansatz

u
n
f (n; Tn; T ) = f̂(n; Tn; T )� Tn@Tnf̂ (n; Tn; T ) + g(n; T )

with an arbitrary function g which does not depend on Tn satis�es the �rst identity

and is even its general solution. The second identity yields the di�erential equation

@T f̂ � Tn@T@Tnf̂ + @Tg = �Tn@T@Tnf̂ ;

i.e. f̂(n; Tn; T ) = g(n; T ) + h(n; Tn). The result has a plausible interpretation,

namely, the energy of the whole system is the sum of the energies of the two sub-

systems only if also the free energy of the whole system is the sum of the free

energies of the two subsystems and if the free energy of each subsystem does not

depend on the temperature of the other subsystem. The associated state equation

reads � = @ng(n; T ) + @nh(n; Tn), but such state equations are not realistic ones in

semiconductor models with carrier temperatures.

10 Discussion

To compare the equations of the proposed energy model (7.9) with those of other

authors we write the fourth equation of (7.9) as a heat equation with C � @Tuf , i.e.

we start from the equation

C _T �r � ju =

2X
�=0

R�U
�
+

2X
l=1

(@nluf + ql	)r � jnl :
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In the discussion we shall restrict ourselves to the case of Boltzmann statistics and

we shall neglect the contribution of the trap level, i.e.

C _T �r � ju =

2X
l=1

[T�l + TLl(T ) + ql[	� El(T ) + TE
0

l(T )]] (R0 +r � jnl) :

Specifying the energy current density and neglecting the electron-hole scattering

e�ect (Æ = 0) we get

C _T �r �
h
�

T 2
rT

i
= H

with a heat generation term

H =

2X
l=1

[T�l + TLl(T ) + ql[	� El(T ) + TE
0

l(T )]] (R0 +r � jnl)

�r �
2X

l=1

(TPl � ql�l) jnl

=

2X
l=1

[T�l + TLl(T ) + ql[	� El(T ) + TE
0

l(T )]] (R0 +r � jnl)

+

2X
l=1

�
1

nlDl

jjnlj2 � Tr � (Pljnl) ql�lr � jnl
�

=

2X
l=1

�
1

nlDl

jjnlj2 � Tr � (Pljnl) + TR0 (�l + Ll(T ))

�
+R0

�
Eg(T )� TE

0

g(T )
�

+

2X
l=1

(r � jnl) [T�l + TLl(T ) + ql (�l +	� El(T ) + TE
0

l(T ))] :

Notice that in the case of Boltzmann statists

�i = Ei(T )�	� qiT log
ni

Mi(T )T
�i
� �i f(n1; n2; T )

and thus for a completely ionized doping pro�le the identity

�i � T@T�i f = �iT + TLi(T ) + qi[	�Ei(T ) + TE
0

i(T )]

holds. Therefore the heat source term is just Wachutka's heat source term

H =

2X
l=1

�
1

nlDl

jjnl j2 � Tr � (Pljnl)� qlR0 (�l � T@T�l f ) + qlT@T�l fr � jnl
�
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(cf. [20],(29)).

Some authors (cf. [15], [17], [7]) prefer other versions of the energy balance equation

than we propose in this preprint. They prefer the point of view that the system is

a system of carriers in an external �eld 	. Diverse versions of energy and energy

�uxes are considered and adapted entropies are applied. Notice that in expressions

for the densities of energy or entropy which are obtained immediatly from carrier

distribution functions no terms appear which contain derivatives of the band edges

or of the e�ective masses with respect to the temperature. J.E. Parrott balanced the

energy density U := uf + E2n2 � E1n1 for a system without traps (cf. [17], (20a))

with the energy current density u :� ju +
P2

l=1 ql(El � 	)jnl . Since this balance

equation is equivalent to the heat �ow equation, it is as acceptable as our energy

balance equation.

P. Degond et al. [7] describe a very simple energy-transport model for semiconduc-

tors in a more general setting. The system (7.10) speci�ed to their simple example

reads

_n+r � jn = 0 ;

_un +r � jun = ��
�

1
T
� 1

Tn

�
�	r � jn with

�
jn

jun

�
= D

� �r �

Tn

r 1
Tn

�
with symmetric positively de�nite 2 � 2 matrix. Therefore un � U and jun = I2 in

their notation, i.e. they consider the energy balance equation in two versions, either

_un +r � (jun +	jn) = jn � r	� �

�
1

T
� 1

Tn

�
or

@t[un � n	] +r � jun = ��
�
1

T
� 1

Tn

�
� n _	 :

They have proved the existence of solutions under some ad-hoc assumptions.

11 Appendix. Free energy

Because of the fundamental role which the free energy plays we want to point

out that the expression (2.1) corresponds to the pertinent literature. The equi-

librium distribution of electrons, their energy and free energy are described in
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[19], chap. VIII, by

eN = ND

2

2 + exp ED�EF
kT

+
X
j

Zj

1 + exp
Ej�EF

kT

� N + n ;

U = EDND

2

2 + exp
ED�EF

kT

+
X
j

ZjEj

1 + exp
Ej�EF

kT

;

F ( eN;T ) = eNEF � kT

�
ND log

�
1 + 2 exp

�
�ED � EF

kT

��
+
X
j

Zj log

�
1 + exp

�
�Ej � EF

kT

��)
;

where eN = N + n denotes the number of electrons, Zj are the occupation numbers,

and EF denotes the Fermi level. The free energy can be written as

F ( eN;T ) = kTN

�
EF � ED

kT
� ND

N
log

�
1 + 2 exp

�
�ED �EF

kT

���
+NED

+
X
j

Zj

8<: EF

1 + exp

�
Ej�EF

kT

� � kT log

�
1 + exp

�
�Ej � EF

kT

��9=; :

The �rst two summands on the right-hand side represent the free energy FD(N;T )

of the electrons in the trap level. The variable (ED �EF )=kT can be eliminated by

means of
N

ND

=
2

2 + exp ED�EF
kT

On this way the term Ed(T )N +T log
�
N

N (ND �N)ND�NN
�ND

D 2�N
�
arises. Let us

write the expression for the free energy of electrons in the conduction band,

Fn(n; T ) = kT

X
j

Zj

8<: EF
kT

1 + exp

�
Ej�EF

kT

� � log

�
1 + exp

�
�Ej � EF

kT

��9=; ;

in our notation,

Fn(n; T ) = T

Z
v=T

1 + exp
�
1
T
(cnjpj3=� + Ec � v)

� dp
� T

Z
log

"
1 +

1

exp
�
1
T
(cnjpj3=� + Ec � v)

�# dp ;
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and substitute q :� (cn=T )jpj3=�, � = (v�Ec)=T , and Mc = (4�=3)�(�+1)=c�n . On

such a way we get

Fn(n; T ) = nEc + TMcT
� 1

�(�)

Z
1

0

�
�

1 + eq��
� log

�
1 +

1

eq��

��
q
��1

dq

= nEc + TMcT
�F��1(�)�� TMcT

� 1

�(� + 1)
q
� log

�
1 +

1

eq��

�����1
0

+ TMcT
� 1

�(� + 1)

Z
1

0

q
� �e��q
1 + e��q

dq

= nEc + TnF�1
��1

�
n

McT
�

�
� TMcT

�F� Æ F�1
��1

�
n

McT
�

�
with n =McT

�F��1(�). The limits

lim
q!+0

q
� log

�
1 +

1

eq��

�
= 0� log (1 + e

�) = 0

and

lim
q!+1

q
� log

�
1 +

1

eq��

�
= lim

q!+1

log
�
1 + 1

eq��

�
q��

= lim
q!+1

� 1
1+eq��

��q���1

=
1

�
lim

q!+1

q
�+1

1 + eq��
= � � � =

1

�
(�+ 1)� � � � (�� k) lim

q!+1

q
��k�1

eq��
= 0

(�1 < �� k � 1 � 0) vanish.

Remark 11.1 Notice that the entropy of electrons in the conduction band,

Sn(n; T ) =
1

kT

X ZjEj

1 + exp
Ej�EF

kT

� EF

kT

X Zj

1 + exp
Ej�EF

kT

+
X

Zj log

"
1 +

1

exp
Ej�EF

kT

#

=

Z �
q � �

1 + eq��
+ log

�
1 +

1

1 + eq��

��
dp

=McT
� 1

�(�)

Z
1

0

�
q � �

1 + eq��
� (q � �) + log

�
1 + e

q��
��
q
��1

dq ;

coincides with the expression

s[fn] = �
Z

[fn log fn + (1 � fn) log (1� fn)] dp

= �McT
� 1

�(�)

Z
1

0

�
1

1 + eq��
log

1

1 + eq��

+

�
1� 1

1 + eq��

�
log

�
1� 1

1 + eq��

��
q
��1

dq
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of an ensemble of electrons distributed in the phase space according to the equilibrium
distribution

fn(p) =
1

1 + exp
�
1
T
(cnjpj3=� + Ec � v)

�
(we have omitted the spatial coordinates as usual in this preprint).

Remark 11.2 Notice that the expression of entropy of the preceding remark does
not contain derivatives neither of the e�ective mass, i.e. of Mc, nor of the band edge
Ec with respect to temperature, but remember that such derivatives guarantee that
the entropy maximum principle yields the usual states of equilibrium.

12 Appendix. Units and values.

We use dimensionless quantities only, but describe the physical units of the applied

quantities in the following. We use the physical units A, cm, eV, g, K(elvin), sec,

V, W, and some famous constants.

Constant Symbol Quantity

Boltzmann constant kB 1:308 � 10�23Wsec=K

dielectric permittivity of the vacuum �vac 8:854 � 10�12V sec
A cm

electron rest mass m0 9:108 � 10�28 g,

elementary charge q 1:602 � 10�19A sec

Planck's reduced constant ~ 1:054 � 10�34 W sec2

We choose, moreover, a reference temperature T � �
�K in Kelvin, such that all

physical temperatures are TiT or TT .

We begin with a general observation. In physics quantities can be added or

integrated only if they are measured in the same unit. For any more gen-

eral functional relation F = f(X;Y; :::) there is a group homomorphism 'f :

R+ � R+ � ::: 7! R+ such that f(aX; bY; :::) = 'f (a; b; :::)f(X;Y; :::). For in-

tegrals G =
R
f(X; :::)dX the relation

R
f(aX; :::)adX = a'f(a; :::)

R
f(X; :::)dX

holds and for a di�erential law g =
@f(X;:::)

@X
� DXf(X; :::) the relation reads

D(aX)f(aX; :::) = 1
a
'f (a; :::)DXf(X; :::). These observations help us to elimi-

nate physical dimensions. Let [X], [Y ], etc be units of X, Y , etc. Either

[f(X;Y; :::)] = 'f ([X]; [Y ]; :::) is de�ned immediatly like [G] = [X][f(X; :::)] or

[DXf(X; :::)] = [f(X; :::)]=[X] or the unit [F ] � 'f([X]; [Y ]; :::) is introduced for-

mally. In any case the compatibility of diverse systems of units is warranted by the
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identity 'f (a[X]; b[Y ]; :::) = 'f (a; b; :::)'f([X]; [Y ]; :::). This well known observation

and the use of some scaled quantities permit us to get rid of the physical dimenions

by (F=[F ]) = f(X=[X]; Y=[Y ]; :::) (This procedure is often paraphrased by saying

'the electric charge is 1` etc, but we do not like this paraphrase.) We apply the

following system of units.

Physical quantities Notation Unit

length cm

particle densities ni, d, Mi, ND cm�3

densities of energy u, ui, uf , niEi, cL kBT/cm
3

density of entropy s, sf kB/ cm
3

scaled dielectric permittivity " �vackBT cm/q2

scaled potentials or energies �i, e�i, �i, e�i, 	, Ei kBT

e�ective masses mi g

Notice that Mi and ND are state densities which can be occupied temporarily by a

particle, and the doping pro�le d counts the charge in elementary charges. The scaled

potentials �i, e�i, 	 are the energies of the elementary charge in the corresponding

potential; therefore we call �i, e�i, 	 potentials, what they really are. The potentials

�i and e�i are called 'reduced potentials`. The 'energy density' cL is a scaled heat

capacity per unit volume. The unit of the scaled dielectric permittivity is

�vackBTcm=q
2 = 8854: � (1:308=1:6022)� �

�(V/A)
2
= 4512:55 � �

�(V/A)
2
:

As the state densities Mi represent only the e�ective masses mi, we mention the

connection

Mi(T ) = 2�

�
cm

~

q
2mi(T )kBT

�3
= 6:241 � 1017 � [�

�
mi(T )=m0]

3=2
:

It has to be checked, whether a given set of material laws is thermodynamically

consistent or in which domain of states the consistency holds. The criterium is the

positivity of the heat capacity, @Tuf > 0. We check a somewhat stronger condition

for parabolic band structures (�i = 3=2) for systems without traps, i.e.

cL+

2X
l=1

qlnlTE
00

l >

2X
l=1

nl

�
2

3
Ll(T )

2 + Ll(T )� TL
0

l(T )

�
X

+
l

with X+
i :� F3=2

h
ni

Mi(T )T 3=2

i.
F1=2

h
ni

Mi(T )T 3=2

i
(cf. Rem. 3.3). Moreover, we check

the admissibility of carrier temperatures and the convexity of the negative conjugate
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potential of the entropy for parabolic band structures (�i = 3=2) for systems without

traps, i.e. we ask whether the inequalities

a0 �
2X

l=1

b
2
l

al
�cL +

2X
l=1

nlqlTE
00

l (T )

+

2X
l=1

nlY
+
l

�
Ll(T ) + TL

0

l(T ) +
2

5
Ll(T )

2

�
1� 2

5Y +
l Y

�

l � 3

��
> 0

and

A0 �
2X

l=1

F
T
l A

�1
l Fl �T 2

 
a0 �

2X
l=1

b
2
l

al
� 3

2X
l=1

nlLl(T )
2 Y

+
l

5Y +
l Y

�

l � 3

!
> 0

with Y �

i �: F1=2�1

�
ni

Mi(T )T
3=2

i

�.
F1=2

�
ni

Mi(T )T
3=2

i

�
are satis�ed.

Example. �� = 300, thermal voltage UT = 160:2
3:924

V = 40:8257 V, Silicon (cf. [18]).

A rough approximation is a constant band gap of 1:12 eV. Since we do not have

more speci�ed informations about the diverse band edges, the formula Ei(T ) =

E
��qiEg(T )=2 is chosen as an orientation. Thus

P2

l=1 qlnlE
00

l = �1
2
(n1+n2)E

00

g (T ).

Symbol Quantity / Value

EgTkB (1:1785 � :027075T � :02745T 2) eV

Eg(T ) 48:113 � [1� :02297T (1 + 1:014T )]

�TE 00

g (T )=2 1:12063T

Instead of the quantities for the total system we consider the situation of majority

carriers and evaluate the quantities

Fl(nl; T ) :=
cL

nl
+ 1:12063T �

�
2

3
Ll(T )

2
+ Ll(T )� TL

0

l(T )

�
X

+
l ;

Gl(nl; T; Tl) :=
1

nl

�
a
(l)

0 � b
2
l

al

�
=
cL

nl
+ 1:12063T

+ Y
+
l

�
Ll(T ) + TL

0

l(T ) +
2

5
Ll(T )

2

�
1� 2

5Y
+
l Y

�

l � 3

��
;
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and

Hl(nl; T; Tl) :=
1

nl

�
a
(l)

0 � b
2
l

al

�
� Ll(T )

2
Y

+
l

3

5Y +
l Y

�

l � 3
:

They should be positive in interesting or realistic ranges of densities and tempera-

tures. As we are mainly interested in the sign of these quantities we represent below

the scaled quantity Log(H) := sign(H) log (1 + jHj).
E�ective masses are given by �tting formulasM(T ) = a(1 + bT + cT

2)3=2. Thus we

have

L(T ) = TM
0(T )=M(T ) =

3

2

bT + 2cT 2

1 + bT + cT 2

and

2

3
L(T )2 + L(T )� TL

0(T ) =
3T 2

(1 + bT + cT 2)
2

�
b
2 � c+ 3bcT + 3c2T 2

�
:

Symbol Quantity / Value

m1(T )=m0 1:045 + :135T

M1(T ) 3:464 � 1021 � (1 + :12919T )
3=2

L1(T ) :193785T=(1 + :12919T )

L1 � TL
0

1 +
2
3
L1(T )

2 [:22376T= (1 + :12919T )]
2

m2(T )=m0 :523 + :420T � :133T 2

M2(T ) 1:2265 � 1021 � (1 + :803059T � :2543T 2)
3=2

L2(T ) 1:2046T � (1� :6333T ) = (1 + :803059T � :2543T 2)

L2 � TL
0

2 +
2
3
L2(T )

2 [1:6424T= (1 + :803059T � :2543T 2)]
2

� [1� :6813T (1 � :31666T )]

The scaled heat capacity of the lattice has the value

cL = c � �cm3
=kB = :703 � 2:328=1:308 � 1023 = 1:251 � 1023

such that the quantities should be evaluated for densities nl = 1023�� and tem-

peratures T 2 [1=2; 4[ between 150 K and 1200 K. The upper bound 1200 K is

determined by a zero of m2(T )!



12 APPENDIX. UNITS AND VALUES. 48

10
21

10
22

10
23

10
24

density  n1  [cm
−3

]

−1

0

1

2

3

4

5

Lo
g 

( 
F

1 
(n

1,
T

) 
)

T= 150 K
T= 300 K
T= 600 K
T= 900 K
T=1200 K

10
19

10
20

10
21

10
22

density  n2  [cm
−3

]

−1

0

1

2

3

4

5

6

7

8

9

Lo
g 

( 
F

2 
(n

2,
T

) 
)

T= 150 K
T= 300 K
T= 600 K
T= 900 K
T=1200 K

10
22

10
23

10
24

density  n1  [cm
−3

]

−1

0

1

2

3

4

Lo
g 

( 
G

1 
(n

1,
T

,T
1)

 )

T= 300 K  T1= 900 K
T= 300 K  T1=1800 K
T= 900 K  T1= 900 K
T= 900 K  T1=1800 K

10
21

10
22

10
23

density  n2  [cm
−3

]

−1

0

1

2

3

4

5

Lo
g 

( 
G

2 
(n

2,
T

,T
2)

 )

T= 300 K  T2= 900 K
T= 300 K  T2=1800 K
T= 900 K  T2= 900 K
T= 900 K  T2=1800 K

10
22

10
23

10
24

density  n1  [cm
−3

]

−1

0

1

2

3

4

Lo
g 

( 
H

1 
(n

1,
T

,T
1)

 )

T= 300 K  T1= 900 K
T= 300 K  T1=1800 K
T= 900 K  T1= 900 K
T= 900 K  T1=1800 K

10
21

10
22

10
23

density  n2  [cm
−3

]

−1

0

1

2

3

4

5

Lo
g 

( 
H

2 
(n

2,
T

,T
2)

 )

T= 300 K  T2= 900 K
T= 300 K  T2=1800 K
T= 900 K  T2= 900 K
T= 900 K  T2=1800 K

Fig. 1. The functions Log(Fl), Log(Gl) and Log(Hl).
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